Bacula® Bacula Main Reference

It comes in the night and sucks the essence from your computers.

Kern Sibbald

November 22, 2010
This manual documents Bacula version 5.0.0 (26 January 2010)

Copyright (©) 1999-2010, Free Software Foundation Europe e.V.
Bacula ®) is a registered trademark of Kern Sibbald.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A
copy of the license is included in the section entitled ”GNU Free Documentation License”.

Contents

1 What is Bacula? 1
1.1 Who Needs Bacula? o oot oo 1
1.2 Bacula Components or SErviCeso 1
1.3 Bacula CONAGUIAtion oo oot e 4
1.4 Conventions Used in this Document 4
1.5 Quick SEATE « o o v e e e 5
1.6 Terminolo BV o e e e e e e e e e e e 5
1.7 What Bacula is NOt . .« o v oot e e e 7
1.8 Interactions Between the Bacula Services ovv v v 7

2 New Features in 5.0.0 9
2.1 Truncate volume after PUIEE o o v o v oo e e 9
2.2 Maximum Concurent Jobs for Devices oot 9
2.3 Restore from Multiple Storage Daemons oo oo 9
2.4 File Deduplication using Base JODS © o 10
2.5 AllowCompression = <Veslno>‘ 10
2.6 Accurate Fileset Optionsl 11
2.7 Tab-completion for Beconsole 12
2.8 Pool File and Job retention oottt 12
2.9 Read-only File Daemon using capabilities\ 12
210 BvEs APTo 12
2.11 Testing your Tape Drive o oL 13
2.12 New Block Checksum Device Directive oo v oo 14
2.13 New Bat Featiles o o o oot e e e e e 14

2.13.1 Media List VIEW oo oo 14
2.13.2 Media Information VIEW oo vt e 15

‘2.13.3 Job Information VieM

2.13.4 Autochanger Content View e

‘2.14 Bat on Windows‘ ...

‘2.15 New Win32 Installer‘ ...

2,16 Winb4 Installer o o o oo e e

2.17 Bare Metal Recovery USB Key o . o e

2.18 beonsole Timeott OPtion . . .« « o o o ot

2.19 Important Changes e e

2.19.1 Custom Catalog queriesJ

‘2.19.2 Deprecated Darts‘

2.20 Misc Changes e

‘3 Released Version 3.0.3 and 3.0.33J

‘4 New Features in Released Version 3.0.2

4.1 Full Restore from a Given JobId
4.2 Source AdATess . . . o oot
4.3 Show volume availability when doing TeStoreo v
4.4 Accurate estimate commando e

‘5 New Features in 3.0.0\

5.1 Accurate Backup oo

5.1.1 Accurate = <yes|no>
5.2 Copy JODS . o oo e
53 ACLUDALES . .« o o o o oottt e e
5.4 Extended Attributes
5.5 Shared 0bJECtS
5.6 Building Static versions of Bacla . « o o e e
5.7 Virtual Backup (Vbackup)o
5.8 Catalog FOrmat o oo
5.9 64 bit Windows CHent oot
5.10 Duplicate Job Control

5.10.1 Allow Duplicate Jobs = <yes|no>

5.10.2 Allow Higher Duplicates = <yes|no>

5.10.3 Cancel Queued Duplicates = <yes|mo> ...

19

21

21

22

22

22

25

5.10.4 Cancel Running Duplicates = <yes|no> 34

5.11 TLS Authenticationo oot 34
5.11.1 TLS Authenticate = ye§ 34
5.12 bextract non-portable Win32 datal 34
5.13 State File updated at Job Termination 34
5.14 MaxFulllnterval = <time-interval>/ L oL 35
5.15 MaxDiffInterval = <time-interval> 35
5.16 Honor No Dump Flag = <yes|n0>‘ 35
5.17 Exclude Dir Containing = <filename-string> 35
5.18 Bacula Plugins‘ .. 36
5.18.1 Plugin DIrectory« oo oo 36
5.18.2 Plugin Options o oo o e e 36
5.18.3 Plugin Options ACL . . . o o oottt et 36
5.18.4 Plugin = <plugin—command—string>‘ 36
5.19 The bpipe PIUGI « « « « o o ottt e e e 37
5.20 Microsoft Exchange Server 2003/2007 Plugin 38
5.20.1 Background 38
5.20.2 COMCEPES « « o o o v e e e e e 38
5.20.3 InStalliNg . .« o o oov e e 38
5.20.4 Backing Up o e 38
5.20.5 REStOTING . .« o o oo oo e 39
5.20.6_Restoring to the Recovery Storage Group oo 40
5.20.7 Restoring on Microsoft Server 2007 .« o v 40
5.20.8 CavVealso 40
5.21 libdbi Framework . . .« o oot 40
5.22 Console Command Additions and Enhancements 42
5.22.1 Display Autochanger Comtent) 42
5.22.2 list joblog job=xxx or jobid=nnm 42
5.22.3 Use separator for multiple commands L. 42
5.22.4 Deleting Volumes e e 42
5.23 Bare Metal RECOVETY o o oo 43
5.24 MISCEllAneoUS . . . o o o voe e e e 43

5.24.1 Allow Mixed Priority = <yes|no> 43

5.24.2 Bootstrap File Directive — FﬂeRege)& 44

5.24.3 Bootstrap File Optimization Changes 44
5.24.4 Solaris ZES/NFSvA ACLS o o oo 14
5.24.5 Virtual Tape Emulation o oot v i 44
5.24.6 Bat Enhancementso 44
5.24.7 RunScript Enhancements oo v oo 45
5.24.8 Status ENhancementso it 45
5.24.9 Connect TIMEOUL . . « .« o o v v o e e 45
5.24.10 ftruncate for NFS VOIUINES« o v oo o oo 45
5.24.11 Support for UBUDGU ©+ © o o oo e 45
5.24.12 Recycle Pool = <pool-name>|. 45
5.2403FD VEISion o oo 46
5.24.14 Max Run Sched Time = <time-period-in-seconds> 46
5.24.15 Max Wait Time = <time-period-in-seconds> Lo 46
'5.24.16 Incremental— Differential Max Wait Time = <time—period—in-seconds>‘ 46
5.24.17 Max Run Time directives« o oot 46

5.24.18 Statistics Enhancements e 47
5.24.19 ScratchPool = <pool-resource-name> e 48

5.24.20 Enhanced Attribute Despooling 48
5.24.21 SpoolSize = <size-specification-in-bytes> oL 48
5.24.22 MaxConsoleConnections = <number> o oo v v 48
5.24.23 Verld = <SEFING™ . . . o o oo 49
5.24.24 dbcheck enhancementst 49
5.24.25 --docdir configure option L. L L 49
5.24.26 —-htmldir configure option 49
5.24.27 --with-plugindir configure option 49

6 The Current State of Bacula 51
6.1 What is Implementedt u e 51
6.2 Advantages Over Other Backup Programs 53

. urrent Implementation Restrictionso o oo

63 C Impl ion Restrictions 53
6.4 Design Limitations or Restrictions o oot v i 54

6.5 Ttems t0 NOGE .« © v v oo e e e e e 54

7 System Requirements

‘8 Supported Operating Systems

9 Supported Tape Drives

9.1 Unsupported Tape DIiVeS oo
9.2 FreeBSD Users Be Awarelll
9.3 Supported Autochangerﬁ
9.4 Tape Specifications e

‘10 Getting Started with Bacula

10.1 Understanding Jobs and Schedules

‘10.2 Understanding Pools, Volumes and Labels

10.3 Setting Up Bacula Configuration Files

‘10.3.1 Configuring the Console Program i

10.3.2 Configuring the Monitor Programl

10.3.3 Configuring the File daemon v v oo oo oo

10.3.4 Configuring the Director

10.3.5 Configuring the Storage daemon o o o v

10.4 Testing your Configuration Filed . . oot

‘10.5 Testing Compatibility with Your Tape Drive

10.6 Get Rid of the Jlib/tls Directory

10.7 Running Bacula L e e e e

10.8 Log ROtation o oo
10.9 Log Watch o o e e

\IO.IODisaster Recovery e

11 Installing Bacula

11.1 Source Release FileS o o v o oo

11.2 Upgrading Bacula . . . oot e

11.3 Releases NUIMDETING« o o o o oo o e

11.4 Dependency Packages e

11.5 Supported Operating SYStEmS « o o o v o

11.6 Building Bacula from Source Lo

‘11.7 What Database to Use?

55

57

59

60

60

60

60

63

63

63

64

64

65

65

66

66

67

67

67

67

68

68

68

69

118 Quick SEArtl . o v o v v e e 76

11.9 Configure Options o oo 76
11.10Recommended Options for Most Systems 82
HLUIRed Hat « o o oot oo 82
TLA2S0lariS © .« o oo 83
.. 84
TLIAWINS2 . .o oo 84
11.150ne File Configure SCript o o oo v 84
11.16Installing Bactlal o oot 84
‘11.17Building a File Daemon or CLent! o oo v 85
11.18Auto Starting the DAemons oo 85
11.190ther Make NOtES . . .« o o oo o 85
11.20Installing Tray MODItOI .« .« . o o o e 87
120 1GNOME . oo oo oo 87
.. 87
11.20.3 Other window MANAZETS .« .« .« v o e e e e e e e e e e e e e e 87
11.21Modifying the Bacula Configuration Files 87
12 Critical Items to Implement Before Production 89
12,1 Critical TEOINS .+« « © o v vttt e e 89
12.2 Recommended TECIMS . . . o o o v ot 90
13 A Brief Tutorial 91
13.1 Before Running Bacula. 0 e 91
13.2 Starting the Database o 92
13.3 Starting the Daemons L e 92
13.4 Using the Director to Query and Start JobS 92
135 RUnning a Job . . o o oo o 94
13.6 Restoring Your Filed . . . o o 98
13.7_Quitting the Console Program 100
13.8 Adding a Second CHENt .« o o v e e e e 100
13.9 When The Tape FillS o oottt ittt e 101
13.100ther Useful Console Commands oo oo 103

‘13.11Debug Daemon Output 103

13.12Patience When Starting Daemons or Mounting Blank Tapes 104

13.13Difficulties Connecting from the FD to the SD o oo v 104
13.14Daemon Command Line Options e 104
13.15Creating a Pool o oo e 105
‘13.16Labeling Your VOIUmes o oo 105
13.17Labeling Volumes with the Console Programo 106
14 Customizing the Configuration Files 109
14.1 Character SEtS . . . o o v v vt e e 110
‘14.2 Resource Directive Format‘ 111
14.2.1 COMIMENES . « .« o\ oot oottt 111
14.2.2 Upper and Lower Case and Spaces 111
14.2.3 Including other Configuration Files 111
14.2.4 Recognized Primitive Data Types. oo oo 112

14.3 Resource Types . . o o e 113
14.4 Names, Passwords and AUthorization o vv v 113
14.5 Detailed Information for each Daemon o v v oo i 114
15 Configuring the Director 115
15.1 Director Resource Types‘ 115
15.2 The Director RESOUICE o o o v v oo e e e 116
15.3 The Job RESOUICE . . .« o v o oo e e e e e 118
15.4 The JobDefs RESOUICE o o o v v oo e e e e 132
15.5 The Schedule RESOUTCE . « « . o o o v v o e e e e e e e 132
15.6 Technical Notes on Scheduleso oo i 135
15.7 The FileSet RESOUICE . . o o o o oot e e e e e e 135
15.8 FileSet EXamples o o oo oot 146
15.9 Backing up Raw Partitions oo ov i 151
‘15.10Excluding Files and Directories 151
15 1IWindows FileSets . . . o o oo i 151
‘15.12Testing Your FileSet e 153
15.13The Client RESOUICE o o oo ottt 154
15.14The Storage Resource e 155

‘15. 15The Pool Resource 0 o e e e 157

15.15.1The Scratch Pool o o o 163

15.16The Catalog RESOUTCE o o oo 163
15.17The Messages RESOULCE .« « o o v oo e e e e e e 164
15.18The Console RESOUTCE o oo 164
15.19The Counter ReSOUICE o oo 166
15.20Example Director Configuration Fild 166
16 Client/File daemon Configuration 169
16.1 The Client ReSOUICE oo 169
16.2 The Director ReSOUTCE o o o 171
16.3 The Message ReSOUICE o oot 172
16.4 Example Client Configuration File . . oo 172
17 Storage Daemon Configuration 173
17.1 Storage RESOUTCE .« o o o o oo e e e 173
17.2 Director REeSOUTCE o o oo 175
17.3 Device RESOUICE . . o o o o oo o 175
17.4 Edit Codes for Mount and Unmount Directives 183
17.5 Devices that require a mount (DVD) oot i e 183

18 Autochanger Resource 185

18.1 Capabilities o v vt e 186
18.2 Messages RESOUICE . . . o o o o oot e e e e 186
18.3 Sample Storage Daemon Configuration File . ..o, 186
19 Messages Resource 189
20 Console Configuration 193
.. 193
20.2 The Director RESOUTCE . . . o o o v oo e e e e 193
20.3 The ConsoleFont RESOUICE . . . « .« o oo et e e e e 194
20.4 The Console RESOUICE . . . o o v v vt e 194
20.5 Console Commands« . e e e e e 196
20.6 Sample Console Configuration File 196

‘21 Monitor Conﬁp:urationj 197

‘21.1 The Monitor Resourcé .. 197

21.2 The Director RESOUICE o o ot o oo e 197
21.3 The Client RESOUICE . . . o o v o vt e e e e e e 198
21.4 The Storage RESOUICE o o o v oo e e e e 198
21.5 Tray Monitor Securitﬂ .. 199
21.6 Sample Tray Monitor configurationo vvi v 199
21.6.1 Sample File daemon’s Director record) . .. 200
21.6.2 Sample Storage daemon’s Director record. 200
21.6.3 Sample Director’s Console record. Lo 200

22 The Restore Command 201
22.1 General 201

22.2 The Restore Command oo 201

22.2.1 Restore a pruned job using a pattern/. oL oL 206
22.3 Selecting Files by FIlename o oo et e 206
22.4 Replace OPHONS o o oot 207
22.5 Command Line Arguments‘ 208
22.6 Using File Relocationl 209

22.6.1 Introduction 209

22.6.2 RegexWhere FOrmat oot i 209
22.7 Restoring Directory Attributes 210
22.8 Restoring on Windows oo oo e e 210
22.9 Restoring Files Can Be Slow e 211
22.10Problems Restoring Files o oo v 211
22.11Restore BITOTS . . . o oot 212
‘22.12Examp1e Restore Job Resource L 212
22.13File Selection Commands L 212
‘22.14Rest0ring When Things Go Wrong e 214

23 Automatic Volume Recycling 219

23.1 Automatic Prunir@ .. 220
23.2 Pruning DirectivesJ .. 220
23.3 Recycling AlgorithmJ ... 222

‘23.4 Recycle Status‘ .. 223

23.5 Making Bacula Use a Single Tapé 224

‘23.6 Daily, Weekly, Monthly Tape Usage Examplé 224

23.7 Automatic Pruning and Recycling Example oo oo 226

23.8 Manually Recycling Volumng 227

24 Basic Volume Management 229
24.1 Key Concepts and Resource Records 229
24.1.1 Pool Options to Limit the Volume Usagé 230

24.1.2 Automatic Volume Labeling oo oo 231

24.1.3 Restricting the Number of Volumes and Recycling 231

24.2 Concurrent Disk JobS 232
24.3 An Example oL 233
24.4 Backing up to Multiple DiSKS . . o o 235
24.5 Considerations for Multiple Clients 236
25 Automated Disk Backup 241
25.1 The Problemlttt 241
25.2 The SOIHON . . . v\ vttt it 241
25.3 Overall Designl .. 242
2531 Full POOL .« o vttt e e 242

25.3.2 Differential POol oo 243

25.3.3 Incremental Pool 243

25.4 The Actual Conf Files oo i i oottt 243
26 Migration and Copy 247
26.1 Migration and Copy Job Resource Directives 248
26.2 Migration Pool Resource Directives o 250
26.3 Important Migration Considerationsottt 250
26.4 Example Migration Jobs 251
27 Backup Strategies 253
27.1 Simple One Tape Backup e 253
2711 AQVADEAZES - - -« o o oo 253

27.1.2 Disadvantages e 253

27.1.3 Practical Details o 253

27.2 Manually Changing Tape§ 254

27.3 Daily Tape ROEALION . . . o o o oo ot 254
27.3.1 Advantages e 254

27.3.2 DisadVanbages o o 255

27.3.3 Practical Detailso 255

28 Autochanger Support 259
28.1 Knowing What SCSI Devices You HAVE . o o oo e 260
28.2 Example SCIIPtS 261
8.3 SIOBS .« « o o e 261
28.4 Multiple DEVICES o ottt 261
28.5 Device Configuration RECOTAS .« o o o ot e 262
29 Autochanger Resource 265
29.1 An Example Configuration Filel 266
29.2 A Multi-drive Example Configuration File . . oo 266
29.3 Specifying Slots When Labeling o oo vi 267
29.4 Changing Cartridge§ ... 268
29.5 Dealing with Multiple Magazines L e 268
29.6 Simulating Barcodes in your Autochangeﬂ 269
29.7 The Full Form of the Update Slots Command 269
20.8 FreeBSD ISSUES o o oo 270
29.9 Testing Autochanger and Adapting mtx-changer script‘ 270
29.10Using the Autochangeﬂ .. 271
29.11Barcode Support . .o e 272
29.12Use bceonsole to display Autochanger content 273
29.13Bacula Autochanger Interface 273
30 Supported Autochangers 275
31 Data Spoolind 279
31.1 Data Spooling DIireCtives oo oo 279
312 1 MAJOR WARNING 1l . . . e 280
313 Other POINTSttt 280

‘32 Using Bacula catalog to grab information 281

32.1

Job statistics e

33 ANSI and IBM Tape Labels

33.1

Director Pool Directive o o o o e e e e

33.2

Storage Daemon Device DIrECtiVES . « o o o o e e

‘34 The Windows Version of BaculaJ

34.1

Win32 Installationl o o vt

34.2

Post Win32 Installationj

34.3 Uninstalling Baculaon Wind2 e

34.4

Dealing with Win32 Problems oo oot

34.5

Windows Compatibility Considerations o v v o i

34.6

Volume Shadow Copy Service v v v v v e e e e e e

34.7

VSS Problem§ ...

34.8

Windows Firewalls‘ ..

34.9

Windows Port Usage

34.10Windows Disaster Recovery o

‘34.11Windows Restore Problemsl

34.12Windows Ownership and Permissions Problems . . . v e

‘34.13Manuallv resetting the PermissionsJ

34.14Backing Up the WinNT/XP /2K System Statd

34.15Considerations for Filename Specificationso oo

34.16Win32 Specific File daemon Command Lin§

‘34.17Shutting down Windows Systems‘

35 Disaster Recovery Using Bacula

35.1 General e

35.2

Important Considerations

35.3

Steps to Take Before Disaster Strikes L o

35.4

Bare Metal Recovery on Linux with a Rescue CD

35.5

Requirements

35.6

Restoring a Client SySteml« o o vt

35.7

Boot with your Rescue CDROM

35.8

Restoring a Server

35.9

Linux Problems or Bugs

283

283

283

285

285

289

289

289

291

292

293

294

294

294

294

295

295

297

298

298

299

301

35.10Bare Metal Recovery using a LiveCD . . o o

‘35.11FreeBSD Bare Metal Recovery . .

35.12Solaris Bare Metal Recovery

‘35.13Preparin}z Solaris Before a Disasteﬂ

‘35.14Bugs and Other Considerations . .

35.15Disaster Recovery of Win32 SYStems o v v oo e

‘35.160wnership and Permissions on Win32 Systems L oL

35.17Alternate Disaster Recovery Suggestion for Win32 Systems o o oL

‘35.18Rest0ring to a Running System . .

35.19Additional Resources

36.1 TLS Configuration Directives . . .

36.2 Creating a Self-signed Certificate .

36.3 Getting a CA Signed Certificate .

36.4 Example TLS Configuration Files .

‘37 Data Encryption

36 Bacula TLS — Communications Encryption

37.1 Building Bacula with Encryption Support o oo

‘37.2 Encryption Technical Details‘ ..

37.3 Decrypting with a Master Key . .

37.4 Generating Private/Public Encryption Keys L.

‘37.5 Example Data Encryption Configuration o e

38.1 The Details

38.2 Running the Verify

38 Using Bacula to Improve Computer Securitﬂ

38.3 What To Do When Differences Are Found v oo v oo oo

38.4 A Verify Configuration Example .

39 Installing and Configuring MySQL

39.1 Installing and Configuring MySQL —Phase I

39.2 Installing and Configuring MySQL — Phase IT

39.3 Re-initializing the Catalog Database

39.4 Linking Bacula with MySQL| . . .

313

313

314

315

315

319

320

320

320

321

321

323

323

324

325

326

329

39.5 Installing MySQL from RPMS . . . oo 332

39.6 Upgrading MySQU . . .« oottt et 332
40 Installing and Configuring PostgreSQL 333
40.1 Installing PostgreSQL e 333
40.2 Configuring PostgreSQL o o oo 334
40.3 Re-initializing the Catalog Databaseo 336
40.4 Installing PostgreSQL from RPMs 336
40.5_Converting from MySQL to PostgreSQL o i i 337
40.6 Upgrading PostgreSQL‘ .. 338
40.7 Tuning PostgreSQL L 338
0.8 Credits . . . o oo 339
41 Installing and Configuring SQLite 341
41.1 Installing and Configuring SQLite —Phase I, 341
41.2 Installing and Configuring SQLite — Phase IT 342
41.3 Linking Bacula with SQLItE . . .« o o v v v e e e 342
414 Testing SQLIGE . .« o o o oo 342
41.5 Re-initializing the Catalog Databaseo 342
42 Catalog Maintenance 345
42.1 Setting Retention Periodso 345
42.2 Compacting Your MySQL Database o 346
42.3 Repairing Your MySQL Database oo 347
42.4 MySQL Table is Full oot o oot 347
42.5 MySQL Server Has Gone Awaﬂ 348
42.6 MySQL Temporary Tables oo 348
42.7 Repairing Your PostgreSQL Database 348
42.8 Database Performance ISSues 348
42.9 Performance Issues INAEXS o . oo 349
42.9.1 PostgreSQL INAEXES .« o o v ot e 349

42.9.2 MySQL Indexes oo oot 349

42.9.3 SQLite INAEXOS . .« © « o v ot e 350
‘42.IOCompacting Your PostgreSQL Database v e 350

‘42.11Compactin,q Your SQLite Database 351

‘42.12Migrating from SQLite to MySQL or PostgreSQL o oL

42.13Backing Up Your Bacula Database,

‘42.14Security considerations

42.15Backing Up Third Party Databases

‘42.16Database Sizé ...

‘43 Bacula Security Issues‘

43.1 Backward Compatibilitﬂ

43.2 Configuring and Testing TCP WIappers o oo ovov oo e e e e

43.3 Running as non-root Lo

‘44 The Bootstrap File

44.1 Bootstrap File Formatl . . o o oot

44.2 Automatic Generation of Bootstrap FileS v oo oo

44.3 Bootstrap for bscan L

44.4 A Final Bootstrap EXample o o oo v

45 Bacula Copyright, Trademark, and Licenses

45.3 LGPL . . . e

45.4 Public DOmainl o o o e e e

45.5 Trademark L e e e e e e

45.6 Fiduciary License Agreement

45.7 Disclaimeﬂ ...

‘46 GNU Free Documentation License‘

46.1 Table of CONtENTS . . « « « o o o o oo e

46.2 GNU GENERAL PUBLIC LICENSE . . . o o e,
46.3 Preambl& ...

46.4 TERMS AND CONDITIONS o o o oo,

46.5 How to Apply These Terms to Your New Programs

‘46.6 Table of Contents‘ ...

46.7 GNU LESSER GENERAL PUBLIC LICENSE i

46.8 Preamble o e e e e

355

356

356

358

359

359

362

363

363

365

365

365

365

365

366

366

366

367

46.9 TERMS AND CONDITIONS . . . o o o oo,

‘46.10HOW to Apply These Terms to Your New Libraries

47 Thanks

‘47. 1 Bacula Bug§

Chapter 1

What is Bacula?

Bacula is a set of computer programs that permits the system administrator to manage backup, recovery,
and verification of computer data across a network of computers of different kinds. Bacula can also run
entirely upon a single computer and can backup to various types of media, including tape and disk.

In technical terms, it is a network Client/Server based backup program. Bacula is relatively easy to use and
efficient, while offering many advanced storage management features that make it easy to find and recover
lost or damaged files. Due to its modular design, Bacula is scalable from small single computer systems to
systems consisting of hundreds of computers located over a large network.

1.1 Who Needs Bacula?

If you are currently using a program such as tar, dump, or bru to backup your computer data, and you would
like a network solution, more flexibility, or catalog services, Bacula will most likely provide the additional
features you want. However, if you are new to Unix systems or do not have offsetting experience with a
sophisticated backup package, the Bacula project does not recommend using Bacula as it is much more
difficult to setup and use than tar or dump.

If you want Bacula to behave like the above mentioned simple programs and write over any tape that you
put in the drive, then you will find working with Bacula difficult. Bacula is designed to protect your data
following the rules you specify, and this means reusing a tape only as the last resort. It is possible to ”force”
Bacula to write over any tape in the drive, but it is easier and more efficient to use a simpler program for
that kind of operation.

If you would like a backup program that can write to multiple volumes (i.e. is not limited by your tape drive
capacity), Bacula can most likely fill your needs. In addition, quite a number of Bacula users report that
Bacula is simpler to setup and use than other equivalent programs.

If you are currently using a sophisticated commercial package such as Legato Networker. ARCservelT,
Arkeia, or PerfectBackup+, you may be interested in Bacula, which provides many of the same features and
is free software available under the GNU Version 2 software license.

1.2 Bacula Components or Services

Bacula is made up of the following five major components or services: Director, Console, File, Storage, and
Monitor services.

Admin workstation

Database server
port 3106

Command Console
Command Ins interface to
eantrol backup and restaration.

my3aL, SoLLite or
postgresql database
Skorage of catalogue.

~ wxWidgets Console
H & Windowsaraphizal interlace
e contral backup and
restoration

Admin workstation

o Tray Monitor
© GnemefKDE status monltor

Backup server
port 101

Bacula director dasman
Background application whidh runs
schadiles, authenticates conrections
and controls backup opsrafions.

/

Storoge server
part 9103

File server

Tape/disk

| ..___‘-\bl:t“p device
Bacula storage daemon Y;Eﬂ@;;

Background application which
writes backup to disk, taps, CD, sfc.

Bacula file daemon
05X, Linux, Unix or Windows
background aoplication which
reads files from data source.

BaCUIa applicatiﬂ“ Miote that these applications may actually run en
fewer machines than shown here. You could run
i“teractions everything on one machine if you only wanted to

back up a local disk te a ocal tape or disk.

Port numbers are the defauits and can be changed.

(thanks to Aristedes Ma-
niatis for this graphic and the one below)

Bacula Director

The Bacula Director service is the program that supervises all the backup, restore, verify and archive
operations. The system administrator uses the Bacula Director to schedule backups and to recover files.
For more details see the Director Services Daemon Design Document in the Bacula Developer’s Guide. The
Director runs as a daemon (or service) in the background.

Bacula Console

The Bacula Console service is the program that allows the administrator or user to communicate with the
Bacula Director Currently, the Bacula Console is available in three versions: text-based console interface, QT-
based interface, and a wxWidgets graphical interface. The first and simplest is to run the Console program
in a shell window (i.e. TTY interface). Most system administrators will find this completely adequate. The
second version is a GNOME GUI interface that is far from complete, but quite functional as it has most the
capabilities of the shell Console. The third version is a wxWidgets GUI with an interactive file restore. It also
has most of the capabilities of the shell console, allows command completion with tabulation, and gives you
instant help about the command you are typing. For more details see the Bacula Console Design Document.

Bacula File

The Bacula File service (also known as the Client program) is the software program that is installed on
the machine to be backed up. It is specific to the operating system on which it runs and is responsible for
providing the file attributes and data when requested by the Director. The File services are also responsible
for the file system dependent part of restoring the file attributes and data during a recovery operation. For
more details see the File Services Daemon Design Document in the Bacula Developer’s Guide. This program
runs as a daemon on the machine to be backed up. In addition to Unix/Linux File daemons, there is a
Windows File daemon (normally distributed in binary format). The Windows File daemon runs on current
Windows versions (NT, 2000, XP, 2003, and possibly Me and 98).

Bacula Storage

The Bacula Storage services consist of the software programs that perform the storage and recovery of the
file attributes and data to the physical backup media or volumes. In other words, the Storage daemon is
responsible for reading and writing your tapes (or other storage media, e.g. files). For more details see the
Storage Services Daemon Design Document in the Bacula Developer’s Guide. The Storage services runs as
a daemon on the machine that has the backup device (usually a tape drive).

Catalog

The Catalog services are comprised of the software programs responsible for maintaining the file indexes
and volume databases for all files backed up. The Catalog services permit the system administrator or user
to quickly locate and restore any desired file. The Catalog services sets Bacula apart from simple backup
programs like tar and bru, because the catalog maintains a record of all Volumes used, all Jobs run, and
all Files saved, permitting efficient restoration and Volume management. Bacula currently supports three
different databases, MySQL, PostgreSQL, and SQLite, one of which must be chosen when building Bacula.

The three SQL databases currently supported (MySQL, PostgreSQL or SQLite) provide quite a number
of features, including rapid indexing, arbitrary queries, and security. Although the Bacula project plans
to support other major SQL databases, the current Bacula implementation interfaces only to MySQL,
PostgreSQL and SQLite. For the technical and porting details see the Catalog Services Design Document
in the developer’s documented.

The packages for MySQL and PostgreSQL are available for several operating systems. Alternatively, in-
stalling from the source is quite easy, see the | Installing and Configuring MySQL]| chapter of this doc-
ument for the details. For more information on MySQL, please see: www.mysql.com. Or see the
| Installing and Configuring PostgreSQL chapter of this document for the details. For more information
on PostgreSQL, please see: www.postgresql.org.

Configuring and building SQLite is even easier. For the details of configuring SQLite, please see the
| Installing and Configuring SQLite| chapter of this document.

Bacula Monitor

A Bacula Monitor service is the program that allows the administrator or user to watch current status of
Bacula Directors, Bacula File Daemons and Bacula Storage Daemons. Currently, only a GTK+ version
is available, which works with GNOME, KDE, or any window manager that supports the FreeDesktop.org
system tray standard.

To perform a successful save or restore, the following four daemons must be configured and running: the
Director daemon, the File daemon, the Storage daemon, and the Catalog service (MySQL, PostgreSQL or
SQLite).

http://www.mysql.com
http://www.postgresql.org

1.3 Bacula Configuration

In order for Bacula to understand your system, what clients you want backed up and how, you must create

a number of configuration files containing resources (or objects). The following presents an overall picture
of this:

Director config (bacula-dirconf) Console config (bronsole conf)
Director
One director Dir.:tnr
racord for 4

- Which directors this

general setup. | console can connect

Client

¢ Scd'll.dl.lii to. [Usually you
A pointer to the Détinltion of whan hav.e only one
computer you T — this job will run and { director.)
want to backup. it is a full or
BLL] / incramental bachup.
Debinition of one

| FileSet from a single

Client backed up -
accerding bo a
' Scheduls to a Peol
S_turaq- of tapes/files on a FlieSet
A pointer to the Storage device N | Defnitions of paths

backup device
(tape drive or
disk storags)

to the files you want

| to backup, with
rules to excluds

zertaln files.

Pool —— Simplified Bacula

Coliection of tapes or

disk files which make T . _ Ty

up the storage. You BhlEEt dEflnltlﬂﬂs
may have multipls
pools in differant

rotations.
T ———————————
Catalogue Messages
Details of the S0OL Setup of the
databaze which netification emails.

stores the catalogue
{index to conbents
of backupl.

File daemon config (bacula-fd.conf) Storage daemon config (bacuia-sd.coni)
Client Director Etorage IJIrt:_‘tar_
: PR One storage record #uthentication
One client record | Authentication ;
% tar general sstup. detaits for the
tor general setup. details tar the ;
* director allowsd to
director allowed to

control this dasmon.
control this daemon,

iphssaqo: Messages Device
Whal messages ars Whal messages are Characteristics of
sent back to the sent back to the the storage device

director. directer. {lape driver or disk).

1.4 Conventions Used in this Document

Bacula is in a state of evolution, and as a consequence, this manual will not always agree with the code. If an
item in this manual is preceded by an asterisk (*), it indicates that the particular feature is not implemented.
If it is preceded by a plus sign (4), it indicates that the feature may be partially implemented.

If you are reading this manual as supplied in a released version of the software, the above paragraph holds
true. If you are reading the online version of the manual, www.bacula.org, please bear in mind that this
version describes the current version in development (in the CVS) that may contain features not in the
released version. Just the same, it generally lags behind the code a bit.

http://www.bacula.org

1.5 Quick Start

To get Bacula up and running quickly, the author recommends that you first scan the Terminol-
ogy section below, then quickly review the next chapter entitled [The Current State of Bacula, then the
Getting Started with Bacula| which will give you a quick overview of getting Bacula running. After which,
you should proceed to the chapter on|Installing Bacula, then How to Configure Bacula) and finally the chap-
ter on| Running Baculal

1.6 Terminology

Administrator The person or persons responsible for administrating the Bacula system.
Backup The term Backup refers to a Bacula Job that saves files.

Bootstrap File The bootstrap file is an ASCII file containing a compact form of commands that allow
Bacula or the stand-alone file extraction utility (bextract) to restore the contents of one or more
Volumes, for example, the current state of a system just backed up. With a bootstrap file, Bacula can
restore your system without a Catalog. You can create a bootstrap file from a Catalog to extract any
file or files you wish.

Catalog The Catalog is used to store summary information about the Jobs, Clients, and Files that were
backed up and on what Volume or Volumes. The information saved in the Catalog permits the admin-
istrator or user to determine what jobs were run, their status as well as the important characteristics
of each file that was backed up, and most importantly, it permits you to choose what files to restore.
The Catalog is an online resource, but does not contain the data for the files backed up. Most of the
information stored in the catalog is also stored on the backup volumes (i.e. tapes). Of course, the
tapes will also have a copy of the file data in addition to the File Attributes (see below).

The catalog feature is one part of Bacula that distinguishes it from simple backup and archive programs
such as dump and tar.

Client In Bacula’s terminology, the word Client refers to the machine being backed up, and it is synonymous
with the File services or File daemon, and quite often, it is referred to it as the FD. A Client is defined
in a configuration file resource.

Console The program that interfaces to the Director allowing the user or system administrator to control
Bacula.

Daemon Unix terminology for a program that is always present in the background to carry out a designated
task. On Windows systems, as well as some Unix systems, daemons are called Services.

Directive The term directive is used to refer to a statement or a record within a Resource in a configuration
file that defines one specific setting. For example, the Name directive defines the name of the Resource.

Director The main Bacula server daemon that schedules and directs all Bacula operations. Occasionally,
the project refers to the Director as DIR.

Differential A backup that includes all files changed since the last Full save started. Note, other backup
programs may define this differently.

File Attributes The File Attributes are all the information necessary about a file to identify it and all its
properties such as size, creation date, modification date, permissions, etc. Normally, the attributes are
handled entirely by Bacula so that the user never needs to be concerned about them. The attributes
do not include the file’s data.

File Daemon The daemon running on the client computer to be backed up. This is also referred to as the
File services, and sometimes as the Client services or the FD.

FileSet A FileSet is a Resource contained in a configuration file that defines the files to be backed up.
It consists of a list of included files or directories, a list of excluded files, and how the file is to be
stored (compression, encryption, signatures). For more details, see the [FileSet Resource definition in
the Director chapter of this document.

Incremental A backup that includes all files changed since the last Full, Differential, or Incremental backup
started. It is normally specified on the Level directive within the Job resource definition, or in a
Schedule resource.

Job A Bacula Job is a configuration resource that defines the work that Bacula must perform to backup
or restore a particular Client. It consists of the Type (backup, restore, verify, etc), the Level (full,
incremental,...), the FileSet, and Storage the files are to be backed up (Storage device, Media Pool).
For more details, see the|Job Resource definition|in the Director chapter of this document.

Monitor The program that interfaces to all the daemons allowing the user or system administrator to
monitor Bacula status.

Resource A resource is a part of a configuration file that defines a specific unit of information that is
available to Bacula. It consists of several directives (individual configuration statements). For example,
the Job resource defines all the properties of a specific Job: name, schedule, Volume pool, backup type,
backup level, ...

Restore A restore is a configuration resource that describes the operation of recovering a file from backup
media. It is the inverse of a save, except that in most cases, a restore will normally have a small set
of files to restore, while normally a Save backs up all the files on the system. Of course, after a disk
crash, Bacula can be called upon to do a full Restore of all files that were on the system.

Schedule A Schedule is a configuration resource that defines when the Bacula Job will be scheduled for
execution. To use the Schedule, the Job resource will refer to the name of the Schedule. For more
details, see the [Schedule Resource definition in the Director chapter of this document.

Service This is a program that remains permanently in memory awaiting instructions. In Unix environ-
ments, services are also known as daemons.

Storage Coordinates The information returned from the Storage Services that uniquely locates a file
on a backup medium. It consists of two parts: one part pertains to each file saved, and the other
part pertains to the whole Job. Normally, this information is saved in the Catalog so that the user
doesn’t need specific knowledge of the Storage Coordinates. The Storage Coordinates include the File
Attributes (see above) plus the unique location of the information on the backup Volume.

Storage Daemon The Storage daemon, sometimes referred to as the SD, is the code that writes the
attributes and data to a storage Volume (usually a tape or disk).

Session Normally refers to the internal conversation between the File daemon and the Storage daemon.
The File daemon opens a session with the Storage daemon to save a FileSet or to restore it. A session
has a one-to-one correspondence to a Bacula Job (see above).

Verify A verify is a job that compares the current file attributes to the attributes that have previously been
stored in the Bacula Catalog. This feature can be used for detecting changes to critical system files
similar to what a file integrity checker like Tripwire does. One of the major advantages of using Bacula
to do this is that on the machine you want protected such as a server, you can run just the File daemon,
and the Director, Storage daemon, and Catalog reside on a different machine. As a consequence, if
your server is ever compromised, it is unlikely that your verification database will be tampered with.

Verify can also be used to check that the most recent Job data written to a Volume agrees with what
is stored in the Catalog (i.e. it compares the file attributes), *or it can check the Volume contents
against the original files on disk.

*Archive An Archive operation is done after a Save, and it consists of removing the Volumes on which
data is saved from active use. These Volumes are marked as Archived, and may no longer be used to
save files. All the files contained on an Archived Volume are removed from the Catalog. NOT YET
IMPLEMENTED.

Retention Period There are various kinds of retention periods that Bacula recognizes. The most important
are the File Retention Period, Job Retention Period, and the Volume Retention Period. Each of
these retention periods applies to the time that specific records will be kept in the Catalog database.
This should not be confused with the time that the data saved to a Volume is valid.

The File Retention Period determines the time that File records are kept in the catalog database. This
period is important for two reasons: the first is that as long as File records remain in the database,
you can "browse” the database with a console program and restore any individual file. Once the File

records are removed or pruned from the database, the individual files of a backup job can no longer be
"browsed”. The second reason for carefully choosing the File Retention Period is because the volume
of the database File records use the most storage space in the database. As a consequence, you must
ensure that regular ”pruning” of the database file records is done to keep your database from growing
too large. (See the Console prune command for more details on this subject).

The Job Retention Period is the length of time that Job records will be kept in the database. Note,
all the File records are tied to the Job that saved those files. The File records can be purged leaving
the Job records. In this case, information will be available about the jobs that ran, but not the details
of the files that were backed up. Normally, when a Job record is purged, all its File records will also
be purged.

The Volume Retention Period is the minimum of time that a Volume will be kept before it is reused.
Bacula will normally never overwrite a Volume that contains the only backup copy of a file. Under
ideal conditions, the Catalog would retain entries for all files backed up for all current Volumes. Once
a Volume is overwritten, the files that were backed up on that Volume are automatically removed
from the Catalog. However, if there is a very large pool of Volumes or a Volume is never overwritten,
the Catalog database may become enormous. To keep the Catalog to a manageable size, the backup
information should be removed from the Catalog after the defined File Retention Period. Bacula
provides the mechanisms for the catalog to be automatically pruned according to the retention periods
defined.

Scan A Scan operation causes the contents of a Volume or a series of Volumes to be scanned. These
Volumes with the information on which files they contain are restored to the Bacula Catalog. Once
the information is restored to the Catalog, the files contained on those Volumes may be easily restored.
This function is particularly useful if certain Volumes or Jobs have exceeded their retention period and
have been pruned or purged from the Catalog. Scanning data from Volumes into the Catalog is done
by using the bscan program. See the bscan section|of the Bacula Utilities Chapter of this manual for
more details.

Volume A Volume is an archive unit, normally a tape or a named disk file where Bacula stores the data
from one or more backup jobs. All Bacula Volumes have a software label written to the Volume by
Bacula so that it identifies what Volume it is really reading. (Normally there should be no confusion
with disk files, but with tapes, it is easy to mount the wrong one.)

1.7 What Bacula is Not

Bacula is a backup, restore and verification program and is not a complete disaster recovery system in
itself, but it can be a key part of one if you plan carefully and follow the instructions included in the
| Disaster Recovery| Chapter of this manual.

With proper planning, as mentioned in the Disaster Recovery chapter, Bacula can be a central component
of your disaster recovery system. For example, if you have created an emergency boot disk, and/or a Bacula
Rescue disk to save the current partitioning information of your hard disk, and maintain a complete Bacula
backup, it is possible to completely recover your system from ”bare metal” that is starting from an empty
disk.

If you have used the WriteBootstrap record in your job or some other means to save a valid bootstrap file,
you will be able to use it to extract the necessary files (without using the catalog or manually searching for
the files to restore).

1.8 Interactions Between the Bacula Services

The following block diagram shows the typical interactions between the Bacula Services for a backup job.
Each block represents in general a separate process (normally a daemon). In general, the Director oversees
the flow of information. It also maintains the Catalog.

‘Consale’ File
Tser Comumands
Commonts Conmmands File Attribuies + Data
Y Anthonzation
o Catalog Raquests Storage
Director L das: W,
File Attdbutes
File & tiribates Storage Locstion
Storage Locabon File Attribates + Data
¥
S0 DEMS

Fhysical Media

Chapter 2

New Features in 5.0.0

This chapter presents the new features that are in the released Bacula version 5.0.0.

2.1 Truncate volume after purge

The Pool directive ActionOnPurge=Truncate instructs Bacula to truncate the volume when it is purged.
It is useful to prevent disk based volumes from consuming too much space.

Pool {
Name = Default
Action On Purge = Truncate

2.2 Maximum Concurent Jobs for Devices

Maximum Concurrent Jobs is a new Device directive in the Storage Daemon configuration permits
setting the maximum number of Jobs that can run concurrently on a specified Device. Using this directive,
it is possible to have different Jobs using multiple drives, because when the Maximum Concurrent Jobs limit
is reached, the Storage Daemon will start new Jobs on any other available compatible drive. This facilitates
writing to multiple drives with multiple Jobs that all use the same Pool.

This project was funded by Bacula Systems.

2.3 Restore from Multiple Storage Daemons

Previously, you were able to restore from multiple devices in a single Storage Daemon. Now, Bacula is able
to restore from multiple Storage Daemons. For example, if your full backup runs on a Storage Daemon
with an autochanger, and your incremental jobs use another Storage Daemon with lots of disks, Bacula will
switch automatically from one Storage Daemon to an other within the same Restore job.

You must upgrade your File Daemon to version 3.1.3 or greater to use this feature.

This project was funded by Bacula Systems with the help of Equiinet.

9

2.4 File Deduplication using Base Jobs

A base job is sort of like a Full save except that you will want the FileSet to contain only files that are
unlikely to change in the future (i.e. a snapshot of most of your system after installing it). After the base
job has been run, when you are doing a Full save, you specify one or more Base jobs to be used. All files that
have been backed up in the Base job/jobs but not modified will then be excluded from the backup. During
a restore, the Base jobs will be automatically pulled in where necessary.

This is something none of the competition does, as far as we know (except perhaps BackupPC, which is a
Perl program that saves to disk only). It is big win for the user, it makes Bacula stand out as offering a
unique optimization that immediately saves time and money. Basically, imagine that you have 100 nearly
identical Windows or Linux machine containing the OS and user files. Now for the OS part, a Base job will
be backed up once, and rather than making 100 copies of the OS, there will be only one. If one or more of
the systems have some files updated, no problem, they will be automatically restored.

A new Job directive Base=Jobx, Joby... permits to specify the list of files that will be used during Full
backup as base.

Job {
Name = BackupLinux
Level= Base
}
Job {
Name = BackupZog4
Base = BackupZog4, BackupLinux

Accurate = yes

In this example, the job BackupZog4 will use the most recent version of all files contained in BackupZog4
and BackupLinux jobs. Base jobs should have run with level=Base to be used.

By default, Bacula will compare permissions bits, user and group fields, modification time, size and the
checksum of the file to choose between the current backup and the BaseJob file list. You can change this
behavior with the BaseJob FileSet option. This option works like the verify= one, that is described in the
FileSet chapter.

FileSet {
Name = Full
Include = {
Options {
BaseJob = pmugcsb
Accurate = mcsb
Verify pind

}
File = /
}
}

This project was funded by Bacula Systems.

2.5 AllowCompression = <yes|no>

This new directive may be added to Storage resource within the Director’s configuration to allow users to
selectively disable the client compression for any job which writes to this storage resource.

For example:

Storage {
Name = UltriumTape
Address = ultrium-tape
Password = storage_password # Password for Storage Daemon
Device = Ultrium
Media Type = LTO 3
AllowCompression = No # Tape drive has hardware compression

The above example would cause any jobs running with the UltriumTape storage resource to run without
compression from the client file daemons. This effectively overrides any compression settings defined at the
FileSet level.

This feature is probably most useful if you have a tape drive which supports hardware compression. By
setting the AllowCompression = No directive for your tape drive storage resource, you can avoid additional
load on the file daemon and possibly speed up tape backups.

This project was funded by Collaborative Fusion, Inc.

2.6 Accurate Fileset Options

In previous versions, the accurate code used the file creation and modification times to determine if a file
was modified or not. Now you can specify which attributes to use (time, size, checksum, permission, owner,
group, ...), similar to the Verify options.

FileSet {
Name = Full
Include = {
Options {
Accurate = mcsb
Verify = pinb

3
File = /
X
}

i compare the inodes

p compare the permission bits

n compare the number of links

u compare the user id

g compare the group id

s compare the size

a compare the access time

m compare the modification time (st_mtime)
¢ compare the change time (st_ctime)

d report file size decreases

5 compare the MD5 signature

1 compare the SHA1 signature

Important note: If you decide to use checksum in Accurate jobs, the File Daemon will have to read all
files even if they normally would not be saved. This increases the I/O load, but also the accuracy of the
deduplication. By default, Bacula will check modification/creation time and size.

This project was funded by Bacula Systems.

2.7 Tab-completion for Bconsole

If you build bconsole with readline support, you will be able to use the new auto-completion mode. This
mode supports all commands, gives help inside command, and lists resources when required. It works also
in the restore mode.

To use this feature, you should have readline development package loaded on your system, and use the
following option in configure.

./configure --with-readline=/usr/include/readline --disable-conio ...

The new bconsole won’t be able to tab-complete with older directors.

This project was funded by Bacula Systems.

2.8 Pool File and Job retention

We added two new Pool directives, FileRetention and JobRetention, that take precedence over Client
directives of the same name. It allows you to control the Catalog pruning algorithm Pool by Pool. For
example, you can decide to increase Retention times for Archive or OffSite Pool.

2.9 Read-only File Daemon using capabilities

This feature implements support of keeping Read All capabilities after UID/GID switch, this allows FD to
keep root read but drop write permission.

It introduces new bacula-£fd option (-k) specifying that Read All capabilities should be kept after UID/GID
switch.

root@localhost:"# bacula-fd -k -u nobody -g nobody

The code for this feature was contributed by AltLinux.

2.10 Bvfs API

To help developers of restore GUI interfaces, we have added new dot commands that permit browsing the
catalog in a very simple way.

e .bvfs_update [jobid=x,y,z] This command is required to update the Bvfs cache in the catalog. You
need to run it before any access to the Bvfs layer.

e .bvfs_lsdirs jobid=x,y,z path=/path | pathid=101 This command will list all directories in the
specified path or pathid. Using pathid avoids problems with character encoding of path/filenames.

e .bvfs_lsfiles jobid=x,y,z path=/path | pathid=101 This command will list all files in the spec-
ified path or pathid. Using pathid avoids problems with character encoding.

You can use limit=xxx and offset=yyy to limit the amount of data that will be displayed.

* .bvfs_update jobid=1,2
* .bvfs_update
* .bvfs_lsdir path=/ jobid=1,2

This project was funded by Bacula Systems.

2.11 Testing your Tape Drive

To determine the best configuration of your tape drive, you can run the new speed command available in
the btape program.

This command can have the following arguments:

file_size=n Specify the Maximum File Size for this test (between 1 and 5GB). This counter is in GB.

nb_file=n Specify the number of file to be written. The amount of data should be greater than your memory
(file_size * nb_file).

skip_zero This flag permits to skip tests with constant data.
skip_random This flag permits to skip tests with random data.
skip_raw This flag permits to skip tests with raw access.

skip_block This flag permits to skip tests with Bacula block access.

*speed file_size=3 skip_raw

btape.c:1078 Test with zero data and bacula block structure.

btape.c:956 Begin writing 3 files of 3.221 GB with blocks of 129024 bytes.
e o B e

btape.c:604 Wrote 1 EOF to "Drive-0" (/dev/nst0)

btape.c:406 Volume bytes=3.221 GB. Write rate = 44.128 MB/s

btape.c:383 Total Volume bytes=9.664 GB. Total Write rate = 43.531 MB/s

btape.c:1090 Test with random data, should give the minimum throughput.
btape.c:956 Begin writing 3 files of 3.221 GB with blocks of 129024 bytes.
A

btape.c:604 Wrote 1 EOF to "Drive-0" (/dev/nst0)

btape.c:406 Volume bytes=3.221 GB. Write rate = 7.271 MB/s

T B o o B B e

btape.c:383 Total Volume bytes=9.664 GB. Total Write rate = 7.365 MB/s

When using compression, the random test will give your the minimum throughput of your drive . The test
using constant string will give you the maximum speed of your hardware chain. (cpu, memory, scsi card,
cable, drive, tape).

You can change the block size in the Storage Daemon configuration file.

2.12 New Block Checksum Device Directive

You may now turn off the Block Checksum (CRC32) code that Bacula uses when writing blocks to a Volume.
This is done by adding:

Block Checksum = no

doing so can reduce the Storage daemon CPU usage slightly. It will also permit Bacula to read a Volume
that has corrupted data.

The default is yes — i.e. the checksum is computed on write and checked on read.

We do not recommend to turn this off particularly on older tape drives or for disk Volumes where doing so
may allow corrupted data to go undetected.

2.13 New Bat Features

Those new features were funded by Bacula Systems.

2.13.1 Media List View

By clicking on “Media”, you can see the list of all your volumes. You will be able to filter by Pool, Media
Type, Location,. .. And sort the result directly in the table. The old “Media” view is now known as “Pool”.

File Seftings Help
=1 *o@RO
8l (e o

Select Page
=] [4 Edit @ Puge 3 Delei= o Prune
e

. Clients el

s ::::)E(S Msdia Typs: [+ stats [I vJ Limit [100 }-: Name:

: :i:ju” Pool: ~| Location: | |+ | [Expired 3 Apply ‘

® Storage olume Nam |omme| Vol Bytes |VG|USEQE Vol Status | Pool |MemaTypa| Last Written | When expire? ‘
BBN00OLT @ | 2ssa7ae| W HDe'au\t LTo-2 2009-10-31 05:07:34 2010-10-31 05:07:34
BENOOTL1 @ | a4s80GE WA Full Default LTO-2 2009-01-268 13:56:35 2010-01-28 13:56:35
BBN002L1 @ | 4s951GB WM Full Default LTO-2 2008-11-19 03:39:32 2009-11-19 03:39:32
BBNOOSL1 @ | 95046GiB Full Default LTO-2 2008-02-23 06:11:35 2010-02-23 06:11:35
BEN004LT Q@ 4se52GB Full Default LTO-2 2008-12-18 03,10:34 | 2009-12-18 031 0:34
BBNOOSL1 @ | 34308 Full Default LTO-2 2009-01-0712:10:17 | 2010-01-07 12:10:47
BBNOO0SL1 @ sss2GB Full Default LTO-2 2009-08-1003:30:31 2010-08-10 03:30:31
BBNOO7L1 @ s2e30GB Full Default LTO-2 2009-07-1703:30:25 2010-07-17 03:30:25
BEN00BL1 @ sesezGB Full Default LTO2 2009-09-13 03:35:48 2010-09-13 03:35:48
BENO15L1 @ | sss7GB Full Default LTO2 2009-10-19 04143552 2010-10-19 0414352
BBNO14L1 @ 4s627GB Full Default LTO-2 2008-11-03 04:50:02 2009-11-03 04:50:02
BBNO1SL1 @ | s2848GB Full Default LTO-2 2009-03-16 04:19:40 2010-03-16 04:19:40
BBNO16L1 @ se212GB Full Default LTO-2 2008-04-25 03:27:10 2010-04-25 03:27:10
BENO17L1 Q@ 41685GE Full Default LTO-2 2009-05-23 03:23552 2010-05-23 03:23:52
BENO16L1 @ | s4332G8 WM Full Default LTG-2 2009-06-24 03:32:27 2010-06-24 03:32:27
BBNO1SL1 @ s4siKB Default LTO-2 0000-00-00 00:00:00 1971-01-01 01:00:00
GIYE16L1 @ sesKB =Decamt LTo-2 0000-00-00 00:00:00 1971-01-01 01:00:00
BBNO0SL1 @ 1B FAecycle Default LTO-2 2008-08-04 04:57:19 2008-08-04 04:57:19
BBND10LY @ | 4ss84cE WM Full Defautt LTO-2 2008-08-26 03:51:19 2009-08-26 03:51:19
BENO11 L1 @ | 47857GB NN Full Default LTO-2 2008-09-12 05:05:08 2009-09-12 05:05:08
BBNO12L1 @ 52047GB WM Full Default LTO-2 2008-10-04 03:36:13 2009-10-04 03:36:13

Command

Bacula Administration Too!

2.13.2

By double-clicking on a volume (on the Media list, in the Autochanger content or in the Job information

Media Information View

panel), you can access a detailed overview of your Volume. (cf[2.1})

bat = Bacula Admin Too

() =l W3
File Sefings Help
-HLl %S H=O
&)
| Gonsole | Jobs | JobsFun | Job | Job | Pools | Media | Medialnio W‘
Select Page
[E] [Edit i Purge 3 Delete o Prune %9 Load 4D Unload
Console
? Clients (LT PG Ul
B Tlisets Name: BENO04L1 Vol Bytes, 470.41 GB Use duration: 0 secs
=) gJ:b: Run Fool Default Vol Mounts: 15 Mimeiotn
 Job Online: @ Fecycle count: 5
4y Job Max files 0
& roois Enabled @ Read time 0secs
R] d‘ﬂ Logation: *None* Wits time 0 secs Mexasies 0
" Fot e 0 e
£ Aun Media Type: LTo2 Last Written: 2008-12-18 03:10:34 || DeEntion: 1 year
Recycle Pool; *None* First Writtzrn: 2008-11-19 03:10:39 Expire; 2008-12-18 03:10;34
ob.
Jobld Name Start Time | Type | Level | Files | Byles Status E
4912: Rufus 2008-11-1903:10:39 Backup Incremental | 14137 1252 GiS
4913 Rulushome | 20081119 03:4425 Backup |Incremental | 11059 1224 GiB
4914 Tibs 2008-11-19 04:14:09 Backup Incremental 5 1383KiB
4915 Minou 2008-11-19 04:18:25 Backup Incremental 4 566ME
4316 CatalogBackup | 2008-11-15 05:05:14 Backup Full | 121 10saB
4917 Matou 2008-11-2003:05:03 Baskup Incremsntal | 7451 122 GiS
4918 Rulus 2008-11-20 03:10:23 Backup Incremental | 18047 12.03 GiS
4919 Rufus-home | 2008-11-20 03:41:34 Backup Incremental | 15647 11.96 GiE
4920 Tibs 2008-11-20 04:11:22 Backup Incremental 143 10,68 MiB
4921 Minou 20081120 04:15:52 Backup | Difierential | 8 s72MB
4922 CatalogBackup | 2008-11-20 05:05:36 Backup | Full 121, 1.08GB
4923 Matou 2008-11-21 03:05:03 Backup Incremental | 14320 132 GiB
4924 Rufus 2008-11-21 03:10:49 Backup Incremental | 10498 1122 GiB
4905 Rufus-home 2008-11-91 03:39:23 Backup Incremental | 9157 1112 GiS
o 4928 Tibs 2008-11-21 04:08:52 Bakup Difirenfial | 289 5295 M8 =
Bacula Administration Teol

Figure 2.1: Media information

2.13.3 Job Information View

By double-clicking on a Job record (on the Job run list or in the Media information panel), you can access

a detailed overview of your Job. (cf[2.2.)

2.13.4 Autochanger Content View

By double-clicking on a Storage record (on the Storage list panel), you can access a detailed overview of your

Autochanger. (cf2.2])

To use this feature, you need to use the latest mtx-changer script version. (With new listall and transfer

commands)

2.14 Bat on Windows

We have ported bat to Windows and it is now installed by default when the installer is run. It works quite
well on Win32, but has not had a lot of testing there, so your feedback would be welcome. Unfortunately,
eventhough it is installed by default, it does not yet work on 64 bit Windows operating systems.

File Seftings Help

- @ &

*SBa0

FEE |

Page Sekclor
[Clients | FileSets | Jobs | dobsRun | Job | Medialnio | Media | Storage |
Select Page -
il @ pelet= @, Emors (&, Media @ History S8 Funagain Readdoc G Fileset @, Stats [Refresh
on ~Basic Informatior ta T Volume Ussd
_ Clients
B Filessts
&3 Jobs
4 Jobs Run

Jobid: 1 Files: 1679 Sched Time: 2009-08-04 17:44:04
Job Name: NightlySave Byles: 11024 MB Start Time: 2009-08-04 17:44:07
Level: Full Errors: 0 End Time: 2009-08-04 17:44:09
Client localhostfd Staus: g Duration: 00:00:02

FilsSst. Full Set Furgedi L]

Feol: Default

localhost—dir No prior Full backup Job record found.
No prior or suitable Full backup found in catalog. Doing FULL backup.

localhost-dir Start Backup JobId 1, Job=NightlySave.Z009-08-04 17.44.05 11

Using Device "FilsStorage"

localhost-sd Wrote label to prelabelsd Volume "Voll" on device "FileStorage" (/tmp/regress/tmp)
Spooling data

Job write eslapsed time = 00:00:01, Transfer rate = 110.4 M bytes/second

Committing spooled data to Volume "Voll". Despooling 110,610,236 bytes

localhost-sd Despooling elapsed time = 00:00:02, Transfer rate = 55.30 M bytes/second

Sending spooled attrs to the Director. Despooling 490,080 bytes
localhost-dir Bacula localhost-dir 3.0.3 (30Jul09): D4-Aug-2008 17:44:08

Command:

Build CS: %86_£4-unknown-linuz-gnu ubuntu 8.04
JobTd: 1

Job: NightlySave.Z009-08-04 17.44.05_ 11
Backup Level: Full (upgraded from Incremental)

llmme £dw 5 0 5 i30Tein0l .oz ca CEE .

Bacula Administration Tool

bat - Bacul

File Settings Help

Figure 2.2: Job information

Admin Tool

=0

*SEa O

| dobs Aun | Job | Storage | LTO!

Select Page
[E]

Console

Clients

B FileSets
&3 Jobs
= & Jobs Run
£y Job
& Media
E & Storage

Command

4 e

[& Updateslots [Latel Slot |vn|um: | Bytes | Status | Media Type | Pool | Last Written When expire?

%0 Move fo tray WD Empty fray. 1|vell 3068 MIB Ful LTOI-ANSI Inc. 2009-08-12 08:58:17 | 2010-08-12 08:58:17
Mount 2 vol2 3068 M8 Ful LTOI-ANSI o 2008-08-12 08:59:18 2010-08-12 08:59:18
3/ vol3 26.71 MiB LTO1-ANSI Inc 2009-08-12 08:59:23 | 2010-08-12 08:59:23

Append. | LTO1-ANS|

~Dri
5/ vols 4511 MiB LTO1 Full 2009-08-12 08:59:02 2010-08-12 08:59:02
L e 6 ol 30.68 MiB Full LTO1 Diff 2009-08-12 08:58:59 2010-08-12 08:58:59
1o, |voLt ?.UGW 18.71 MiB - LTO1 Diff 2009-08-12 08:59:04 2010-08-12 08:59:04
LTe2 |voLz volg 511BMIB Full LTO1 Ing 2009-08-12 08:58:08 2010-08-12 08:5¢
' 9 volg 30.88 MiB| Full LTO1 Default | 2009-08-12 08:59:13 | 2010-08-12 08:58:13
10 vollo 1032.19 KiB LTO1 Inc 3008-08-12 08:59:13 | 2010-08-12 085813
11 vl 28.78 MiB LTO1 Defaull 2009-08-12 0:69.:15 | 2010-08-12 08,59:15
12 valtz 64.51 Kig LTO!1 Scraich [
~Trayslots—————————————— 13 vol1 64.51 Kig LTO!1 Scratch
S 14 volld 64.51 Kig LTO!1 Scratch
15 vol15 64.51 KiB LTO1 Scratch
16 voll6 64.51 KiB LTO1 Scratch
17 volt 7 64.51 KiB LTO1 Seratch
vollg 84.51 Kig LTO1 Scralch
B LTO1 Scraleh

19 vol19 6451 Ki

[]

Bacula Administration Too|

Figure 2.3: Autochanger content

2.15 New Win32 Installer

The Win32 installer has been modified in several very important ways.

e You must deinstall any current version of the Win32 File daemon before upgrading to the new one. If
you forget to do so, the new installation will fail. To correct this failure, you must manually shutdown
and deinstall the old File daemon.

e All files (other than menu links) are installed in c:/Program Files/Bacula.

e The installer no longer sets this file to require administrator privileges by default. If you want to do
so, please do it manually using the cacls program. For example:

cacls "C:\Program Files\Bacula" /T /G SYSTEM:F Administrators:F

e The server daemons (Director and Storage daemon) are no longer included in the Windows installer.
If you want the Windows servers, you will either need to build them yourself (note they have not been
ported to 64 bits), or you can contact Bacula Systems about this.

2.16 Win64 Installer

We have corrected a number of problems that required manual editing of the conf files. In most cases, it
should now install and work. bat is by default installed in c:/Program Files/Bacula/bin32 rather than
c:/Program Files/Bacula as is the case with the 32 bit Windows installer.

2.17 Bare Metal Recovery USB Key

We have made a number of significant improvements in the Bare Metal Recovery USB key. Please see the
README files it the rescue release for more details.

2.18 bconsole Timeout Option

You can now use the -u option of bconsole to set a timeout in seconds for commands. This is useful with
GUI programs that use bconsole to interface to the Director.

2.19 Important Changes

e You are now allowed to Migrate, Copy, and Virtual Full to read and write to the same Pool. The
Storage daemon ensures that you do not read and write to the same Volume.

e The Device Poll Interval is now 5 minutes. (previously did not poll by default).

e The new mtx-changer script has two new options, listall and transfer. Be sure to apply any
custom changes on to the mtx-changer script, or better yet, use mtx-changer.conf to configure them.

e To enhance security of the BackupCatalog job, we provide a new script (make_catalog backup.pl)
that does not expose your catalog password. If you want to use the new script, you will need to
manually change the BackupCatalog Job definition.

e The bconsole help command now accepts an argument, which if provided produces information on
that command (ex: help run).

2.19.1 Custom Catalog queries

If you wish to add specialized commands that list the contents of the catalog, you can do so by adding them
to the query.sql file. This query.sql file is now empty by default. The file examples/sample-query.sql
has an a number of sample commands you might find useful.

2.19.2 Deprecated parts

The following items have been deprecated for a long time, and are now removed from the code.

e Gnome console

e Support for SQLite 2

2.20 Misc Changes

e Updated Nagios check_bacula

e Updated man files

e Added OSX package generation script in platforms/darwin
e Added Spanish and Ukrainian Bacula translations

e Enable/disable command shows only Jobs that can change
e Added show disabled command to show disabled Jobs

e Many ACL improvements

e Added Level to FD status Job output

e Begin Ingres DB driver (not yet working)

e Split RedHat spec files into bacula, bat, mtx, and docs

e Reorganized the manuals (fewer separate manuals)

e Added lock/unlock order protection in lock manager

o Allow 64 bit sizes for a number of variables

e Fixed several deadlocks or potential race conditions in the SD

Chapter 3

Released Version 3.0.3 and 3.0.3a

There are no new features in version 3.0.3. This version simply fixes a number of bugs found in version 3.0.2
during the onging development process.

19

Chapter 4

New Features in Released Version
3.0.2

This chapter presents the new features added to the Released Bacula Version 3.0.2.

4.1 Full Restore from a Given Jobld

This feature allows selecting a single Jobld and having Bacula automatically select all the other jobs that
comprise a full backup up to and including the selected date (through Jobld).

Assume we start with the following jobs:

jobfiles | jobbytes |

fom o
| localhost-fd

6 2009-07-15 11:45:49
5 | localhost-fd

3

1

2009-07-15 11:45:45
2009-07-15 11:45:38
2009-07-15 11:45:30

| localhost-fd
| localhost-fd
S o

+————T—+

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

:
+————T—+
’TJHHH:

|

|

:
+ - — — — 4+ — +

Below is an example of this new feature (which is number 12 in the menu).

* restore

To select the JobIds, you have the following choices:
1: List last 20 Jobs run
2: List Jobs where a given File is saved

12: Select full restore to a specified Job date
13: Cancel

Select item: (1-13): 12

Enter JobId to get the state to restore: 5

Selecting jobs to build the Full state at 2009-07-15 11:45:45
You have selected the following JobIds: 1,3,5

Building directory tree for JobId(s) 1,3,5 ... +++++ttttttttttt+tt
1,444 files inserted into the tree.

This project was funded by Bacula Systems.

21

4.2 Source Address

A feature has been added which allows the administrator to specify the address from which the Director and
File daemons will establish connections. This may be used to simplify system configuration overhead when
working in complex networks utilizing multi-homing and policy-routing.

To accomplish this, two new configuration directives have been implemented:

FileDaemon {
FDSourceAddress=10.0.1.20 # Always initiate connections from this address

}

Director {
DirSourceAddress=10.0.1.10 # Always initiate connections from this address

}

Simply adding specific host routes on the OS would have an undesirable side-effect: any application trying
to contact the destination host would be forced to use the more specific route possibly diverting management
traffic onto a backup VLAN. Instead of adding host routes for each client connected to a multi-homed backup
server (for example where there are management and backup VLANSs), one can use the new directives to
specify a specific source address at the application level.

Additionally, this allows the simplification and abstraction of firewall rules when dealing with a Hot-Standby
director or storage daemon configuration. The Hot-standby pair may share a CARP address, which connec-
tions must be sourced from, while system services listen and act from the unique interface addresses.

This project was funded by Collaborative Fusion, Inc.

4.3 Show volume availability when doing restore

When doing a restore the selection dialog ends by displaying this screen:

The job will require the following

Volume(s) Storage(s) SD Device(s)
*000741L3 LT0-4 LTO3
*000866L3 LT0-4 LTO3
*000765L3 LT0-4 LTO3
*000764L3 LTO-4 LTO3
*000756L3 LT0-4 LTO3
*001759L3 LT0-4 LTO3
*001763L3 LT0-4 LTO3
001762L3 LT0-4 LTO3
001767L3 LTO-4 LTO03

Volumes marked with ‘‘*’’ are online (in the autochanger).

This should help speed up large restores by minimizing the time spent waiting for the operator to discover
that he must change tapes in the library.

This project was funded by Bacula Systems.

4.4 Accurate estimate command

The estimate command can now use the accurate code to detect changes and give a better estimation.

You can set the accurate behavior on the command line by using accurate=yes|no or use the Job setting
as default value.

* estimate listing accurate=yes level=incremental job=BackupJob

This project was funded by Bacula Systems.

Chapter 5

New Features in 3.0.0

This chapter presents the new features added to the development 2.5.x versions to be released as Bacula
version 3.0.0 sometime in April 2009.

5.1 Accurate Backup

As with most other backup programs, by default Bacula decides what files to backup for Incremental and
Differental backup by comparing the change (st_ctime) and modification (st-mtime) times of the file to the
time the last backup completed. If one of those two times is later than the last backup time, then the file
will be backed up. This does not, however, permit tracking what files have been deleted and will miss any
file with an old time that may have been restored to or moved onto the client filesystem.

5.1.1 Accurate = <yes|no>

If the Accurate = <yes|no> directive is enabled (default no) in the Job resource, the job will be run as
an Accurate Job. For a Full backup, there is no difference, but for Differential and Incremental backups,
the Director will send a list of all previous files backed up, and the File daemon will use that list to determine
if any new files have been added or or moved and if any files have been deleted. This allows Bacula to make
an accurate backup of your system to that point in time so that if you do a restore, it will restore your
system exactly.

One note of caution about using Accurate backup is that it requires more resources (CPU and memory) on
both the Director and the Client machines to create the list of previous files backed up, to send that list to
the File daemon, for the File daemon to keep the list (possibly very big) in memory, and for the File daemon
to do comparisons between every file in the FileSet and the list. In particular, if your client has lots of files
(more than a few million), you will need lots of memory on the client machine.

Accurate must not be enabled when backing up with a plugin that is not specially designed to work with
Accurate. If you enable it, your restores will probably not work correctly.

This project was funded by Bacula Systems.

5.2 Copy Jobs

A new Copy job type ’C’ has been implemented. It is similar to the existing Migration feature with the
exception that the Job that is copied is left unchanged. This essentially creates two identical copies of the
same backup. However, the copy is treated as a copy rather than a backup job, and hence is not directly
available for restore. The restore command lists copy jobs and allows selection of copies by using jobid=

25

option. If the keyword copies is present on the command line, Bacula will display the list of all copies for
selected jobs.

* restore copies

[...]

These JobIds have copies as follows:

e e Fommm - e +

| JobId | Job | CopyJobId | MediaType |
o et e e e D e +

| 2 | CopyJobSave.2009-02-17_16.31.00.11 | 7 | DiskChangerMedia |
e ettt e e +
e e o fommm e et e +
| JobId | Level | JobFiles | JobBytes | StartTime | VolumeName
o et Fomm - e o e +
| 19 | F | 6274 | 76565018 | 2009-02-17 16:30:45 | ChangerVolume002 |
| 2 | I | 1 | 5 | 2009-02-17 16:30:51 | FileVolume0O1
o domm Fommm fommm e e +
You have selected the following JobIds: 19,2

Building directory tree for JobId(s) 19,2 ... +++ttt

5,611 files inserted into the tree.

The Copy Job runs without using the File daemon by copying the data from the old backup Volume to a
different Volume in a different Pool. See the Migration documentation for additional details. For copy Jobs
there is a new selection directive named PoolUncopiedJobs which selects all Jobs that were not already
copied to another Pool.

As with Migration, the Client, Volume, Job, or SQL query, are other possible ways of selecting the Jobs
to be copied. Selection types like SmallestVolume, OldestVolume, PoolOccupancy and PoolTime also work,
but are probably more suited for Migration Jobs.

If Bacula finds a Copy of a job record that is purged (deleted) from the catalog, it will promote the Copy
to a real backup job and will make it available for automatic restore. If more than one Copy is available, it
will promote the copy with the smallest Jobld.

A nice solution which can be built with the new Copy feature is often called disk-to-disk-to-tape backup
(DTDTT). A sample config could look something like the one below:

Pool {
Name = FullBackupsVirtualPool
Pool Type = Backup
Purge Oldest Volume = Yes
Storage = vtl
NextPool = FullBackupsTapePool
}

Pool {
Name = FullBackupsTapePool
Pool Type = Backup
Recycle = Yes
AutoPrune = Yes
Volume Retention = 365 days
Storage = superloader

H*

Fake fileset for copy jobs

Fileset {
Name = None

Include {
Options {
signature = MD5
b
X
3
#
Fake client for copy jobs
#
Client {

Name = None

Address = localhost
Password = "NoNe"
Catalog = MyCatalog

#
Default template for a CopyDiskToTape Job
#
JobDefs {
Name = CopyDiskToTape
Type = Copy
Messages = StandardCopy
Client = None
FileSet = None
Selection Type = PoolUncopiedJobs
Maximum Concurrent Jobs = 10
SpoolData = No
Allow Duplicate Jobs = Yes
Allow Higher Duplicates = No
Cancel Queued Duplicates = No
Cancel Running Duplicates = No
Priority = 13

}
Schedule {
Name = DaySchedule7:00
Run = Level=Full daily at 7:00
}
Job {

Name = CopyDiskToTapeFullBackups
Enabled = Yes

Schedule = DaySchedule7:00

Pool = FullBackupsVirtualPool
JobDefs = CopyDiskToTape

The example above had 2 pool which are copied using the PoolUncopiedJobs selection criteria. Normal Full
backups go to the Virtual pool and are copied to the Tape pool the next morning.

The command list copies [jobid=x,y,z] lists copies for a given jobid.
*1list copies

e o e e +
| JobId | Job | CopyJobId | MediaType |

to—— - - Fomm et +

9 | CopyJobSave.2008-12-20_22.26.49.05 | 11 | DiskChangerMedia |

pom e Fomm o +

5.3 ACL Updates

The whole ACL code had been overhauled and in this version each platforms has different streams for each
type of acl available on such an platform. As ACLs between platforms tend to be not that portable (most
implement POSIX acls but some use an other draft or a completely different format) we currently only
allow certain platform specific ACL streams to be decoded and restored on the same platform that they
were created on. The old code allowed to restore ACL cross platform but the comments already mention
that not being to wise. For backward compatability the new code will accept the two old ACL streams and
handle those with the platform specific handler. But for all new backups it will save the ACLs using the
new streams.

Currently the following platforms support ACLs:

AIX
Darwin/OSX
FreeBSD
HPUX

IRIX

Linux

Tru64

Solaris

Currently we support the following ACL types (these ACL streams use a reserved part of the stream num-

bers):

STREAM_ACL_AIX_TEXT 1000 AIX specific string representation from acl_get

STREAM_ACL_DARWIN_ACCESS_ACL 1001 Darwin (OSX) specific acl_t string representation
from acl_to_text (POSIX acl)

STREAM_ACL_FREEBSD DEFAULT_ACL 1002 FreeBSD specific acl_t string representation
from acl_to_text (POSIX acl) for default acls.

STREAM_ACL_FREEBSD_ACCESS_ACL 1003 FreeBSD specific acl_t string representation
from acl_to_text (POSIX acl) for access acls.

STREAM_ACL_HPUX_ACL_ENTRY 1004 HPUX specific acl_entry string representation from
acltostr (POSIX acl)

STREAM_ACL_IRIX DEFAULT_ACL 1005 IRIX specific acl.t string representation from
acl_to_text (POSIX acl) for default acls.

STREAM_ACL_IRIX_ACCESS_ACL 1006 IRIX specific aclt string representation from
acl_to_text (POSIX acl) for access acls.

STREAM_ACL_LINUX _DEFAULT_ACL 1007 Linux specific acl_t string representation from
acl_to_text (POSIX acl) for default acls.

STREAM_ACL_LINUX_ACCESS_ACL 1008 Linux specific acl_t string representation from
acl_to_text (POSIX acl) for access acls.

e STREAM_ACL_TRU64 DEFAULT_ACL 1009 Tru64 specific acl_t string representation from
acl_to_text (POSIX acl) for default acls.

e STREAM_ACL_TRU64 DEFAULT_DIR_ACL 1010 Tru64 specific acl_t string representation
from acl_to_text (POSIX acl) for default acls.

e STREAM_ACL_TRU64_ACCESS_ACL 1011 Tru64 specific acl.t string representation from
acl_to_text (POSIX acl) for access acls.

e STREAM_ACL_SOLARIS_ACLENT 1012 Solaris specific aclent_t string representation from
acltotext or acl_totext (POSIX acl)

e STREAM_ACL_SOLARIS_ACE 1013 Solaris specific ace_t string representation from from
acl_totext (NFSv4 or ZFS acl)

In future versions we might support conversion functions from one type of acl into an other for types that
are either the same or easily convertable. For now the streams are seperate and restoring them on a platform
that doesn’t recognize them will give you a warning.

5.4 Extended Attributes

Something that was on the project list for some time is now implemented for platforms that support a
similar kind of interface. Its the support for backup and restore of so called extended attributes. As
extended attributes are so platform specific these attributes are saved in seperate streams for each platform.
Restores of the extended attributes can only be performed on the same platform the backup was done. There
is support for all types of extended attributes, but restoring from one type of filesystem onto an other type of
filesystem on the same platform may lead to supprises. As extended attributes can contain any type of data
they are stored as a series of so called value-pairs. This data must be seen as mostly binary and is stored as
such. As security labels from selinux are also extended attributes this option also stores those labels and no
specific code is enabled for handling selinux security labels.

Currently the following platforms support extended attributes:

e Darwin/OSX
e FreeBSD
e Linux

e NetBSD

On linux acls are also extended attributes, as such when you enable ACLs on a Linux platform it will NOT
save the same data twice e.g. it will save the ACLs and not the same exteneded attribute.

To enable the backup of extended attributes please add the following to your fileset definition.

FileSet {
Name = "MyFileSet"
Include {
Options {
signature = MD5
xattrsupport = yes
}
File = ...
X
b

5.5 Shared objects

A default build of Bacula will now create the libraries as shared objects (.so) rather than static libraries as
was previously the case. The shared libraries are built using libtool so it should be quite portable.

An important advantage of using shared objects is that on a machine with the Directory, File daemon, the
Storage daemon, and a console, you will have only one copy of the code in memory rather than four copies.
Also the total size of the binary release is smaller since the library code appears only once rather than once
for every program that uses it; this results in significant reduction in the size of the binaries particularly for
the utility tools.

In order for the system loader to find the shared objects when loading the Bacula binaries, the Bacula shared
objects must either be in a shared object directory known to the loader (typically /usr/lib) or they must be
in the directory that may be specified on the ./configure line using the --libdir option as:

./configure --libdir=/full-path/dir

the default is /usr/lib. If --libdir is specified, there should be no need to modify your loader configuration
provided that the shared objects are installed in that directory (Bacula does this with the make install
command). The shared objects that Bacula references are:

libbaccfg.so
libbacfind.so
libbacpy.so
libbac.so

These files are symbolically linked to the real shared object file, which has a version number to permit
running multiple versions of the libraries if desired (not normally the case).
If you have problems with libtool or you wish to use the old way of building static libraries, or you want to

build a static version of Bacula you may disable libtool on the configure command line with:

./configure --disable-libtool

5.6 Building Static versions of Bacula

In order to build static versions of Bacula, in addition to configuration options that were needed you now
must also add —disable-libtool. Example

./configure --enable-static-client-only --disable-libtool

5.7 Virtual Backup (Vbackup)

Bacula’s virtual backup feature is often called Synthetic Backup or Consolidation in other backup products.
It permits you to consolidate the previous Full backup plus the most recent Differential backup and any
subsequent Incremental backups into a new Full backup. This new Full backup will then be considered
as the most recent Full for any future Incremental or Differential backups. The VirtualFull backup is
accomplished without contacting the client by reading the previous backup data and writing it to a volume
in a different pool.

In some respects the Vbackup feature works similar to a Migration job, in that Bacula normally reads the
data from the pool specified in the Job resource, and writes it to the Next Pool specified in the Job

resource. Note, this means that usually the output from the Virtual Backup is written into a different pool
from where your prior backups are saved. Doing it this way guarantees that you will not get a deadlock
situation attempting to read and write to the same volume in the Storage daemon. If you then want to
do subsequent backups, you may need to move the Virtual Full Volume back to your normal backup pool.
Alternatively, you can set your Next Pool to point to the current pool. This will cause Bacula to read
and write to Volumes in the current pool. In general, this will work, because Bacula will not allow reading
and writing on the same Volume. In any case, once a VirtualFull has been created, and a restore is done
involving the most current Full, it will read the Volume or Volumes by the VirtualFull regardless of in which
Pool the Volume is found.

The Vbackup is enabled on a Job by Job in the Job resource by specifying a level of VirtualFull.

A typical Job resource definition might look like the following;:

Job {
Name = "MyBackup"
Type = Backup
Client=localhost-fd
FileSet = "Full Set"
Storage = File
Messages = Standard
Pool = Default
SpoolData = yes

Default pool definition
Pool {
Name = Default
Pool Type = Backup
Recycle = yes Automatically recycle Volumes
AutoPrune = yes # Prune expired volumes
Volume Retention = 365d # one year
NextPool = Full
Storage = File

+H+

}
Pool {
Name = Full
Pool Type = Backup
Recycle = yes # Automatically recycle Volumes
AutoPrune = yes # Prune expired volumes

Volume Retention = 365d # one year
Storage = DiskChanger

Definition of file storage device
Storage {

Name = File

Address = localhost

Password = "xxx"

Device = FileStorage

Media Type = File

Maximum Concurrent Jobs = 5

Definition of DDS Virtual tape disk storage device

Storage {
Name = DiskChanger
Address = localhost # N.B. Use a fully qualified name here
Password = "yyy"

Device = DiskChanger

Media Type = DiskChangerMedia
Maximum Concurrent Jobs = 4
Autochanger = yes

Then in beonsole or via a Run schedule, you would run the job as:

run job=MyBackup level=Full

run job=MyBackup level=Incremental
run job=MyBackup level=Differential
run job=MyBackup level=Incremental
run job=MyBackup level=Incremental

So providing there were changes between each of those jobs, you would end up with a Full backup, a
Differential, which includes the first Incremental backup, then two Incremental backups. All the above jobs
would be written to the Default pool.

To consolidate those backups into a new Full backup, you would run the following:
run job=MyBackup level=VirtualFull

And it would produce a new Full backup without using the client, and the output would be written to the
Full Pool which uses the Diskchanger Storage.

If the Virtual Full is run, and there are no prior Jobs, the Virtual Full will fail with an error.

Note, the Start and End time of the Virtual Full backup is set to the values for the last job included in the
Virtual Full (in the above example, it is an Increment). This is so that if another incremental is done, which
will be based on the Virtual Full, it will backup all files from the last Job included in the Virtual Full rather
than from the time the Virtual Full was actually run.

5.8 Catalog Format

Bacula 3.0 comes with some changes to the catalog format. The upgrade operation will convert the Fileld
field of the File table from 32 bits (max 4 billion table entries) to 64 bits (very large number of items). The
conversion process can take a bit of time and will likely DOUBLE THE SIZE of your catalog during the
conversion. Also you won’t be able to run jobs during this conversion period. For example, a 3 million file
catalog will take 2 minutes to upgrade on a normal machine. Please don’t forget to make a valid backup of
your database before executing the upgrade script. See the ReleaseNotes for additional details.

5.9 64 bit Windows Client

Unfortunately, Microsoft’s implementation of Volume Shadown Copy (VSS) on their 64 bit OS versions is
not compatible with a 32 bit Bacula Client. As a consequence, we are also releasing a 64 bit version of the
Bacula Windows Client (win64bacula-3.0.0.exe) that does work with VSS. These binaries should only be
installed on 64 bit Windows operating systems. What is important is not your hardware but whether or not
you have a 64 bit version of the Windows OS.

Compared to the Win32 Bacula Client, the 64 bit release contains a few differences:

1. Before installing the Win64 Bacula Client, you must totally deinstall any prior 2.4.x Client installation
using the Bacula deinstallation (see the menu item). You may want to save your .conf files first.

2. Only the Client (File daemon) is ported to Win64, the Director and the Storage daemon are not in
the 64 bit Windows installer.

3. bwx-console is not yet ported.
4. bconsole is ported but it has not been tested.
5. The documentation is not included in the installer.

6. Due to Vista security restrictions imposed on a default installation of Vista, before upgrading the
Client, you must manually stop any prior version of Bacula from running, otherwise the install will
fail.

7. Due to Vista security restrictions imposed on a default installation of Vista, attempting to edit the
conf files via the menu items will fail. You must directly edit the files with appropriate permissions.
Generally double clicking on the appropriate .conf file will work providing you have sufficient permis-
sions.

8. All Bacula files are now installed in C:/Program Files/Bacula except the main menu items, which
are installed as before. This vastly simplifies the installation.

9. If you are running on a foreign language version of Windows, most likely C: /Program Files does not
exist, so you should use the Custom installation and enter an appropriate location to install the files.

10. The 3.0.0 Win32 Client continues to install files in the locations used by prior versions. For the next
version we will convert it to use the same installation conventions as the Win64 version.

This project was funded by Bacula Systems.

5.10 Duplicate Job Control

The new version of Bacula provides four new directives that give additional control over what Bacula does if
duplicate jobs are started. A duplicate job in the sense we use it here means a second or subsequent job with
the same name starts. This happens most frequently when the first job runs longer than expected because
no tapes are available.

The four directives each take as an argument a yes or no value and are specified in the Job resource.

They are:

5.10.1 Allow Duplicate Jobs = <yes|no>

If this directive is enabled duplicate jobs will be run. If the directive is set to no (default) then only one
job of a given name may run at one time, and the action that Bacula takes to ensure only one job runs is
determined by the other directives (see below).

If Allow Duplicate Jobs is set to no and two jobs are present and none of the three directives given below
permit cancelling a job, then the current job (the second one started) will be cancelled.

5.10.2 Allow Higher Duplicates = <yes|no>

If this directive is set to yes (default) the job with a higher priority (lower priority number) will be permitted
to run, and the current job will be cancelled. If the priorities of the two jobs are the same, the outcome is
determined by other directives (see below).

5.10.3 Cancel Queued Duplicates = <yes|no>

If Allow Duplicate Jobs is set to no and if this directive is set to yes any job that is already queued to
run but not yet running will be canceled. The default is no.

5.10.4 Cancel Running Duplicates = <yes|no>

If Allow Duplicate Jobs is set to no and if this directive is set to yes any job that is already running will
be canceled. The default is no.

5.11 TLS Authentication

In Bacula version 2.5.x and later, in addition to the normal Bacula CRAM-MD5 authentication that is used
to authenticate each Bacula connection, you can specify that you want TLS Authentication as well, which
will provide more secure authentication.

This new feature uses Bacula’s existing TLS code (normally used for communications encryption) to do
authentication. To use it, you must specify all the TLS directives normally used to enable communications
encryption (TLS Enable, TLS Verify Peer, TLS Certificate, ...) and a new directive:

5.11.1 TLS Authenticate = yes

TLS Authenticate = yes

in the main daemon configuration resource (Director for the Director, Client for the File daemon, and Storage
for the Storage daemon).

When TLS Authenticate is enabled, after doing the CRAM-MD5 authentication, Bacula will also do TLS
authentication, then TLS encryption will be turned off, and the rest of the communication between the two
Bacula daemons will be done without encryption.

If you want to encrypt communications data, use the normal TLS directives but do not turn on TLS
Authenticate.

5.12 bextract non-portable Win32 data

bextract has been enhanced to be able to restore non-portable Win32 data to any OS. Previous versions
were unable to restore non-portable Win32 data to machines that did not have the Win32 BackupRead and
BackupWrite API calls.

5.13 State File updated at Job Termination

In previous versions of Bacula, the state file, which provides a summary of previous jobs run in the status
command output was updated only when Bacula terminated, thus if the daemon crashed, the state file
might not contain all the run data. This version of the Bacula daemons updates the state file on each job
termination.

5.14 MaxFulllnterval = <time-interval>

The new Job resource directive Max Full Interval = <time-interval> can be used to specify the max-
imum time interval between Full backup jobs. When a job starts, if the time since the last Full backup is
greater than the specified interval, and the job would normally be an Incremental or Differential, it will
be automatically upgraded to a Full backup.

5.15 MaxDiffInterval = <time-interval>

The new Job resource directive Max Diff Interval = <time-interval> can be used to specify the maxi-
mum time interval between Differential backup jobs. When a job starts, if the time since the last Differential
backup is greater than the specified interval, and the job would normally be an Incremental, it will be
automatically upgraded to a Differential backup.

5.16 Honor No Dump Flag = <yes|no>

On FreeBSD systems, each file has a no dump flag that can be set by the user, and when it is set it is
an indication to backup programs to not backup that particular file. This version of Bacula contains a new
Options directive within a FileSet resource, which instructs Bacula to obey this flag. The new directive is:

Honor No Dump Flag = yes\vb{}no

The default value is no.

5.17 Exclude Dir Containing = <filename-string>

The ExcludeDirContaining = <filename> is a new directive that can be added to the Include section
of the FileSet resource. If the specified filename (filename-string) is found on the Client in any directory
to be backed up, the whole directory will be ignored (not backed up). For example:

List of files to be backed up
FileSet {
Name = "MyFileSet"
Include {
Options {
signature = MD5
3
File = /home
Exclude Dir Containing = .excludeme

But in /home, there may be hundreds of directories of users and some people want to indicate that they don’t
want to have certain directories backed up. For example, with the above FileSet, if the user or sysadmin
creates a file named .excludeme in specific directories, such as

/home/user/www/cache/.excludeme
/home/user/temp/ .excludeme

then Bacula will not backup the two directories named:

/home/user/www/cache
/home/user/temp

NOTE: subdirectories will not be backed up. That is, the directive applies to the two directories in question
and any children (be they files, directories, etc).

5.18 Bacula Plugins

Support for shared object plugins has been implemented in the Linux, Unix and Win32 File daemons. The
API will be documented separately in the Developer’s Guide or in a new document. For the moment, there
is a single plugin named bpipe that allows an external program to get control to backup and restore a file.

Plugins are also planned (partially implemented) in the Director and the Storage daemon.

5.18.1 Plugin Directory

Each daemon (DIR, FD, SD) has a new Plugin Directory directive that may be added to the daemon
definition resource. The directory takes a quoted string argument, which is the name of the directory in
which the daemon can find the Bacula plugins. If this directive is not specified, Bacula will not load any
plugins. Since each plugin has a distinctive name, all the daemons can share the same plugin directory.

5.18.2 Plugin Options

The Plugin Options directive takes a quoted string arguement (after the equal sign) and may be specified
in the Job resource. The options specified will be passed to all plugins when they are run. This each plugin
must know what it is looking for. The value defined in the Job resource can be modified by the user when
he runs a Job via the bconsole command line prompts.

Note: this directive may be specified, and there is code to modify the string in the run command, but the
plugin options are not yet passed to the plugin (i.e. not fully implemented).

5.18.3 Plugin Options ACL

The Plugin Options ACL directive may be specified in the Director’s Console resource. It functions as all
the other ACL commands do by permitting users running restricted consoles to specify a Plugin Options
that overrides the one specified in the Job definition. Without this directive restricted consoles may not
modify the Plugin Options.

5.18.4 Plugin = <plugin-command-string>

The Plugin directive is specified in the Include section of a FileSet resource where you put your File =
xxx directives. For example:

FileSet {
Name = "MyFileSet"
Include {
Options {
signature = MD5
3
File = /home
Plugin = "bpipe:..."

In the above example, when the File daemon is processing the directives in the Include section, it will first
backup all the files in /home then it will load the plugin named bpipe (actually bpipe-dir.so) from the
Plugin Directory. The syntax and semantics of the Plugin directive require the first part of the string up to
the colon (:) to be the name of the plugin. Everything after the first colon is ignored by the File daemon
but is passed to the plugin. Thus the plugin writer may define the meaning of the rest of the string as he
wishes.

Please see the next section for information about the bpipe Bacula plugin.

5.19 The bpipe Plugin

The bpipe plugin is provided in the directory src/plugins/fd/bpipe-fd.c of the Bacula source distribution.
When the plugin is compiled and linking into the resulting dynamic shared object (DSO), it will have the
name bpipe-fd.so.

The purpose of the plugin is to provide an interface to any system program for backup and restore. As
specified above the bpipe plugin is specified in the Include section of your Job’s FileSet resource. The full
syntax of the plugin directive as interpreted by the bpipe plugin (each plugin is free to specify the sytax as
it wishes) is:

Plugin = "<fieldl>:<field2>:<field3>:<field4>"

where

field1 is the name of the plugin with the trailing -fd.so stripped off, so in this case, we would put bpipe
in this field.

field2 specifies the namespace, which for bpipe is the pseudo path and filename under which the backup
will be saved. This pseudo path and filename will be seen by the user in the restore file tree. For
example, if the value is /MYSQL /regress.sql, the data backed up by the plugin will be put under
that ”pseudo” path and filename. You must be careful to choose a naming convention that is unique
to avoid a conflict with a path and filename that actually exists on your system.

field3 for the bpipe plugin specifies the "reader” program that is called by the plugin during backup to
read the data. bpipe will call this program by doing a popen on it.

field4 for the bpipe plugin specifies the ”writer” program that is called by the plugin during restore to
write the data back to the filesystem.

Putting it all together, the full plugin directive line might look like the following;:

Plugin = "bpipe:/MYSQL/regress.sql:mysqldump -f
--opt --databases bacula:mysql"

The directive has been split into two lines, but within the bacula-dir.conf file would be written on a single
line.

This causes the File daemon to call the bpipe plugin, which will write its data into the ”pseudo” file
/MYSQL /regress.sql by calling the program mysqldump -f —opt —database bacula to read the data
during backup. The mysgldump command outputs all the data for the database named bacula, which will
be read by the plugin and stored in the backup. During restore, the data that was backed up will be sent
to the program specified in the last field, which in this case is mysql. When mysql is called, it will read

the data sent to it by the plugn then write it back to the same database from which it came (bacula in this
case).

The bpipe plugin is a generic pipe program, that simply transmits the data from a specified program to
Bacula for backup, and then from Bacula to a specified program for restore.

By using different command lines to bpipe, you can backup any kind of data (ASCII or binary) depending
on the program called.

5.20 Microsoft Exchange Server 2003/2007 Plugin

5.20.1 Background

The Exchange plugin was made possible by a funded development project between KEquiinet Ltd —
www.equiinet.com (many thanks) and Bacula Systems. The code for the plugin was written by James
Harper, and the Bacula core code by Kern Sibbald. All the code for this funded development has become
part of the Bacula project. Thanks to everyone who made it happen.

5.20.2 Concepts

Although it is possible to backup Exchange using Bacula VSS the Exchange plugin adds a good deal of
functionality, because while Bacula VSS completes a full backup (snapshot) of Exchange, it does not support
Incremental or Differential backups, restoring is more complicated, and a single database restore is not
possible.

Microsoft Exchange organises its storage into Storage Groups with Databases inside them. A default instal-
lation of Exchange will have a single Storage Group called ’First Storage Group’, with two Databases inside
it, ?Mailbox Store (SERVER NAME)” and ”Public Folder Store (SERVER NAME)”, which hold user email
and public folders respectively.

In the default configuration, Exchange logs everything that happens to log files, such that if you have a
backup, and all the log files since, you can restore to the present time. Fach Storage Group has its own set
of log files and operates independently of any other Storage Groups. At the Storage Group level, the logging
can be turned off by enabling a function called ”Enable circular logging”. At this time the Exchange plugin
will not function if this option is enabled.

The plugin allows backing up of entire storage groups, and the restoring of entire storage groups or individual
databases. Backing up and restoring at the individual mailbox or email item is not supported but can be
simulated by use of the "Recovery” Storage Group (see below).

5.20.3 Installing

The Exchange plugin requires a DLL that is shipped with Microsoft Exchanger Server called esebcli2.dll.
Assuming Exchange is installed correctly the Exchange plugin should find this automatically and run without
any additional installation.

If the DLL can not be found automatically it will need to be copied into the Bacula installation directory (eg
C:\Program Files\Bacula\bin). The Exchange API DLL is named esebcli2.dll and is found in C:\Program
Files\Exchsrvr\bin on a default Exchange installation.

5.20.4 Backing Up

To back up an Exchange server the Fileset definition must contain at least Plugin = ”ex-

change:/@QEXCHANGE /Microsoft Information Store” for the backup to work correctly. The ’ex-

change:’ bit tells Bacula to look for the exchange plugin, the '@QEXCHANGE’ bit makes sure all the backed
up files are prefixed with something that isn’t going to share a name with something outside the plugin, and
the "Microsoft Information Store’ bit is required also. It is also possible to add the name of a storage group
to the "Plugin =" line, eg

Plugin = ”exchange:/@QEXCHANGE /Microsoft Information Store/First Storage Group”

if you want only a single storage group backed up.

Additionally, you can suffix the 'Plugin =’ directive with ”:notrunconfull” which will tell the plugin not to
truncate the Exchange database at the end of a full backup.

An Incremental or Differential backup will backup only the database logs for each Storage Group by inspect-
ing the "modified date” on each physical log file. Because of the way the Exchange API works, the last logfile
backed up on each backup will always be backed up by the next Incremental or Differential backup too. This
adds 5MB to each Incremental or Differential backup size but otherwise does not cause any problems.

By default, a normal VSS fileset containing all the drive letters will also back up the Exchange databases
using VSS. This will interfere with the plugin and Exchange’s shared ideas of when the last full backup was
done, and may also truncate log files incorrectly. It is important, therefore, that the Exchange database files
be excluded from the backup, although the folders the files are in should be included, or they will have to
be recreated manually if a baremetal restore is done.

FileSet {
Include {
File = C:/Program Files/Exchsrvr/mdbdata
Plugin = "exchange:..."
}
Exclude {
File = C:/Program Files/Exchsrvr/mdbdata/E00.chk
File = C:/Program Files/Exchsrvr/mdbdata/E00.log
File = C:/Program Files/Exchsrvr/mdbdata/EO00000F.log
File = C:/Program Files/Exchsrvr/mdbdata/E0000010.1log
File = C:/Program Files/Exchsrvr/mdbdata/E0000011.1log
File = C:/Program Files/Exchsrvr/mdbdata/E00tmp.log
File = C:/Program Files/Exchsrvr/mdbdata/privl.edb
}
}

The advantage of excluding the above files is that you can significantly reduce the size of your backup since
all the important Exchange files will be properly saved by the Plugin.

5.20.5 Restoring

The restore operation is much the same as a normal Bacula restore, with the following provisos:

e The Where restore option must not be specified

e Each Database directory must be marked as a whole. You cannot just select (say) the .edb file and
not the others.

e If a Storage Group is restored, the directory of the Storage Group must be marked too.

e It is possible to restore only a subset of the available log files, but they must be contiguous. Exchange
will fail to restore correctly if a log file is missing from the sequence of log files

e Fach database to be restored must be dismounted and marked as ”Can be overwritten by restore”

e If an entire Storage Group is to be restored (eg all databases and logs in the Storage Group), then it is
best to manually delete the database files from the server (eg C:\Program Files\Exchsrvr\mdbdata*)
as Exchange can get confused by stray log files lying around.

5.20.6 Restoring to the Recovery Storage Group

The concept of the Recovery Storage Group is well documented by Microsoft
http://support.microsoft.com/kb /824126, but to briefly summarize...

Microsoft Exchange allows the creation of an additional Storage Group called the Recovery Storage Group,
which is used to restore an older copy of a database (e.g. before a mailbox was deleted) into without messing
with the current live data. This is required as the Standard and Small Business Server versions of Exchange
can not ordinarily have more than one Storage Group.

To create the Recovery Storage Group, drill down to the Server in Exchange System Manager, right click,
and select ”New -; Recovery Storage Group...”. Accept or change the file locations and click OK.
On the Recovery Storage Group, right click and select ” Add Database to Recover...” and select the

database you will be restoring.

Restore only the single database nominated as the database in the Recovery Storage Group. Exchange will
redirect the restore to the Recovery Storage Group automatically. Then run the restore.

5.20.7 Restoring on Microsoft Server 2007

Apparently the Exmerge program no longer exists in Microsoft Server 2007, and henc you use a
new proceedure for recovering a single mail box. This procedure is ducomented by Microsoft at:
http://technet.microsoft.com/en-us/library /aa997694.aspx, and involves using the Restore-Mailbox and
Get-MailboxStatistics shell commands.

5.20.8 Caveats

This plugin is still being developed, so you should consider it currently in BETA test, and thus use in a
production environment should be done only after very careful testing.

When doing a full backup, the Exchange database logs are truncated by Exchange as soon as the plugin has
completed the backup. If the data never makes it to the backup medium (eg because of spooling) then the
logs will still be truncated, but they will also not have been backed up. A solution to this is being worked
on. You will have to schedule a new Full backup to ensure that your next backups will be usable.

The ”Enable Circular Logging” option cannot be enabled or the plugin will fail.

Exchange insists that a successful Full backup must have taken place if an Incremental or Differential backup
is desired, and the plugin will fail if this is not the case. If a restore is done, Exchange will require that a
Full backup be done before an Incremental or Differential backup is done.

The plugin will most likely not work well if another backup application (eg NTBACKUP) is backing up the
Exchange database, especially if the other backup application is truncating the log files.

The Exchange plugin has not been tested with the Accurate option, so we recommend either carefully
testing or that you avoid this option for the current time.

The Exchange plugin is not called during processing the bconsole estimate command, and so anything that
would be backed up by the plugin will not be added to the estimate total that is displayed.

5.21 libdbi Framework

As a general guideline, Bacula has support for a few catalog database drivers (MySQL, PostgreSQL, SQLite)
coded natively by the Bacula team. With the libdbi implementation, which is a Bacula driver that uses libdbi
to access the catalog, we have an open field to use many different kinds database engines following the needs
of users.

http://support.microsoft.com/kb/824126
http://technet.microsoft.com/en-us/library/aa997694.aspx

The according to libdbi (http://libdbi.sourceforge.net/) project: libdbi implements a database-independent
abstraction layer in C, similar to the DBI/DBD layer in Perl. Writing one generic set of code, programmers
can leverage the power of multiple databases and multiple simultaneous database connections by using this
framework.

Currently the libdbi driver in Bacula project only supports the same drivers natively coded in Bacula. How-
ever the libdbi project has support for many others database engines. You can view the list at http://libdbi-
drivers.sourceforge.net/. In the future all those drivers can be supported by Bacula, however, they must be
tested properly by the Bacula team.

Some of benefits of using libdbi are:

The possibility to use proprietary databases engines in which your proprietary licenses prevent the
Bacula team from developing the driver.

The possibility to use the drivers written for the libdbi project.

The possibility to use other database engines without recompiling Bacula to use them. Just change
one line in bacula-dir.conf

Abstract Database access, this is, unique point to code and profiling catalog database access.

The following drivers have been tested:

PostgreSQL, with and without batch insert

Mysql, with and without batch insert

SQLite

SQLite3

In the future, we will test and approve to use others databases engines (proprietary or not) like DB2, Oracle,
Microsoft SQL.

To compile Bacula to support libdbi we need to configure the code with the —with-dbi and —with-dbi-
driver=[database] ./configure options, where [database] is the database engine to be used with Bacula (of
course we can change the driver in file bacula-dir.conf, see below). We must configure the access port of
the database engine with the option —with-db-port, because the libdbi framework doesn’t know the default
access port of each database.

The next phase is checking (or configuring) the bacula-dir.conf, example:

Catalog {
Name = MyCatalog
dbdriver = dbi:mysql; dbaddress = 127.0.0.1; dbport = 3306
dbname = regress; user = regress; password = ""

}

The parameter dbdriver indicates that we will use the driver dbi with a mysql database. Currently the
drivers supported by Bacula are: postgresql, mysql, sqlite, sqlite3; these are the names that may be added
to string ”dbi:”.

The following limitations apply when Bacula is set to use the libdbi framework: - Not tested on the Win32
platform - A little performance is lost if comparing with native database driver. The reason is bound with
the database driver provided by libdbi and the simple fact that one more layer of code was added.

It is important to remember, when compiling Bacula with libdbi, the following packages are needed:

e libdbi version 1.0.0, http://libdbi.sourceforge.net/

e libdbi-drivers 1.0.0, http://libdbi-drivers.sourceforge.net/

You can download them and compile them on your system or install the packages from your OS distribution.

5.22 Console Command Additions and Enhancements

5.22.1 Display Autochanger Content

The status slots storage=<storage-name> command displays autochanger content.

Slot | Volume Name | Status | Media Type | Pool |
+ + + + |

1] 00001 | Append | DiskChangerMedia | Default |

2 | 00002 | Append | DiskChangerMedia | Default |
3x| 00003 | Append | DiskChangerMedia | Scratch |

4 | | | | |

If you an asterisk (*) appears after the slot number, you must run an update slots command to synchronize
autochanger content with your catalog.

5.22.2 list joblog job=xxx or jobid=nnn

A new list command has been added that allows you to list the contents of the Job Log stored in the catalog
for either a Job Name (fully qualified) or for a particular JobId. The llist command will include a line with
the time and date of the entry.

Note for the catalog to have Job Log entries, you must have a directive such as:

catalog = all

In your Director’s Messages resource.

5.22.3 Use separator for multiple commands

When using bconsole with readline, you can set the command separator with @separator command to one
of those characters to write commands who require multiple input in one line.

P$%&’ O x+,=/:;<>7[17 A1}

5.22.4 Deleting Volumes

The delete volume beonsole command has been modified to require an asterisk (*) in front of a Mediald
otherwise the value you enter is a taken to be a Volume name. This is so that users may delete numeric
Volume names. The previous Bacula versions assumed that all input that started with a number was a
Mediald.

This new behavior is indicated in the prompt if you read it carefully.

5.23 Bare Metal Recovery

The old bare metal recovery project is essentially dead. One of the main features of it was that it would
build a recovery CD based on the kernel on your system. The problem was that every distribution has a
different boot procedure and different scripts, and worse yet, the boot procedures and scripts change from
one distribution to another. This meant that maintaining (keeping up with the changes) the rescue CD was
too much work.

To replace it, a new bare metal recovery USB boot stick has been developed by Bacula Systems. This
technology involves remastering a Ubuntu LiveCD to boot from a USB key.

Advantages:

1. Recovery can be done from within graphical environment.

2. Recovery can be done in a shell.

3. Ubuntu boots on a large number of Linux systems.

4. The process of updating the system and adding new packages is not too difficult.
5. The USB key can easily be upgraded to newer Ubuntu versions.

6. The USB key has writable partitions for modifications to the OS and for modification to your home
directory.

7. You can add new files/directories to the USB key very easily.
8. You can save the environment from multiple machines on one USB key.

9. Bacula Systems is funding its ongoing development.
The disadvantages are:

1. The USB key is usable but currently under development.
2. Not everyone may be familiar with Ubuntu (no worse than using Knoppix)

3. Some older OSes cannot be booted from USB. This can be resolved by first booting a Ubuntu LiveCD
then plugging in the USB key.

4. Currently the documentation is sketchy and not yet added to the main manual. See below ...

The documentation and the code can be found in the rescue package in the directory linux/usb.

5.24 Miscellaneous

5.24.1 Allow Mixed Priority = <yes|no>

This directive is only implemented in version 2.5 and later. When set to yes (default no), this job may run
even if lower priority jobs are already running. This means a high priority job will not have to wait for other
jobs to finish before starting. The scheduler will only mix priorities when all running jobs have this set to
true.

Note that only higher priority jobs will start early. Suppose the director will allow two concurrent jobs, and
that two jobs with priority 10 are running, with two more in the queue. If a job with priority 5 is added to
the queue, it will be run as soon as one of the running jobs finishes. However, new priority 10 jobs will not
be run until the priority 5 job has finished.

5.24.2 Bootstrap File Directive — FileRegex

FileRegex is a new command that can be added to the bootstrap (.bsr) file. The value is a regular
expression. When specified, only matching filenames will be restored.

During a restore, if all File records are pruned from the catalog for a Job, normally Bacula can restore only
all files saved. That is there is no way using the catalog to select individual files. With this new feature,
Bacula will ask if you want to specify a Regex expression for extracting only a part of the full backup.

Building directory tree for JobId(s) 1,3 ...
There were no files inserted into the tree, so file selection
is not possible.Most likely your retention policy pruned the files

Do you want to restore all the files? (yes\vb{}no): no

Regexp matching files to restore? (empty to abort): /tmp/regress/(bin|tests)/
Bootstrap records written to /tmp/regress/working/zog4-dir.restore.1l.bsr

5.24.3 Bootstrap File Optimization Changes

In order to permit proper seeking on disk files, we have extended the bootstrap file format to include a
VolStartAddr and VolEndAddr records. Each takes a 64 bit unsigned integer range (i.e. nnn-mmm)
which defines the start address range and end address range respectively. These two directives replace the
VolStartFile, VolEndFile, VolStartBlock and VolEndBlock directives. Bootstrap files containing the
old directives will still work, but will not properly take advantage of proper disk seeking, and may read
completely to the end of a disk volume during a restore. With the new format (automatically generated
by the new Director), restores will seek properly and stop reading the volume when all the files have been
restored.

5.24.4 Solaris ZFS/NFSv4 ACLs

This is an upgrade of the previous Solaris ACL backup code to the new library format, which will backup
both the old POSIX(UFS) ACLs as well as the ZFS ACLs.

The new code can also restore POSIX(UFS) ACLs to a ZF'S filesystem (it will translate the POSIX(UFS))
ACL into a ZFS/NFSv4 one) it can also be used to transfer from UFS to ZFS filesystems.

5.24.5 Virtual Tape Emulation

We now have a Virtual Tape emulator that allows us to run though 99.9% of the tape code but actually
reading and writing to a disk file. Used with the disk-changer script, you can now emulate an autochanger
with 10 drives and 700 slots. This feature is most useful in testing. It is enabled by using Device Type =
vtape in the Storage daemon’s Device directive. This feature is only implemented on Linux machines and
should not be used for production.

5.24.6 Bat Enhancements

Bat (the Bacula Administration Tool) GUI program has been significantly enhanced and stabilized. In
particular, there are new table based status commands; it can now be easily localized using Qt4 Linguist.

The Bat communications protocol has been significantly enhanced to improve GUI handling. Note, you must
use a the bat that is distributed with the Director you are using otherwise the communications protocol will
not work.

5.24.7 RunScript Enhancements

The RunScript resource has been enhanced to permit multiple commands per RunScript. Simply specify
multiple Command directives in your RunScript.

Job {
Name = aJob
RunScript {
Command = "/bin/echo test"

Command = "/bin/echo an other test"
Command = "/bin/echo 3 commands in the same runscript"
RunsWhen = Before

}

A new Client RunScript RunsWhen keyword of AfterVSS has been implemented, which runs the command
after the Volume Shadow Copy has been made.

Console commands can be specified within a RunScript by using: Console = <command>>, however, this
command has not been carefully tested and debugged and is known to easily crash the Director. We would
appreciate feedback. Due to the recursive nature of this command, we may remove it before the final release.

5.24.8 Status Enhancements

The bconsole status dir output has been enhanced to indicate Storage daemon job spooling and despooling
activity.

5.24.9 Connect Timeout

The default connect timeout to the File daemon has been set to 3 minutes. Previously it was 30 minutes.

5.24.10 ftruncate for NFS Volumes

If you write to a Volume mounted by NFS (say on a local file server), in previous Bacula versions, when
the Volume was recycled, it was not properly truncated because NFS does not implement ftruncate (file
truncate). This is now corrected in the new version because we have written code (actually a kind user) that
deletes and recreates the Volume, thus accomplishing the same thing as a truncate.

5.24.11 Support for Ubuntu

The new version of Bacula now recognizes the Ubuntu (and Kubuntu) version of Linux, and thus now
provides correct autostart routines. Since Ubuntu officially supports Bacula, you can also obtain any recent
release of Bacula from the Ubuntu repositories.

5.24.12 Recycle Pool = <pool-name>

The new RecyclePool directive defines to which pool the Volume will be placed (moved) when it is recycled.
Without this directive, a Volume will remain in the same pool when it is recycled. With this directive, it
can be moved automatically to any existing pool during a recycle. This directive is probably most useful
when defined in the Scratch pool, so that volumes will be recycled back into the Scratch pool.

5.24.13 FD Version

The File daemon to Director protocol now includes a version number, which although there is no visible
change for users, will help us in future versions automatically determine if a File daemon is not compatible.

5.24.14 Max Run Sched Time = <time-period-in-seconds>

The time specifies the maximum allowed time that a job may run, counted from when the job was scheduled.
This can be useful to prevent jobs from running during working hours. We can see it like Max Start Delay
+ Max Run Time.

5.24.15 Max Wait Time = <time-period-in-seconds>

Previous MaxWaitTime directives aren’t working as expected, instead of checking the maximum allowed
time that a job may block for a resource, those directives worked like MaxRunTime. Some users are
reporting to use Incr/Diff /Full Max Wait Time to control the maximum run time of their job depending
on the level. Now, they have to use Incr/Diff/Full Max Run Time. Incr/Diff/Full Max Wait Time
directives are now deprecated.

5.24.16 Incremental—Differential Max Wait Time = <time-period-in-seconds>

These directives have been deprecated in favor of Incremental |[Differential Max Run Time.

5.24.17 Max Run Time directives

Using Full/Diff/Incr Max Run Time, it’s now possible to specify the maximum allowed time that a job
can run depending on the level.

Max Run Sched Time

Max Wait -

Max Run Time

Max Start Delay

>,

Wait time Run time Blocked

1>
1>

Scheduled Time Start Time Ask sysop to
mount next
volume

5.24.18 Statistics Enhancements

If you (or probably your boss) want to have statistics on your backups to provide some Service Level
Agreement indicators, you could use a few SQL queries on the Job table to report how many:

e jobs have run
e jobs have been successful
e files have been backed up

However, these statistics are accurate only if your job retention is greater than your statistics period. le, if
jobs are purged from the catalog, you won’t be able to use them.

Now, you can use the update stats [days=num] console command to fill the JobHistory table with new
Job records. If you want to be sure to take in account only good jobs, ie if one of your important job has
failed but you have fixed the problem and restarted it on time, you probably want to delete the first bad job
record and keep only the successful one. For that simply let your staff do the job, and update JobHistory
table after two or three days depending on your organization using the [days=num)] option.

These statistics records aren’t used for restoring, but mainly for capacity planning, billings, etc.

The Bweb interface provides a statistics module that can use this feature. You can also use tools like Talend
or extract information by yourself.

The Statistics Retention = <time> director directive defines the length of time that Bacula will keep
statistics job records in the Catalog database after the Job End time. (In JobHistory table) When this
time period expires, and if user runs prune stats command, Bacula will prune (remove) Job records that
are older than the specified period.

You can use the following Job resource in your nightly BackupCatalog job to maintain statistics.

Job {
Name = BackupCatalog

RunScript {
Console = "update stats days=3"
Console = "prune stats yes"

RunsWhen = After
RunsOnClient = no

5.24.19 ScratchPool = <pool-resource-name>

This directive permits to specify a specific Scratch pool for the current pool. This is useful when using
multiple storage sharing the same mediatype or when you want to dedicate volumes to a particular set of
pool.

5.24.20 Enhanced Attribute Despooling

If the storage daemon and the Director are on the same machine, the spool file that contains attributes is
read directly by the Director instead of being transmitted across the network. That should reduce load and
speedup insertion.

5.24.21 SpoolSize = <size-specification-in-bytes>

A new Job directive permits to specify the spool size per job. This is used in advanced job tunning.
SpoolSize=bytes

5.24.22 MaxConsoleConnections = <number>

A new director directive permits to specify the maximum number of Console Connections that could run
concurrently. The default is set to 20, but you may set it to a larger number.

5.24.23 Verld = <string>

A new director directive permits to specify a personnal identifier that will be displayed in the version
command.

5.24.24 dbcheck enhancements

If you are using Mysql, dbcheck will now ask you if you want to create temporary indexes to speed up
orphaned Path and Filename elimination.

A new -B option allows you to print catalog information in a simple text based format. This is useful to
backup it in a secure way.

$ dbcheck -B
catalog=MyCatalog
db_type=SQLite
db_name=regress
db_driver=
db_user=regress
db_password=
db_address=
db_port=0
db_socket=

You can now specify the database connection port in the command line.

5.24.25 --docdir configure option

You can use --docdir= on the ./configure command to specify the directory where you want Bacula to install
the LICENSE, ReleaseNotes, ChangeLog, ... files. The default is /usr/share/doc/bacula.

5.24.26 --htmldir configure option

You can use --htmldir= on the ./configure command to specify the directory where you want Bacula to
install the bat html help files. The default is /usr/share/doc/bacula/html

5.24.27 --with-plugindir configure option

You can use --plugindir= on the ./configure command to specify the directory where you want Bacula to
install the plugins (currently only bpipe-fd). The default is /usr/lib.

Chapter 6

The Current State of Bacula

In other words, what is and what is not currently implemented and functional.

6.1 What is Implemented

e Job Control

Network backup/restore with centralized Director.

Internal scheduler for automatic|Job execution.

Scheduling of multiple Jobs at the same time.

You may run one Job at a time or multiple simultaneous Jobs (sometimes called multiplexing).

Job sequencing using priorities.

- interface to the Director allowing complete control. A shell, Qt4 GUI, wxWidgets GUI

and Web versions of the Console program are available. Note, the Qt4 GUI program called the
Bacula Administration tool or bat, offers many additional features over the shell program.

e Security

Verification of files previously cataloged, permitting a Tripwire like capability (system break-in
detection).

CRAM-MDS5 password authentication between each component (daemon).

Conﬁgurable\TLS (SSL) communications encryption between each component.

Conﬁgurable‘Data (on Volume) encryption on a Client by Client basis.
Computation of MD5 or SHA1 signatures of the file data if requested.

e Restore Features

Restore of one or more files selected interactively either for the current backup or a backup prior
to a specified time and date.

Restore of a complete system starting from bare metal. This is mostly automated for Linux
systems and partially automated for Solaris. See Disaster Recovery Using Bacula. This is also
reported to work on Win2K/XP systems.

Listing and Restoration of files using stand-alone bls and bextract tool programs. Among other
things, this permits extraction of files when Bacula and/or the catalog are not available. Note, the
recommended way to restore files is using the restore command in the Console. These programs
are designed for use as a last resort.

Ability to restore the catalog database rapidly by using bootstrap files (previously saved).

Ability to recreate the catalog database by scanning backup Volumes using the bscan program.

e SQL Catalog

51

Catalog database facility for remembering Volumes, Pools, Jobs, and Files backed up.
Support for MySQL, PostgreSQL, and SQLite Catalog databases.
User extensible queries to the MySQL, PostgreSQL and SQLite databases.

e Advanced Volume and Pool Management

Labeled Volumes, preventing accidental overwriting (at least by Bacula).

Any number of Jobs and Clients can be backed up to a single Volume. That is, you can backup
and restore Linux, Unix, Sun, and Windows machines to the same Volume.

Multi-volume saves. When a Volume is full, Bacula automatically requests the next Volume and
continues the backup.

— [Pool and Volume] library management providing Volume flexibility (e.g. monthly, weekly, daily

Volume sets, Volume sets segregated by Client, ...).

Machine independent Volume data format. Linux, Solaris, and Windows clients can all be backed
up to the same Volume if desired.

The Volume data format is upwards compatible so that old Volumes can always be read.

A flexible message handler including routing of messages from any daemon back to the Director
and automatic email reporting.

Data spooling to disk during backup with subsequent write to tape from the spooled disk files.
This prevents tape ”shoe shine” during Incremental/Differential backups.

e Advanced Support for most Storage Devices

Autochanger support using a simple shell interface that can interface to virtually any autoloader
program. A script for mtx is provided.

Support for autochanger barcodes — automatic tape labeling from barcodes.

Automatic support for multiple autochanger magazines either using barcodes or by reading the
tapes.

Support for multiple drive autochangers.

Raw device backup/restore. Restore must be to the same device.

All Volume blocks (approximately 64K bytes) contain a data checksum.

Migration support — move data from one Pool to another or one Volume to another.

Supports writing to DVD.

e Multi-Operating System Support

Programmed to handle arbitrarily long filenames and messages.

GZIP compression on a file by file basis done by the Client program if requested before network
transit.

Saves and restores POSIX ACLs and Extended Attributes on most OSes if enabled.
Access control lists for Consoles that permit restricting user access to only their data.
Support for save/restore of files larger than 2GB.

Support for 64 bit machines, e.g. amd64, Sparc.

Support ANSI and IBM tape labels.

Support for Unicode filenames (e.g. Chinese) on Win32 machines

Consistent backup of open files on Win32 systems (WinXP, Win2003, and Vista) but not Win2000,
using Volume Shadow Copy (VSS).

Support for path/filename lengths of up to 64K on Win32 machines (unlimited on Unix/Linux
machines).

e Miscellaneous

Multi-threaded implementation.

A comprehensive and extensible[configuration file for each daemon.

6.2 Advantages Over Other Backup Programs

e Since there is a client for each machine, you can backup and restore clients of any type ensuring that
all attributes of files are properly saved and restored.

e It is also possible to backup clients without any client software by using NFS or Samba. However, if
possible, we recommend running a Client File daemon on each machine to be backed up.

e Bacula handles multi-volume backups.

e A full comprehensive SQL standard database of all files backed up. This permits online viewing of files
saved on any particular Volume.

e Automatic pruning of the database (removal of old records) thus simplifying database administration.

e Any SQL database engine can be used making Bacula very flexible. Drivers currently exist for MySQL,
PostgreSQL, and SQLite.

e The modular but integrated design makes Bacula very scalable.

e Since Bacula uses client file servers, any database or other application can be properly shutdown by
Bacula using the native tools of the system, backed up, then restarted (all within a Bacula Job).

e Bacula has a built-in Job scheduler.

e The Volume format is documented and there are simple C programs to read/write it.

e Bacula uses well defined (IANA registered) TCP/IP ports — no rpes, no shared memory.

e Bacula installation and configuration is relatively simple compared to other comparable products.
e According to one user Bacula is as fast as the big major commercial applications.

e According to another user Bacula is four times as fast as another commercial application, probably
because that application stores its catalog information in a large number of individual files rather than
an SQL database as Bacula does.

e Aside from several GUI administrative interfaces, Bacula has a comprehensive shell administrative
interface, which allows the administrator to use tools such as ssh to administrate any part of Bacula
from anywhere (even from home).

e Bacula has a Rescue CD for Linux systems with the following features:
— You build it on your own system from scratch with one simple command: make — well, then make
burn.
— It uses your kernel

— It captures your current disk parameters and builds scripts that allow you to automatically repar-
tition a disk and format it to put it back to what you had before.

— It has a script that will restart your networking (with the right IP address)
— It has a script to automatically mount your hard disks.

— It has a full Bacula FD statically linked

— You can easily add additional data/programs, ... to the disk.

6.3 Current Implementation Restrictions

e It is very unusual to attempt to restore two Jobs that ran simultaneously in a single restore, but if
you do, please be aware that unless you had data spooling turned on and the spool file held the full
contents of both Jobs during the backup, the restore will not work correctly. In other terms, Bacula
cannot restore two jobs in the same restore if the Jobs’ data blocks were intermixed on the backup
medium. The problem is resolved by simply doing two restores, one for each Job.

Bacula can generally restore any backup made from one client to any other client. However, if the
architecture is significantly different (i.e. 32 bit architecture to 64 bit or Win32 to Unix), some
restrictions may apply (e.g. Solaris door files do not exist on other Unix/Linux machines; there are
reports that Zlib compression written with 64 bit machines does not always read correctly on a 32 bit
machine).

6.4 Design Limitations or Restrictions

6.5

Names (resource names, Volume names, and such) defined in Bacula configuration files are limited to a
fixed number of characters. Currently the limit is defined as 127 characters. Note, this does not apply
to filenames, which may be arbitrarily long.

Command line input to some of the stand alone tools — e.g. btape, bconsole is restricted to several
hundred characters maximum.

Items to Note

Bacula’s Differential and Incremental normal backups are based on time stamps. Consequently, if you
move files into an existing directory or move a whole directory into the backup fileset after a Full
backup, those files will probably not be backed up by an Incremental save because they will have
old dates. This problem is corrected by using Accurate mode backups or by explicitly updating the
date/time stamp on all moved files.

In older versions of Bacula (<= 3.0.x), if you have over 4 billion file entries stored in your database,
the database Fileld is likely to overflow.

In non Accurate mode, files deleted after a Full save will be included in a restoration. This is typical
for most similar backup programs.

Chapter 7

System Requirements

e Bacula has been compiled and run on OpenSuSE Linux, FreeBSD, and Solaris systems.

e It requires GNU C++ version 2.95 or higher to compile. You can try with other compilers and older
versions, but you are on your own. We have successfully compiled and used Bacula using GNU C++
version 4.1.3. Note, in general GNU C++ is a separate package (e.g. RPM) from GNU C, so you need
them both loaded. On Red Hat systems, the C++ compiler is part of the gce-c++ rpm package.

e There are certain third party packages that Bacula may need. Except for MySQL and PostgreSQL,
they can all be found in the depkgs and depkgs1 releases. However, most current Linux and FreeBSD
systems provide these as system packages.

e The minimum versions for each of the databases supported by Bacula are:

— MySQL 4.1
— PostgreSQL 7.4
— SQLite 3

e If you want to build the Win32 binaries, please see the README.mingw32 file in the src/win32
directory. We cross-compile the Win32 release on Linux. We provide documentation on building the
Win32 version, but due to the complexity, you are pretty much on your own if you want to build it
yourself.

e Bacula requires a good implementation of pthreads to work. This is not the case on some of the BSD
systems.

e The source code has been written with portability in mind and is mostly POSIX compatible. Thus
porting to any POSIX compatible operating system should be relatively easy.

e The GNOME Console program is developed and tested under GNOME 2.x. GNOME 1.4 is no longer
supported.

e The wxWidgets Console program is developed and tested with the latest stable ANSI or Unicode
version of wxWidgets (2.6.1). It works fine with the Windows and GTK+-2.x version of wxWidgets,
and should also work on other platforms supported by wxWidgets.

e The Tray Monitor program is developed for GTK+-2.x. It needs GNOME less or equal to 2.2, KDE
greater or equal to 3.1 or any window manager supporting the FreeDesktop system tray standard.

e If you want to enable command line editing and history, you will need to have /usr/include/termcap.h
and either the termcap or the ncurses library loaded (libtermcap-devel or ncurses-devel).

e If you want to use DVD as backup medium, you will need to download the dvd+rw-tools 5.21.4.10.8,
apply the patch that is in the patches directory of the main source tree to make these tools compatible
with Bacula, then compile and install them. There is also a patch for dvd-+rw-tools version 6.1, and
we hope that the patch is integrated into a later version. Do not use the dvd+rw-tools provided by
your distribution, unless you are sure it contains the patch. dvd+4rw-tools without the patch will not
work with Bacula. DVD media is not recommended for serious or important backups because of its
low reliability.

55

http://www.wxwidgets.org
http://www.freedesktop.org/Standards/systemtray-spec
http://fy.chalmers.se/~appro/linux/DVD+RW/

Chapter 8

Supported Operating Systems

X Fully supported

* The are reported to work in many cases. However they are NOT supported by the bacula’s project.

’ Operating Systems \ Version \ Client Daemon | Director Daemon \ Storage Daemon
GNU/Linux All X X X
FreeBSD > 5.0 X X X
Solaris > 8 X X X
OpenSolaris X X X
MS Windows 32bit | Win98/Me X
WinNT/2K X x X
XP X * *
2008/ Vista X * *

MS Windows 64bit | 2008/Vista X

MacOS X/Darwin X

OpenBSD X *

NetBSD X *

Irix *

True64 *

AIX > 4.3 *

BSDI *

HPUX *

Important notes

e By GNU/Linux, we mean 32/64bit Gentoo, Red Hat, Fedora, Mandriva, Debian, OpenSuSE, Ubuntu,
Kubuntu, ...

e For FreeBSD older than version 5.0, please see some important considerations in the
| Tape Modes on FreeBSD|section of the Tape Testing chapter of this manual.

e MS Windows Director and Storage daemon are available in the binary Client installer

e For MacOSX see http://fink.sourceforge.net/ for obtaining the packages

See the Porting chapter of the Bacula Developer’s Guide for information on porting to other systems.

If you have a older Red Hat Linux system running the 2.4.x kernel and you have the directory /lib/tls
installed on your system (normally by default), bacula will NOT run. This is the new pthreads library
and it is defective. You must remove this directory prior to running Bacula, or you can simply change
the name to /lib/tls-broken) then you must reboot your machine (one of the few times Linux must be

o7

http://fink.sourceforge.net/

rebooted). If you are not able to remove/rename /lib/tls, an alternative is to set the environment variable
"LD_ASSUME_KERNEL=2.4.19” prior to executing Bacula. For this option, you do not need to reboot,
and all programs other than Bacula will continue to use /lib/tls. The above mentioned /lib/tls problem
does not occur with Linux 2.6 kernels.

Chapter 9

Supported Tape Drives

Bacula uses standard operating system calls (read, write, ioctl) to interface to tape drives. As a consequence,
it relies on having a correctly written OS tape driver. Bacula is known to work perfectly well with SCSI
tape drivers on FreeBSD, Linux, Solaris, and Windows machines, and it may work on other *nix machines,
but we have not tested it. Recently there are many new drives that use IDE, ATAPI, or SATA interfaces
rather than SCSI. On Linux the OnStream drive, which uses the OSST driver is one such example, and it
is known to work with Bacula. In addition a number of such tape drives (i.e. OS drivers) seem to work on
Windows systems. However, non-SCSI tape drives (other than the OnStream) that use ide-scis, ide-tape, or
other non-scsi drivers do not function correctly with Bacula (or any other demanding tape application) as
of today (April 2007). If you have purchased a non-SCSI tape drive for use with Bacula on Linux, there is a
good chance that it will not work. We are working with the kernel developers to rectify this situation, but
it will not be resolved in the near future.

Even if your drive is on the list below, please check the Tape Testing Chapter of this manual for procedures
that you can use to verify if your tape drive will work with Bacula. If your drive is in fixed block mode, it
may appear to work with Bacula until you attempt to do a restore and Bacula wants to position the tape.
You can be sure only by following the procedures suggested above and testing.

It is very difficult to supply a list of supported tape drives, or drives that are known to work with Bacula
because of limited feedback (so if you use Bacula on a different drive, please let us know). Based on user
feedback, the following drives are known to work with Bacula. A dash in a column means unknown:

OS Man. Media Model Capacity
- ADIC DLT Adic Scalar 100 DLT 100GB
- ADIC DLT Adic Fastor 22 DLT -
FreeBSD 5.4-RELEASE-pl | Certance LTO AdicCertance CL400 LTO Ultrium 2 200GB
amd64
- - DDS Compaq DDS 2,3,4 -
SuSE 8.1 Pro Compaq AIT Compaq AIT 35 LVD 35/70GB
- Exabyte - Exabyte drives less than 10 years old -
- Exabyte - Exabyte VXA drives -
- HP Travan 4 Colorado T4000S -
- HP DLT HP DLT drives -
- HP LTO HP LTO Ultrium drives -
- IBM 77 3480, 3480XL, 3490, 3490E, 3580 and | -

3590 drives

FreeBSD 4.10 RELEASE HP DAT HP StorageWorks DAT72i -
- Overland LTO LoaderXpress LTO -
- Overland - Neo2000 -
- OnStream | - OnStream drives (see below) -
FreeBSD 4.11-Release Quantum SDLT SDLT320 160/320GB
- Quantum | DLT DLT-8000 40/80GB
Linux Seagate DDS-4 Scorpio 40 20/40GB

59

FreeBSD 4.9 STABLE Seagate DDS-4 STA2401LW 20/40GB
FreeBSD 5.2.1 pthreads patched | Seagate AIT-1 STA1701W 35/70GB
RELEASE

Linux Sony DDS-234 | - 4-40GB
Linux Tandberg - Tandbert MLR3 -
FreeBSD Tandberg | - Tandberg SLR6 -

Solaris Tandberg | - Tandberg SLR75 -

There is a list of [supported autochangers in the Supported Autochangers chapter of this document, where
you will find other tape drives that work with Bacula.

9.1 Unsupported Tape Drives

Previously OnStream IDE-SCSI tape drives did not work with Bacula. As of Bacula version 1.33 and the
osst kernel driver version 0.9.14 or later, they now work. Please see the testing chapter as you must set a
fixed block size.

QIC tapes are known to have a number of particularities (fixed block size, and one EOF rather than two to
terminate the tape). As a consequence, you will need to take a lot of care in configuring them to make them
work correctly with Bacula.

9.2 FreeBSD Users Be Aware!!!

Unless you have patched the pthreads library on FreeBSD 4.11 systems, you will lose data when Bacula
spans tapes. This is because the unpatched pthreads library fails to return a warning status to Bacula that
the end of the tape is near. This problem is fixed in FreeBSD systems released after 4.11. Please see the
Tape Testing Chapter of this manual for important information on how to configure your tape drive for
compatibility with Bacula.

9.3 Supported Autochangers

For information on supported autochangers, please see the [Autochangers Known to Work with Bacula sec-
tion of the Supported Autochangers chapter of this manual.

9.4 Tape Specifications

If you want to know what tape drive to buy that will work with Bacula, we really cannot tell you. However,
we can say that if you are going to buy a drive, you should try to avoid DDS drives. The technology is rather
old and DDS tape drives need frequent cleaning. DLT drives are generally much better (newer technology)
and do not need frequent cleaning.

Below, you will find a table of DLT and LTO tape specifications that will give you some idea of the capacity
and speed of modern tapes. The capacities that are listed are the native tape capacity without compression.
All modern drives have hardware compression, and manufacturers often list compressed capacity using a
compression ration of 2:1. The actual compression ratio will depend mostly on the data you have to backup,
but I find that 1.5:1 is a much more reasonable number (i.e. multiply the value shown in the table by 1.5 to
get a rough average of what you will probably see). The transfer rates are rounded to the nearest GB/hr.
All values are provided by various manufacturers.

The Media Type is what is designated by the manufacturers and you are not required to use (but you may)

the same name in your Bacula conf resources.

Media Type Drive Type | Media Capacity | Transfer Rate
DDS-1 DAT 2 GB 7?7 GB/hr
DDS-2 DAT 4GB 7?7 GB/hr
DDS-3 DAT 12 GB 5.4 GB/hr

Travan 40 Travan 20 GB 7?7 GB/hr
DDS-4 DAT 20 GB 11 GB/hr
VXA-1 Exabyte 33 GB 11 GB/hr
DAT-72 DAT 36 GB 13 GB/hr
DLT IV DLTS8000 40 GB 22 GB/hr
VXA-2 Exabyte 80 GB 22 GB/hr

Half-high Ultrium 1 LTO 1 100 GB 27 GB/hr

Ultrium 1 LTO 1 100 GB 54 GB/hr

Super DLT 1 SDLT 220 110 GB 40 GB/hr
VXA-3 Exabyte 160 GB 43 GB/hr

Super DLT I SDLT 320 160 GB 58 GB/hr

Ultrium 2 LTO 2 200 GB 108 GB/hr

Super DLT 1II SDLT 600 300 GB 127 GB/hr
VXA-4 Exabyte 320 GB 86 GB/hr

Ultrium 3 LTO 3 400 GB 216 GB/hr

Chapter 10

Getting Started with Bacula

If you are like me, you want to get Bacula running immediately to get a feel for it, then later you want to go
back and read about all the details. This chapter attempts to accomplish just that: get you going quickly
without all the details. If you want to skip the section on Pools, Volumes and Labels, you can always come
back to it, but please read to the end of this chapter, and in particular follow the instructions for testing
your tape drive.

We assume that you have managed to build and install Bacula, if not, you might want to first look at the
System Requirements| then at the Compiling and Installing Bacula chapter of this manual.

10.1 Understanding Jobs and Schedules

In order to make Bacula as flexible as possible, the directions given to Bacula are specified in several pieces.
The main instruction is the job resource, which defines a job. A backup job generally consists of a FileSet,
a Client, a Schedule for one or several levels or times of backups, a Pool, as well as additional instructions.
Another way of looking at it is the FileSet is what to backup; the Client is who to backup; the Schedule
defines when, and the Pool defines where (i.e. what Volume).

Typically one FileSet/Client combination will have one corresponding job. Most of the directives, such as
FileSets, Pools, Schedules, can be mixed and matched among the jobs. So you might have two different Job
definitions (resources) backing up different servers using the same Schedule, the same Fileset (backing up
the same directories on two machines) and maybe even the same Pools. The Schedule will define what type
of backup will run when (e.g. Full on Monday, incremental the rest of the week), and when more than one
job uses the same schedule, the job priority determines which actually runs first. If you have a lot of jobs,
you might want to use JobDefs, where you can set defaults for the jobs, which can then be changed in the
job resource, but this saves rewriting the identical parameters for each job. In addition to the FileSets you
want to back up, you should also have a job that backs up your catalog.

Finally, be aware that in addition to the backup jobs there are restore, verify, and admin jobs, which have
different requirements.

10.2 Understanding Pools, Volumes and Labels

If you have been using a program such as tar to backup your system, Pools, Volumes, and labeling may be
a bit confusing at first. A Volume is a single physical tape (or possibly a single file) on which Bacula will
write your backup data. Pools group together Volumes so that a backup is not restricted to the length of a
single Volume (tape). Consequently, rather than explicitly naming Volumes in your Job, you specify a Pool,
and Bacula will select the next appendable Volume from the Pool and request you to mount it.

Although the basic Pool options are specified in the Director’s Pool resource, the real Pool is maintained

63

in the Bacula Catalog. It contains information taken from the Pool resource (bacula-dir.conf) as well as
information on all the Volumes that have been added to the Pool. Adding Volumes to a Pool is usually done
manually with the Console program using the label command.

For each Volume, Bacula maintains a fair amount of catalog information such as the first write date/time,
the last write date/time, the number of files on the Volume, the number of bytes on the Volume, the number
of Mounts, etc.

Before Bacula will read or write a Volume, the physical Volume must have a Bacula software label so that
Bacula can be sure the correct Volume is mounted. This is usually done using the label command in the
Console program.

The steps for creating a Pool, adding Volumes to it, and writing software labels to the Volumes, may seem
tedious at first, but in fact, they are quite simple to do, and they allow you to use multiple Volumes (rather
than being limited to the size of a single tape). Pools also give you significant flexibility in your backup
process. For example, you can have a ”Daily” Pool of Volumes for Incremental backups and a ”Weekly”
Pool of Volumes for Full backups. By specifying the appropriate Pool in the daily and weekly backup Jobs,
you thereby insure that no daily Job ever writes to a Volume in the Weekly Pool and vice versa, and Bacula
will tell you what tape is needed and when.

For more on Pools, see the [Pool Resource section of the Director Configuration chapter, or simply read on,
and we will come back to this subject later.

10.3 Setting Up Bacula Configuration Files

After running the appropriate ./configure command and doing a make, and a make install, if this is
the first time you are running Bacula, you must create valid configuration files for the Director, the File
daemon, the Storage daemon, and the Console programs. If you have followed our recommendations, default
configuration files as well as the daemon binaries will be located in your installation directory. In any case,
the binaries are found in the directory you specified on the --sbindir option to the ./configure command,
and the configuration files are found in the directory you specified on the --sysconfdir option.

When initially setting up Bacula you will need to invest a bit of time in modifying the default configuration
files to suit your environment. This may entail starting and stopping Bacula a number of times until you get
everything right. Please do not despair. Once you have created your configuration files, you will rarely need
to change them nor will you stop and start Bacula very often. Most of the work will simply be in changing
the tape when it is full.

10.3.1 Configuring the Console Program

The Console program is used by the administrator to interact with the Director and to manually start/stop
Jobs or to obtain Job status information.

The Console configuration file is found in the directory specified on the --sysconfdir option that you
specified on the ./configure command and by default is named bconsole.conf.

The same applies to the wxWidgets console, which is build with the --enable-bwx-console option, and
the name of the default configuration file is, in this case, bwx-console.conf.

Normally, for first time users, no change is needed to these files. Reasonable defaults are set.

Further details are in the Console configuration chapter.

10.3.2 Configuring the Monitor Program

The Monitor program is typically an icon in the system tray. However, once the icon is expanded into a full
window, the administrator or user can obtain status information about the Director or the backup status on
the local workstation or any other Bacula daemon that is configured.

= = Currentjob: No current job.
L besdnian 1016, Last job; Job status: Terminated (0 errar)

—y Current job: No current job.
[ss Last job: Job status: Terminated (0 error)

Current job: No current job.
Last job: Job status: Terminated (0 errar)

() Rufus (FD)

MainsD VYersion: 1.35.8 (08 October Z0O04) 1686-redhat-linux-gnu redhat Enterprise 3.0
Daemon started 09-0ct-04 23:59, 42 Jobs run since started.

Running Jobs:
Mo Jobs running.

Terminated Jobs:

JubId Lewel Files EyLes SlLalus Firtlstned RIS

6489 Incr 215 123,201,315 0K 15-0ct-04 01:18 Rufus

a490 Diff Z,896 44 ,040,317Z 0K 15-0ct-04 01:23 Tikbs

6491 Incr 0 0 Ok 15-0ct-04 01 :24 Minou

492 Full 1 177,034,657 OK 15-0ct-04 01:Z26 CatalogBackup

6493 Diff 28,703 1,919,915,120 0K 16-0Oct-04 01:18 Matou

6494 Incr 1,485 743,464,387 0K 16-0ct-04 01:27 Folymatou

6495 Incr 3,896 284,031,317 0K 16-0ct-04 01 :32 Rufus

6496 Incr 5 528,723 0K 16-0ct-04 01:35 Tihs

6497 Incr 0 0 Ok 16-0ct-04 01 :36 Minou

6498 Full 1; 180,824,403 0K 16-0ct-04 01:37 CatalogBackup
Device status:
Device "/Adev/nst0" is mounted with Yolume "DLT-140ctO4"

Total Bytes=7,030,732,607 Blocks=108,995 Bytes block=bp4,504
Positioned at File=30 Block=0

Dala spuuling: O aullve jubs, O byles; 30 Lulagl Jubs, 1,922,888,746 max byless jub.
Attr spooling: 0 active Jobs, O bytes; 35 total Jobs, 7,538,841 max bytes.

Refresh interval in seconds: |5 @y Refresh now B3 About X Close

The image shows a tray-monitor configured for three daemons. By clicking on the radio buttons in the upper
left corner of the image, you can see the status for each of the daemons. The image shows the status for the
Storage daemon (MainSD) that is currently selected.

The Monitor configuration file is found in the directory specified on the --sysconfdir option that you
specified on the ./configure command and by default is named tray-monitor.conf. Normally, for first
time users, you just need to change the permission of this file to allow non-root users to run the Monitor, as
this application must run as the same user as the graphical environment (don’t forget to allow non-root users
to execute bacula-tray-monitor). This is not a security problem as long as you use the default settings.

More information is in theMonitor configuration| chapter.

10.3.3 Configuring the File daemon

The File daemon is a program that runs on each (Client) machine. At the request of the Director, finds the
files to be backed up and sends them (their data) to the Storage daecmon.

The File daemon configuration file is found in the directory specified on the --sysconfdir option that you
specified on the ./configure command. By default, the File daemon’s configuration file is named bacula-
fd.conf. Normally, for first time users, no change is needed to this file. Reasonable defaults are set. However,
if you are going to back up more than one machine, you will need to install the File daemon with a unique
configuration file on each machine to be backed up. The information about each File daemon must appear
in the Director’s configuration file.

Further details are in the|File daemon configuration chapter.

10.3.4 Configuring the Director

The Director is the central control program for all the other daemons. It schedules and monitors all jobs to
be backed up.

The Director configuration file is found in the directory specified on the --sysconfdir option that you
specified on the . /configure command. Normally the Director’s configuration file is named bacula-dir.conf.

In general, the only change you must make is modify the FileSet resource so that the Include configuration
directive contains at least one line with a valid name of a directory (or file) to be saved.

If you do not have a DLT tape drive, you will probably want to edit the Storage resource to contain names
that are more representative of your actual storage device. You can always use the existing names as you are
free to arbitrarily assign them, but they must agree with the corresponding names in the Storage daemon’s
configuration file.

You may also want to change the email address for notification from the default root to your email address.

Finally, if you have multiple systems to be backed up, you will need a separate File daemon or Client
specification for each system, specifying its name, address, and password. We have found that giving your
daemons the same name as your system but post fixed with -fd helps a lot in debugging. That is, if your
system name is foobaz, you would give the File daemon the name foobaz-fd. For the Director, you should
use foobaz-dir, and for the storage daemon, you might use foobaz-sd. Each of your Bacula components
must have a unique name. If you make them all the same, aside from the fact that you will not know
what daemon is sending what message, if they share the same working directory, the daemons temporary
file names will not be unique, and you will get many strange failures.

More information is in the Director configuration chapter.

10.3.5 Configuring the Storage daemon

The Storage daemon is responsible, at the Director’s request, for accepting data from a File daemon and
placing it on Storage media, or in the case of a restore request, to find the data and send it to the File
daemon.

The Storage daemon’s configuration file is found in the directory specified on the --sysconfdir option
that you specified on the ./configure command. By default, the Storage daemon’s file is named bacula-
sd.conf. Edit this file to contain the correct Archive device names for any tape devices that you have. If
the configuration process properly detected your system, they will already be correctly set. These Storage
resource name and Media Type must be the same as the corresponding ones in the Director’s configuration
file bacula-dir.conf. If you want to backup to a file instead of a tape, the Archive device must point to a
directory in which the Volumes will be created as files when you label the Volume.

Further information is in the [Storage daemon configuration chapter.

10.4 Testing your Configuration Files

You can test if your configuration file is syntactically correct by running the appropriate daemon with the
-t option. The daemon will process the configuration file and print any error messages then terminate. For
example, assuming you have installed your binaries and configuration files in the same directory.

cd <installation-directory>

./bacula-dir -t -c bacula-dir.conf

./bacula-fd -t -c bacula-fd.conf

./bacula-sd -t -c bacula-sd.conf

./bconsole -t -c bconsole.conf

./bux-console -t -c bwx-console.conf

./bat -t -c bat.conf

su <normal user> -c "./bacula-tray-monitor -t -c tray-monitor.conf"

will test the configuration files of each of the main programs. If the configuration file is OK, the program
will terminate without printing anything. Please note that, depending on the configure options you choose,
some, or even all, of the three last commands will not be available on your system. If you have installed the
binaries in traditional Unix locations rather than a single file, you will need to modify the above commands
appropriately (no ./ in front of the command name, and a path in front of the conf file name).

10.5 Testing Compatibility with Your Tape Drive

Before spending a lot of time on Bacula only to find that it doesn’t work with your tape drive, please read
the Testing Your Tape Drive chapter of this manual. If you have a modern standard SCSI tape drive on
a Linux or Solaris, most likely it will work, but better test than be sorry. For FreeBSD (and probably other
xBSD flavors), reading the above mentioned tape testing chapter is a must. Also, for FreeBSD, please see
The FreeBSD Diary for a detailed description on how to make Bacula work on your system. In addition,
users of FreeBSD prior to 4.9-STABLE dated Mon Dec 29 15:18:01 2003 UTC who plan to use tape devices,
please see the file platforms/freebsd/pthreads-fix.txt in the main Bacula directory concerning important
information concerning compatibility of Bacula and your system.

10.6 Get Rid of the /lib/tls Directory

The new pthreads library /lib/tls installed by default on recent Red Hat systems running Linux ker-
nel 2.4.x is defective. You must remove it or rename it, then reboot your system before running Bacula
otherwise after a week or so of running, Bacula will either block for long periods or deadlock entirely.
You may want to use the loader environment variable override rather than removing /lib/tls. Please see
| Supported Operating Systems| for more information on this problem.

This problem does not occur on systems running Linux 2.6.x kernels.

10.7 Running Bacula

Probably the most important part of running Bacula is being able to restore files. If you haven’t tried
recovering files at least once, when you actually have to do it, you will be under a lot more pressure, and
prone to make errors, than if you had already tried it once.

To get a good idea how to use Bacula in a short time, we strongly recommend that you follow the example
in theRunning Bacula Chapter of this manual where you will get detailed instructions on how to run Bacula.

http://www.freebsddiary.org/bacula.php

10.8 Log Rotation

If you use the default bacula-dir.conf or some variation of it, you will note that it logs all the Bacula
output to a file. To avoid that this file grows without limit, we recommend that you copy the file logrotate
from the scripts/logrotate to /etc/logrotate.d/bacula. This will cause the log file to be rotated once
a month and kept for a maximum of five months. You may want to edit this file to change the default log
rotation preferences.

10.9 Log Watch

Some systems such as Red Hat and Fedora run the logwatch program every night, which does an analysis
of your log file and sends an email report. If you wish to include the output from your Bacula jobs in that
report, please look in the scripts/logwatch directory. The README file in that directory gives a brief
explanation on how to install it and what kind of output to expect.

10.10 Disaster Recovery

If you intend to use Bacula as a disaster recovery tool rather than simply a program to restore lost or
damaged files, you will want to read the Disaster Recovery Using Bacula Chapter] of this manual.

In any case, you are strongly urged to carefully test restoring some files that you have saved rather than
wait until disaster strikes. This way, you will be prepared.

Chapter 11

Installing Bacula

In general, you will need the Bacula source release, and if you want to run a Windows client, you will need
the Bacula Windows binary release. However, Bacula needs certain third party packages (such as MySQL,
PostgreSQL, or SQLite to build and run properly depending on the options you specify. Normally,
MySQL and PostgreSQL are packages that can be installed on your distribution. However, if you do not
have them, to simplify your task, we have combined a number of these packages into three depkgs releases
(Dependency Packages). This can vastly simplify your life by providing you with all the necessary packages
rather than requiring you to find them on the Web, load them, and install them.

11.1 Source Release Files

Beginning with Bacula 1.38.0, the source code has been broken into four separate tar files each corresponding
to a different module in the Bacula SVN. The released files are:

bacula-3.0.3.tar.gz This is the primary source code release for Bacula. On each release the version number
(3.0.3) will be updated.

bacula-docs-3.0.3.tar.gz This file contains a copy of the docs directory with the documents prebuild.
English HTML directory, single HTML file, and pdf file. The French and German translations are in
progress, but are not built.

bacula-gui-3.0.3.tar.gz This file contains the non-core GUI programs. Currently, it contains bacula-web,
a PHP program for producing management viewing of your Bacula job status in a browser; and
bimagemgr a browser program for burning CDROM images with Bacula Volumes.

bacula-rescue-3.0.3.tar.gz This is the Bacula Rescue CDROM code. Note, the version number of this
package is not tied to the Bacula release version, so it will be different. Using this code, you can
burn a CDROM with your system configuration and containing a statically linked version of the File
daemon. This can permit you to easily repartition and reformat your hard disks and reload your system
with Bacula in the case of a hard disk failure. Unfortunately this rescue disk does not properly boot
for all Linux distributions. The problem is that the boot procedure can vary significantly between
distributions, and even within a distribution, they are a moving target.

This package evolves slower than the Bacula source code, so there may not always be a new release
of the rescue package when making minor updates to the Bacula code. For example, when releasing
Bacula version 3.0.3, the rescue package may still be at a prior version if there were no updates.

winbacula-3.0.3.exe This file is the 32 bit Windows installer for installing the Windows client (File dae-
mon) on a Windows machine. This client will also run on 64 bit Windows machines. Beginning with
Bacula version 1.39.20, this executable will also optionally load the Win32 Director and the Win32
Storage daemon.

win64bacula-3.0.3.exe This file is the 64 bit Windows installer for installing the Windows client (File
daemon) on a Windows machine. This client will only run on 64 bit Windows OS machines. It will

69

not run on 32 bit machines or 32 bit Windows OSes. The win64bacula release is necessary for Volume
Shadow Copy (VSS) to work on Win64 OSes. This installer installs only the FD, the Director and
Storage daemon are not included.

11.2 Upgrading Bacula

If you are upgrading from one Bacula version to another, you should first carefully read the ReleaseNotes
of all major versions between your current version and the version to which you are upgrading. In many
upgrades, especially for minor patch upgrades (e.g. between 3.0.0 and 3.0.1) there will be no database
upgrade, and hence the process is rather simple.

With version 3.0.0 and later, you must ensure that on any one machine that all components of Bacula are
running on exactly the same version. Prior to version 3.0.0, it was possible to run a lower level FD with a
newer Director and SD. This is no longer the case.

As always, we attempt to support older File daemons. This avoids the need to do a simultaneous upgrade
of many machines. For exactly what older versions of the FD are supported, please see the ReleaseNotes for
the new version. In any case, you must always upgrade both the Director and the Storage daemon at the
same time, and you must also upgrade any File daemon that is running on the same machine as a Director
or a Storage daemon (see the prior paragraph).

If the Bacula catalog database has been upgraded (as it is almost every major release), you will either need
to reinitialize your database starting from scratch (not normally a good idea), or save an ASCII copy of your
database, then proceed to upgrade it. If you are upgrading two major versions (e.g. 1.36 to 2.0) then life
will be more complicated because you must do two database upgrades. See below for more on this.

Upgrading the catalog is normally done after Bacula is build and installed by:

cd <installed-scripts-dir> (default /etc/bacula)
./update_bacula_tables

This update script can also be find in the Bacula source src/cats directory.

If there are several database upgrades between your version and the version to which you are upgrading,
you will need to apply each database upgrade script. For your convenience, you can find all the old upgrade
scripts in the upgradedb directory of the source code. You will need to edit the scripts to correspond to
your system configuration. The final upgrade script, if any, can be applied as noted above.

If you are upgrading from one major version to another, you will need to replace all your components at the
same time as generally the inter-daemon protocol will change. However, within any particular release (e.g.
version 1.32.x) unless there is an oversight or bug, the daemon protocol will not change. If this is confusing,
simply read the ReleaseNotes very carefully as they will note if all daemons must be upgraded at the same
time.

Finally, please note that in general it is not necessary or desirable to do a make uninstall before doing an
upgrade providing you are careful not to change the installation directories. In fact, if you do so, you will
most likely delete all your conf files, which could be disastrous. The normal procedure during an upgrade is
simply:

./configure (your options)
make
make install

In general none of your existing .conf or .sql files will be overwritten, and you must do both the make and
make install commands, a make install without the preceding make will not work.

For additional information on upgrading, please see the [Upgrading Bacula Versions|in the Tips chapter of
this manual.

11.3 Releases Numbering

Every Bacula release whether beta or production has a different number as well as the date of the release
build. The numbering system follows traditional Open Source conventions in that it is of the form.

major.minor.release

For example:
1.38.11

where each component (major, minor, patch) is a number. The major number is currently 1 and normally
does not change very frequently. The minor number starts at 0 and increases each for each production release
by 2 (i.e. it is always an even number for a production release), and the patch number is starts at zero each
time the minor number changes. The patch number is increased each time a bug fix (or fixes) is released to
production.

So, as of this date (10 September 2006), the current production Bacula release is version 1.38.11. If there
are bug fixes, the next release will be 1.38.12 (i.e. the patch number has increased by one).

For all patch releases where the minor version number does not change, the database and all the daemons
will be compatible. That means that you can safely run a 1.38.0 Director with a 1.38.11 Client. Of course,
in this case, the Director may have bugs that are not fixed. Generally, within a minor release (some minor
releases are not so minor), all patch numbers are officially released to production. This means that while
the current Bacula version is 1.38.11, versions 1.38.0, 1.38.1, ... 1.38.10 have all been previously released.

When the minor number is odd, it indicates that the package is under development and thus may not
be stable. For example, while the current production release of Bacula is currently 1.38.11, the current
development version is 1.39.22. All patch versions of the development code are available in the SVN (source
repository). However, not all patch versions of the development code (odd minor version) are officially
released. When they are released, they are released as beta versions (see below for a definition of what beta
means for Bacula releases).

In general when the minor number increases from one production release to the next (i.e. 1.38.x to 1.40.0),
the catalog database must be upgraded, the Director and Storage daemon must always be on the same minor
release number, and often (not always), the Clients must also be on the same minor release. As often as
possible, we attempt to make new releases that are downwards compatible with prior clients, but this is not
always possible. You must check the release notes. In general, you will have fewer problems if you always
run all the components on the same minor version number (i.e. all either 1.38.x or 1.40.x but not mixed).

Beta Releases

Towards the end of the development cycle, which typically runs one year from a major release to another,
there will be several beta releases of the development code prior to a production release. As noted above,
beta versions always have odd minor version numbers (e.g 1.37.x or 1.39.x). The purpose of the beta releases
is to allow early adopter users to test the new code. Beta releases are made with the following considerations:

The code passes the regression testing on FreeBSD, Linux, and Solaris machines.

There are no known major bugs, or on the rare occasion that there are, they will be documented or
already in the bugs database.

Some of the new code/features may not yet be tested.

e Bugs are expected to be found, especially in the new code before the final production release.

The code will have been run in production in at least one small site (mine).

e The Win32 client will have been run in production at least one night at that small site.

e The documentation in the manual is unlikely to be complete especially for the new features, and the
Release Notes may not be fully organized.

e Beta code is not generally recommended for everyone, but rather for early adopters.

11.4 Dependency Packages

As discussed above, we have combined a number of third party packages that Bacula might need into the
depkgs release. You can, of course, get the latest packages from the original authors or from your operating
system supplier. The locations of where we obtained the packages are in the README file in each package.
However, be aware that the packages in the depkgs files have been tested by us for compatibility with Bacula.

Typically, a dependency package will be named depkgs-ddMMMyy.tar.gz where dd is the day we release
it, MMM is the abbreviated month (e.g. Jan), and yy is the year. An actual example is: depkgs-
24Jul09.tar.gz. To install and build this package (if needed), you do the following;:

1. Create a bacula directory, into which you will place both the Bacula source as well as the dependency
package.

2. Detar the depkgs into the bacula directory.
3. cd bacula/depkgs

4. make

Although the exact composition of the dependency packages may change from time to time, the current
makeup is the following:

3rd Party Package | depkgs | depkgs-qt
SQLite3 X

mtx X

qtd X

Note, some of these packages are quite large, so that building them can be a bit time consuming. The above
instructions will build all the packages contained in the directory. However, when building Bacula, it will
take only those pieces that it actually needs.

Alternatively, you can make just the packages that are needed. For example,

cd bacula/depkgs
make sqlite

will configure and build only the SQLite package.

You should build the packages that you will require in depkgs a prior to configuring and building Bacula,
since Bacula will need them during the build process.

For more information on the depkgs-qt package, please read the INSTALL file in the main directory of that
package. If you are going to build Qt4 using depkgs-qt, you must source the qt4-paths file included in the
package prior to building Bacula. Please read the INSTALL file for more details.

Even if you do not use SQLite, you might find it worthwhile to build mtx because the tapeinfo program that
comes with it can often provide you with valuable information about your SCSI tape drive (e.g. compression,
min/max block sizes, ...). Note, most distros provide mtx as part of their release.

The depkgsl package is depreciated and previously contained readline, which should be available on all
operating systems.

The depkgs-win32 package is deprecated and no longer used in Bacula version 1.39.x and later. It was
previously used to build the native Win32 client program, but this program is now built on Linux systems
using cross-compiling. All the tools and third party libraries are automatically downloaded by executing the
appropriate scripts. See src¢/win32/README.mingw32 for more details.

11.5 Supported Operating Systems

Please see the Supported Operating Systems section of the QuickStart chapter of this manual.

11.6 Building Bacula from Source
The basic installation is rather simple.

1. Install and build any depkgs as noted above. This should be unnecessary on most modern Operating
Systems.

2. Configure and install MySQL or PostgreSQL (if desired). Installing and Configuring MySQL Phase I
or Installing and Configuring PostgreSQL Phase I. If you are installing from rpms, and are using
MySQL, please be sure to install mysql-devel, so that the MySQL header files are available while
compiling Bacula. In addition, the MySQL client library mysqlclient requires the gzip compression
library libz.a or libz.so. If you are using rpm packages, these libraries are in the libz-devel package.
On Debian systems, you will need to load the zliblg-dev package. If you are not using rpms or debs,
you will need to find the appropriate package for your system.

Note, if you already have a running MySQL or PostgreSQL on your system, you can skip this phase
provided that you have built the thread safe libraries. And you have already installed the additional
rpms noted above.

SQLite is not supported on Solaris. This is because it frequently fails with bus errors. However SQLite3
may work.

3. Detar the Bacula source code preferably into the bacula directory discussed above.
4. cd to the directory containing the source code.

5. ./configure (with appropriate options as described below). Any path names you specify as options on
the ./configure command line must be absolute paths and not relative.

6. Check the output of ./configure very carefully, especially the Install binaries and Install config direc-
tories. If they are not correct, please rerun ./configure until they are. The output from ./configure is
stored in config.out and can be re-displayed at any time without rerunning the ./configure by doing
cat config.out.

7. If after running ./configure once, you decide to change options and re-run it, that is perfectly fine, but
before re-running it, you should run:

make distclean

so that you are sure to start from scratch and not have a mixture of the two options. This is because
./configure caches much of the information. The make distclean is also critical if you move the source
directory from one machine to another. If the make distclean fails, just ignore it and continue on.

8. make If you get errors while linking in the Storage daemon directory (src/stored), it is probably because
you have not loaded the static libraries on your system. I noticed this problem on a Solaris system. To
correct it, make sure that you have not added - -enable-static-tools to the ./configure command.

If you skip this step (make) and proceed immediately to the make install you are making two serious
errors: 1. your install will fail because Bacula requires a make before a make install. 2. you are
depriving yourself of the chance to make sure there are no errors before beginning to write files to your
system directories.

9. make install Please be sure you have done a make before entering this command, and that everything
has properly compiled and linked without errors.

10. If you are new to Bacula, we strongly recommend that you skip the next step and use the default
configuration files, then run the example program in the next chapter, then come back and modify
your configuration files to suit your particular needs.

11. Customize the configuration files for each of the three daemons (Directory, File, Storage) and for the
Console program. For the details of how to do this, please see Setting Up Bacula Configuration Files
in the Configuration chapter of this manual. We recommend that you start by modifying the default
configuration files supplied, making the minimum changes necessary. Complete customization can be
done after you have Bacula up and running. Please take care when modifying passwords, which were
randomly generated, and the Names as the passwords and names must agree between the configuration
files for security reasons.

12. Create the Bacula MySQL database and tables (if using MySQL)
Installing and Configuring MySQL Phase II or create the Bacula PostgreSQL database
and tables |Configuring PostgreSQL II ~ or alternatively if you are wusing SQLite
Installing and Configuring SQLite Phase II.

13. Start Bacula (./bacula start) Note. the next chapter shows you how to do this in detail.

14. Interface with Bacula using the Console program

15. For the previous two items, please follow the instructions in the[Running Bacula chapter of this manual,
where you will run a simple backup and do a restore. Do this before you make heavy modifications
to the configuration files so that you are sure that Bacula works and are familiar with it. After that
changing the conf files will be easier.

16. If after installing Bacula, you decide to "move it”, that is to install it in a different set of directories,
proceed as follows:

make uninstall

make distclean

./configure (your-new-options)
make

make install

If all goes well, the ./configure will correctly determine which operating system you are running and
configure the source code appropriately. Currently, FreeBSD, Linux (Red Hat), and Solaris are supported.
The Bacula client (File daemon) is reported to work with MacOS X 10.3 is if readline support is not enabled
(default) when building the client.

If you install Bacula on more than one system, and they are identical, you can simply transfer the source
tree to that other system and do a "make install”. However, if there are differences in the libraries or OS
versions, or you wish to install on a different OS, you should start from the original compress tar file. If you
do transfer the source tree, and you have previously done a ./configure command, you MUST do:

make distclean

prior to doing your new ./configure. This is because the GNU autoconf tools cache the configuration, and
if you re-use a configuration for a Linux machine on a Solaris, you can be sure your build will fail. To avoid
this, as mentioned above, either start from the tar file, or do a "make distclean”.

In general, you will probably want to supply a more complicated configure statement to ensure that the
modules you want are built and that everything is placed into the correct directories.

For example, on Fedora, Red Hat, or SuSE one could use the following:

CFLAGS="-g -Wall" \
./configure \

--sbindir=$HOME/bacula/bin \
--sysconfdir=$HOME/bacula/bin \
--with-pid-dir=$HOME/bacula/bin/working \
--with-subsys-dir=$HOME/bacula/bin/working \
——with-mysql \
--with-working-dir=$HOME/bacula/bin/working \
--with-dump-email=$USER

The advantage of using the above configuration to start is that everything will be put into a single directory,
which you can later delete once you have run the examples in the next chapter and learned how Bacula
works. In addition, the above can be installed and run as non-root.

For the developer’s convenience, I have added a defaultconfig script to the examples directory. This script
contains the statements that you would normally use, and each developer/user may modify them to suit his
needs. You should find additional useful examples in this directory as well.

The --enable-conio or --enable-readline options are useful because they provide a command line history,
editing capability for the Console program and tab completion on various option. If you have included either
option in the build, either the termcap or the ncurses package will be needed to link. On most systems,
including Red Hat and SuSE, you should include the ncurses package. If Bacula’s configure process finds
the ncurses libraries, it will use those rather than the termcap library. On some systems, such as SuSE, the
termcap library is not in the standard library directory. As a consequence, the option may be disabled or
you may get an error message such as:

/usr/lib/gcc-1ib/ib86-suse-1linux/3.3.1/.../1d:
cannot find -ltermcap
collect2: 1d returned 1 exit status

while building the Bacula Console. In that case, you will need to set the LDFLAGS environment variable
prior to building.

export LDFLAGS="-L/usr/lib/termcap"

The same library requirements apply if you wish to use the readline subroutines for command line editing,
history and tab completion or if you are using a MySQL library that requires encryption. If you need
encryption, you can either export the appropriate additional library options as shown above or, alternatively,
you can include them directly on the ./configure line as in:

LDFLAGS="-1ssl -lcyrpto" \
./configure <your-options>

On some systems such as Mandriva, readline tends to gobble up prompts, which makes it totally useless. If
this happens to you, use the disable option, or if you are using version 1.33 and above try using --enable-
conio to use a built-in readline replacement. You will still need either the termcap or the ncurses library,
but it is unlikely that the conio package will gobble up prompts.

readline is no longer supported after version 1.34. The code within Bacula remains, so it should be usable,
and if users submit patches for it, we will be happy to apply them. However, due to the fact that each
version of readline seems to be incompatible with previous versions, and that there are significant differences
between systems, we can no longer afford to support it.

11.7 What Database to Use?

Before building Bacula you need to decide if you want to use SQLite, MySQL, or PostgreSQL. If you are
not already running MySQL or PostgreSQL, you might want to start by testing with SQLite (not supported

on Solaris). This will greatly simplify the setup for you because SQLite is compiled into Bacula an requires
no administration. It performs well and is suitable for small to medium sized installations (maximum 10-20
machines). However, we should note that a number of users have had unexplained database corruption with
SQLite. For that reason, we recommend that you install either MySQL or PostgreSQL for production work.

If you wish to use MySQL as the Bacula catalog, please see the Installing and Configuring MySQL| chapter
of this manual. You will need to install MySQL prior to continuing with the configuration of Bacula. MySQL
is a high quality database that is very efficient and is suitable for any sized installation. It is slightly more
complicated than SQLite to setup and administer because it has a number of sophisticated features such as
userids and passwords. It runs as a separate process, is truly professional and can manage a database of any
size.

If you wish to use PostgreSQL as the Bacula catalog, please see the Installing and Configuring PostgreSQL|
chapter of this manual. You will need to install PostgreSQL prior to continuing with the configuration of
Bacula. PostgreSQL is very similar to MySQL, though it tends to be slightly more SQL92 compliant and
has many more advanced features such as transactions, stored procedures, and the such. It requires a certain
knowledge to install and maintain.

If you wish to use SQLite as the Bacula catalog, please see Installing and Configuring SQLite chapter of this
manual. SQLite is not supported on Solaris.

11.8 Quick Start

There are a number of options and important considerations given below that you can skip for the moment
if you have not had any problems building Bacula with a simplified configuration as shown above.

If the . /configure process is unable to find specific libraries (e.g. libintl, you should ensure that the appropriate
package is installed on your system. Alternatively, if the package is installed in a non-standard location (as
far as Bacula is concerned), then there is generally an option listed below (or listed with ”./configure - -help”
that will permit you to specify the directory that should be searched. In other cases, there are options that
will permit you to disable to feature (e.g. - -disable-nls).

If you want to dive right into it, we recommend you skip to the next chapter, and run the example program.
It will teach you a lot about Bacula and as an example can be installed into a single directory (for easy
removal) and run as non-root. If you have any problems or when you want to do a real installation, come
back to this chapter and read the details presented below.

11.9 Configure Options
The following command line options are available for configure to customize your installation.

-prefix=<patch> This option is meant to allow you to direct where the architecture independent files
should be placed. However, we find this a somewhat vague concept, and so we have not implemented
this option other than what ./configure does by default. As a consequence, we suggest that you avoid
it. We have provided options that allow you to explicitly specify the directories for each of the major
categories of installation files.

-sbindir=<binary-path> Defines where the Bacula binary (executable) files will be placed during a
make install command.

-sysconfdir=<config-path> Defines where the Bacula configuration files should be placed during a make
install command.

-mandir=<path> Note, as of Bacula version 1.39.14, the meaning of any path specified on this option
is change from prior versions. It now specifies the top level man directory. Previously the mandir
specified the full path to where you wanted the man files installed. The man files will be installed in

gzip’ed format under mandir/manl and mandir/man8 as appropriate. For the install to succeed you
must have gzip installed on your system.

By default, Bacula will install the Unix man pages in /usr/share/man/manl and
/usr/share/man/man8. If you wish the man page to be installed in a different location, use
this option to specify the path. Note, the main HTML and PDF Bacula documents are in a separate
tar file that is not part of the source distribution.

-datadir=<path> If you translate Bacula or parts of Bacula into a different language you may specify
the location of the po files using the -datadir option. You must manually install any po files as Bacula
does not (yet) automatically do so.

-disable-ipv6

-enable-smartalloc This enables the inclusion of the Smartalloc orphaned buffer detection code. This
option is highly recommended. Because we never build without this option, you may experience
problems if it is not enabled. In this case, simply re-enable the option. We strongly recommend
keeping this option enabled as it helps detect memory leaks. This configuration parameter is used
while building Bacula

-enable-bat If you have Qt4 ;= 4.3.4 installed on your computer including the libqt4 and libqt4-devel
(libqt4-dev on Debian) libraries, and you want to use the Bacula Administration Tool (bat) GUI
Console interface to Bacula, you must specify this option. Doing so will build everything in the
src/qt-console directory. The build with enable-bat will work only with a full Bacula build (i.e. it
will not work with a client-only build).

Qt4 is available on OpenSUSE 10.2, CentOS 5, Fedora, and Debian. If it is not available on your
system, you can download the depkgs-qt package from the Bacula Source Forge download area and
build it. See the INSTALL file in that package for more details. In particular to use the Qt4 built by
depkgs-qt you must source the file qt4-paths.

-enable-batch-insert This option enables batch inserts of the attribute records (default) in the catalog
database, which is much faster (10 times or more) than without this option for large numbers of files.
However, this option will automatically be disabled if your SQL libraries are not thread safe. If you
find that batch mode is not enabled on your Bacula installation, then your database most likely does
not support threads.

SQLite2 is not thread safe. Batch insert cannot be enabled when using SQLite2
On most systems, MySQL, PostgreSQL and SQLite3 are thread safe.

To verify that your PostgreSQL is thread safe, you can try this (change the path to point to your
particular installed libpq.a; these commands were issued on FreeBSD 6.2):

$ nm /usr/local/lib/libpq.a | grep PQputCopyData
00001b08 T PQputCopyData
$ nm /usr/local/lib/libpq.a | grep mutex

U pthread_mutex_lock

U pthread_mutex_unlock

U pthread_mutex_init

U pthread_mutex_lock

U pthread_mutex_unlock

The above example shows a libpq that contains the required function PQputCopyData and is thread
enabled (i.e. the pthread_mutex* entries). If you do not see PQputCopyData, your version of Post-
greSQL is too old to allow batch insert. If you do not see the mutex entries, then thread support
has not been enabled. Our tests indicate you usually need to change the configuration options and
recompile/reinstall the PostgreSQL client software to get thread support.

Bacula always links to the thread safe MySQL libraries.

Running with Batch Insert turned on is recommended because it can significantly improve attribute
insertion times. However, it does put a significantly larger part of the work on your SQL engine, so you
may need to pay more attention to tuning it. In particular, Batch Insert can require large temporary
table space, and consequently, the default location (often /tmp) may run out of space causing errors.
For MySQL, the location is set in my.conf with ”tmpdir”. You may also want to increase the memory
available to your SQL engine to further improve performance during Batch Inserts.

-enable-bwx-console If you have wxWidgets installed on your computer and you want to use the wxWid-
gets GUI Console interface to Bacula, you must specify this option. Doing so will build everything in
the src/wx-console directory. This could also be useful to users who want a GUI Console and don’t
want to install QT, as wxWidgets can work with GTK+, Motif or even X11 libraries.

-enable-tray-monitor If you have GTK installed on your computer, you run a graphical environment or
a window manager compatible with the FreeDesktop system tray standard (like KDE and GNOME)
and you want to use a GUI to monitor Bacula daemons, you must specify this option. Doing so will
build everything in the src/tray-monitor directory. Note, due to restrictions on what can be linked
with GPLed code, we were forced to remove the egg code that dealt with the tray icons and replace it
by calls to the GTK+ API, and unfortunately, the tray icon API necessary was not implemented until
GTK version 2.10 or later.

-enable-static-tools This option causes the linker to link the Storage daemon utility tools (bls, bextract,
and bscan) statically. This permits using them without having the shared libraries loaded. If you
have problems linking in the src/stored directory, make sure you have not enabled this option, or
explicitly disable static linking by adding --disable-static-tools.

-enable-static-fd This option causes the make process to build a static-bacula-fd in addition to the
standard File daemon. This static version will include statically linked libraries and is required for the
Bare Metal recovery. This option is largely superseded by using make static-bacula-fd from with
in the src/filed directory. Also, the -—enable-client-only option described below is useful for just
building a client so that all the other parts of the program are not compiled.

When linking a static binary, the linker needs the static versions of all the libraries that are used, so
frequently users will experience linking errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The second thing to do is the make sure
you do not specify -openssl or -with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you will need to load additional
static libraries.

-enable-static-sd This option causes the make process to build a static-bacula-sd in addition to the
standard Storage daemon. This static version will include statically linked libraries and could be
useful during a Bare Metal recovery.

When linking a static binary, the linker needs the static versions of all the libraries that are used, so
frequently users will experience linking errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The second thing to do is the make sure
you do not specify -openssl or -with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you will need to load additional
static libraries.

-enable-static-dir This option causes the make process to build a static-bacula-dir in addition to the
standard Director. This static version will include statically linked libraries and could be useful during
a Bare Metal recovery.

When linking a static binary, the linker needs the static versions of all the libraries that are used, so
frequently users will experience linking errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The second thing to do is the make sure
you do not specify -openssl or -with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you will need to load additional
static libraries.

-enable-static-cons This option causes the make process to build a static-console in addition to the
standard console. This static version will include statically linked libraries and could be useful during
a Bare Metal recovery.

When linking a static binary, the linker needs the static versions of all the libraries that are used, so
frequently users will experience linking errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The second thing to do is the make sure
you do not specify -openssl or -with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you will need to load additional
static libraries.

-enable-client-only This option causes the make process to build only the File daemon and the libraries
that it needs. None of the other daemons, storage tools, nor the console will be built. Likewise a make
install will then only install the File daemon. To cause all daemons to be built, you will need to do
a configuration without this option. This option greatly facilitates building a Client on a client only
machine.

When linking a static binary, the linker needs the static versions of all the libraries that are used, so
frequently users will experience linking errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The second thing to do is the make sure
you do not specify -openssl or -with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you will need to load additional
static libraries.

-enable-build-dird This option causes the make process to build the Director and the Director’s tools.
By default, this option is on, but you may turn it off by using -disable-build-dird to prevent the
Director from being built.

-enable-build-stored This option causes the make process to build the Storage daemon. By default, this
option is on, but you may turn it off by using -disable-build-stored to prevent the Storage daemon
from being built.

-enable-largefile This option (default) causes Bacula to be built with 64 bit file address support if it is
available on your system. This permits Bacula to read and write files greater than 2 GBytes in size.
You may disable this feature and revert to 32 bit file addresses by using --disable-largefile.

-disable-nls By default, Bacula uses the GNU Native Language Support (NLS) libraries. On some ma-
chines, these libraries may not be present or may not function correctly (especially on non-Linux
implementations). In such cases, you may specify -disable-nls to disable use of those libraries. In
such a case, Bacula will revert to using English.

-disable-ipv6 By default, Bacula enables IPv6 protocol. On some systems, the files for IPv6 may exist,
but the functionality could be turned off in the kernel. In that case, in order to correctly build Bacula,
you will explicitly need to use this option so that Bacula does not attempt to reference OS function
calls that do not exist.

-with-sqlite3=<sqlite3-path> This enables use of the SQLite version 3.x database. The sqlite3-path
is not normally specified as Bacula looks for the necessary components in a standard location (dep-
kgs/sqlite3). See Installing and Configuring SQLite chapter of this manual for more details. SQLite3
is not supported on Solaris.

-with-mysql=<mysql-path> This enables building of the Catalog services for Bacula. It assumes that
MySQL is running on your system, and expects it to be installed in the mysql-path that you specify.
Normally, if MySQL is installed in a standard system location, you can simply use -with-mysql
with no path specification. If you do use this option, please proceed to installing MySQL in the
Installing and Configuring MySQL chapter before proceeding with the configuration.

See the note below under the -with-postgresql item.

-with-postgresql=<path> This provides an explicit path to the PostgreSQL libraries if Bacula cannot
find it by default. Normally to build with PostgreSQL, you would simply use -with-postgresql.

Note, for Bacula to be configured properly, you must specify one of the four database options supported.
That is: -with-sqlite, -with-sqlite3, -with-mysql, or -with-postgresql, otherwise the ./configure will fail.

-with-openssl=<path> This configuration option is necessary if you want to enable TLS (ssl), which
encrypts the communications within Bacula or if you want to use File Daemon PKI data encryption.
Normally, the path specification is not necessary since the configuration searches for the OpenSSL
libraries in standard system locations. Enabling OpenSSL in Bacula permits secure communications
between the daemons and/or data encryption in the File daemon. For more information on using
TLS, please see the Bacula TLS — Communications Encryption chapter of this manual. For more
information on using PKI data encryption, please see the Bacula PKI — Data Encryption chapter of
this manual.

-with-python=<path> This option enables Bacula support for Python. If no path is supplied, configure
will search the standard library locations for Python 2.2, 2.3, 2.4, or 2.5. If it cannot find the library,
you will need to supply a path to your Python library directory. Please see the Python chapter|for the
details of using Python scripting.

-with-libintl-prefix=<DIR> This option may be used to tell Bacula to search DIR /include and DIR /lib
for the libintl headers and libraries needed for Native Language Support (NLS).

-enable-conio Tells Bacula to enable building the small, light weight readline replacement routine. It is
generally much easier to configure than readline, although, like readline, it needs either the termcap
or ncurses library.

-with-readline=<readline-path> Tells Bacula where readline is installed. Normally, Bacula will find
readline if it is in a standard library. If it is not found and no -with-readline is specified, readline
will be disabled. This option affects the Bacula build. Readline provides the Console program with a
command line history and editing capability and is no longer supported, so you are on your own if you
have problems.

-enable-readline Tells Bacula to enable readline support. It is normally disabled due to the large number
of configuration problems and the fact that the package seems to change in incompatible ways from
version to version.

-with-tcp-wrappers=<path> This specifies that you want TCP wrappers (man hosts_access(5)) com-
piled in. The path is optional since Bacula will normally find the libraries in the standard locations.
This option affects the Bacula build. In specifying your restrictions in the /etc/hosts.allow or
/etc/hosts.deny files, do not use the twist option (hosts_options(5)) or the Bacula process will be
terminated. Note, when setting up your /etc/hosts.allow or /etc/hosts.deny, you must identify
the Bacula daemon in question with the name you give it in your conf file rather than the name of the
executable.

For more information on configuring and testing TCP wrappers, please see the
Configuring and Testing TCP Wrappers|section in the Security Chapter.

On SuSE, the libwrappers libraries needed to link Bacula are contained in the tcpd-devel package. On
Red Hat, the package is named tcp_wrappers.

-with-archivedir=<path> The directory used for disk-based backups. Default value is /tmp. This
parameter sets the default values in the bacula-dir.conf and bacula-sd.conf configuration files. For
example, it sets the Where directive for the default restore job and the Archive Device directive for
the FileStorage device.

This option is designed primarily for use in regression testing. Most users can safely ignore this option.

-with-working-dir=<working-directory-path> This option is mandatory and specifies a directory
into which Bacula may safely place files that will remain between Bacula executions. For example, if
the internal database is used, Bacula will keep those files in this directory. This option is only used
to modify the daemon configuration files. You may also accomplish the same thing by directly editing
them later. The working directory is not automatically created by the install process, so you must
ensure that it exists before using Bacula for the first time.

-with-base-port=<port=number> In order to run, Bacula needs three TCP/IP ports (one for the
Bacula Console, one for the Storage daemon, and one for the File daemon). The --with-baseport
option will automatically assign three ports beginning at the base port address specified. You may also
change the port number in the resulting configuration files. However, you need to take care that the
numbers correspond correctly in each of the three daemon configuration files. The default base port is
9101, which assigns ports 9101 through 9103. These ports (9101, 9102, and 9103) have been officially
assigned to Bacula by IANA. This option is only used to modify the daemon configuration files. You
may also accomplish the same thing by directly editing them later.

-with-dump-email=<email-address> This option specifies the email address where any core dumps
should be set. This option is normally only used by developers.

-with-pid-dir=<PATH> This specifies where Bacula should place the process id file during execution.
The default is: /var/run. This directory is not created by the install process, so you must ensure
that it exists before using Bacula the first time.

-with-subsys-dir=<PATH> This specifies where Bacula should place the subsystem lock file during
execution. The default is /var/run/subsys. Please make sure that you do not specify the same
directory for this directory and for the sbindir directory. This directory is used only within the
autostart scripts. The subsys directory is not created by the Bacula install, so you must be sure to
create it before using Bacula.

-with-dir-password=<Password> This option allows you to specify the password used to access the
Director (normally from the Console program). If it is not specified, configure will automatically create
a random password.

-with-fd-password=<Password> This option allows you to specify the password used to access the
File daemon (normally called from the Director). If it is not specified, configure will automatically
create a random password.

-with-sd-password=<Password> This option allows you to specify the password used to access the
Storage daemon (normally called from the Director). If it is not specified, configure will automatically
create a random password.

-with-dir-user=<User> This option allows you to specify the Userid used to run the Director. The
Director must be started as root, but doesn’t need to run as root, and after doing preliminary ini-
tializations, it can "drop” to the Userld specified on this option. If you specify this option, you must
create the User prior to running make install, because the working directory owner will be set to
User.

-with-dir-group=<Group> This option allows you to specify the Groupld used to run the Director.
The Director must be started as root, but doesn’t need to run as root, and after doing preliminary
initializations, it can "drop” to the Groupld specified on this option. If you specify this option, you
must create the Group prior to running make install, because the working directory group will be set
to Group.

-with-sd-user=<User> This option allows you to specify the Userid used to run the Storage daemon.
The Storage daemon must be started as root, but doesn’t need to run as root, and after doing prelim-
inary initializations, it can ”drop” to the Userld specified on this option. If you use this option, you
will need to take care that the Storage daemon has access to all the devices (tape drives, ...) that it
needs.

-with-sd-group=<Group> This option allows you to specify the Groupld used to run the Storage
daemon. The Storage daemon must be started as root, but doesn’t need to run as root, and after
doing preliminary initializations, it can ”drop” to the Groupld specified on this option.

-with-fd-user=<User> This option allows you to specify the Userid used to run the File daemon. The
File daemon must be started as root, and in most cases, it needs to run as root, so this option is used
only in very special cases, after doing preliminary initializations, it can ”drop” to the Userld specified
on this option.

-with-fd-group=<Group> This option allows you to specify the Groupld used to run the File daemon.
The File daemon must be started as root, and in most cases, it must be run as root, however, after
doing preliminary initializations, it can ”drop” to the Groupld specified on this option.

-with-mon-dir-password=<Password> This option allows you to specify the password used to access
the Directory from the monitor. If it is not specified, configure will automatically create a random
password.

-with-mon-fd-password=<Password> This option allows you to specify the password used to access
the File daemon from the Monitor. If it is not specified, configure will automatically create a random
password.

-with-mon-sd-password=<Password> This option allows you to specify the password used to access
the Storage daemon from the Monitor. If it is not specified, configure will automatically create a
random password.

-with-db-name=<database-name> This option allows you to specify the database name to be used
in the conf files. The default is bacula.

-with-db-user=<database-user> This option allows you to specify the database user name to be used
in the conf files. The default is bacula.

Note, many other options are presented when you do a ./configure --help, but they are not implemented.

11.10 Recommended Options for Most Systems

For most systems, we recommend starting with the following options:

./configure \
--enable-smartalloc \
--sbindir=$HOME/bacula/bin \
--sysconfdir=$HOME/bacula/bin \
--with-pid-dir=$HOME/bacula/bin/working \
--with-subsys-dir=$HOME/bacula/bin/working \
--with-mysql=$HOME/mysql \
--with-working-dir=$HOME/bacula/working

If you want to install Bacula in an installation directory rather than run it out of the build directory
(as developers will do most of the time), you should also include the --sbindir and --sysconfdir options
with appropriate paths. Neither are necessary if you do not use "make install” as is the case for most
development work. The install process will create the sbindir and sysconfdir if they do not exist, but it will
not automatically create the pid-dir, subsys-dir, or working-dir, so you must ensure that they exist before
running Bacula for the first time.

11.11 Red Hat

Using SQLite:

CFLAGS="-g -Wall" ./configure \
--sbindir=$HOME/bacula/bin \
--sysconfdir=$HOME/bacula/bin \
--enable-smartalloc \
--with-sqlite=$HOME/bacula/depkgs/sqlite \
—--with-working-dir=$HOME/bacula/working \
--with-pid-dir=$HOME/bacula/bin/working \
--with-subsys-dir=$HOME/bacula/bin/working \
--enable-bat \

--enable-conio

or

CFLAGS="-g -Wall" ./configure \
--sbindir=$HOME/bacula/bin \
--sysconfdir=$HOME/bacula/bin \
--enable-smartalloc \
--with-mysql=$HOME/mysql \
—-with-working-dir=$HOME/bacula/working
--with-pid-dir=$HOME/bacula/bin/working \
--with-subsys-dir=$HOME/bacula/bin/working
--enable-conio

or finally, a completely traditional Red Hat Linux install:

CFLAGS="-g -Wall" ./configure \
--sbindir=/usr/sbin \
--sysconfdir=/etc/bacula \
--with-scriptdir=/etc/bacula \
--enable-smartalloc \
--enable-bat \

--with-mysql \
--with-working-dir=/var/bacula \
--with-pid-dir=/var/run \
—--enable-conio

Note, Bacula assumes that /var/bacula, /var/run, and /var/lock/subsys exist so it will not automatically
create them during the install process.

11.12 Solaris

To build Bacula from source, you will need the following installed on your system (they are not by default):
libiconv, gee 3.3.2, stde++, libgee (for stde++ and gee_s libraries), make 3.8 or later.

You will probably also need to: Add /usr/local/bin to PATH and Add /usr/ces/bin to PATH for ar.

It is possible to build Bacula on Solaris with the Solaris compiler, but we recommend using GNU C++ if
possible.

A typical configuration command might look like:

#!/bin/sh

CFLAGS="-g" ./configure \
--sbindir=$HOME/bacula/bin \
--sysconfdir=$HOME/bacula/bin \
--with-mysql=$HOME/mysql \
--enable-smartalloc \
—--with-pid-dir=$HOME/bacula/bin/working \
—--with-subsys-dir=$HOME/bacula/bin/working \
--with-working-dir=$HOME/bacula/working

As mentioned above, the install process will create the sbindir and sysconfdir if they do not exist, but it will
not automatically create the pid-dir, subsys-dir, or working-dir, so you must ensure that they exist before
running Bacula for the first time.

Note, you may need to install the following packages to build Bacula from source:

SUNWbinutils,
SUNWarc,
SUNWhea,
SUNWGcc,
SUNWGnutls
SUNWGnutls-devel
SUNWGmake
SUNWgccruntime
SUNWlibgcrypt
SUNWzlib
SUNWzlibs
SUNWbinutilsS
SUNWGmakeS
SUNW1libm

export
PATH=/usr/bin: :/usr/ccs/bin:/etc:/usr/openwin/bin: /usr/local/bin:/usr/sfw/bin:/opt/sfw/bin:/usr/ucb:/usr/sbin

If you have installed special software not normally in the Solaris libraries, such as OpenSSL, or the packages
shown above, then you may need to add /usr/sfw/lib to the library search path. Probably the simplest
way to do so is to run:

setenv LDFLAGS "-L/usr/sfw/lib -R/usr/sfw/1lib"

Prior to running the ./configure command.

Alternatively, you can set the LD _LIBARY _PATH and/or the LD_RUN_PATH environment variables appro-
priately.

It is also possible to use the crle program to set the library search path. However, this should be used with
caution.

11.13 FreeBSD

Please see: The FreeBSD Diary for a detailed description on how to make Bacula work on your system. In
addition, users of FreeBSD prior to 4.9-STABLE dated Mon Dec 29 15:18:01 2003 UTC who plan to use tape
devices, please see the Tape Testing Chapter|of this manual for important information on how to configure
your tape drive for compatibility with Bacula.

If you are using Bacula with MySQL, you should take care to compile MySQL with FreeBSD native threads
rather than LinuxThreads, since Bacula is normally built with FreeBSD native threads rather than Linux-
Treads. Mixing the two will probably not work.

11.14 Win32

To install the binary Win32 version of the File daemon please see the [Win32 Installation Chapter]in this
document.

11.15 One File Configure Script

The following script could be used if you want to put everything in a single file:

#!/bin/sh
CFLAGS="-g -Wall" \
./configure \

--sbindir=$HOME/bacula/bin \
--sysconfdir=$HOME/bacula/bin \
--mandir=$HOME/bacula/bin \
--enable-smartalloc \
--enable-bat \
--enable-bwx-console \
--enable-tray-monitor \
--with-pid-dir=$HOME/bacula/bin/working \
--with-subsys-dir=$HOME/bacula/bin/working \
--with-mysql \
--with-working-dir=$HOME/bacula/bin/working \
—-with-dump-email=$USERQyour-site.com \
--with-job-email=$USERQ@your-site.com \
--with-smtp-host=mail.your-site.com

exit O

You may also want to put the following entries in your /etc/services file as it will make viewing the
connections made by Bacula easier to recognize (i.e. netstat -a):

bacula-dir 9101/tcp
bacula-fd 9102/tcp
bacula-sd 9103/tcp

11.16 Installing Bacula

Before setting up your configuration files, you will want to install Bacula in its final location. Simply enter:

make install

If you have previously installed Bacula, the old binaries will be overwritten, but the old configuration files
will remain unchanged, and the "new” configuration files will be appended with a .new. Generally if you
have previously installed and run Bacula you will want to discard or ignore the configuration files with the
appended .new.

http://www.freebsddiary.org/bacula.php

11.17 Building a File Daemon or Client

If you run the Director and the Storage daemon on one machine and you wish to back up another machine,
you must have a copy of the File daemon for that machine. If the machine and the Operating System are
identical, you can simply copy the Bacula File daemon binary file bacula-fd as well as its configuration
file bacula-fd.conf then modify the name and password in the conf file to be unique. Be sure to make
corresponding additions to the Director’s configuration file (bacula-dir.conf).

If the architecture or the OS level are different, you will need to build a File daemon on the Client machine.
To do so, you can use the same ./configure command as you did for your main program, starting either
from a fresh copy of the source tree, or using make distclean before the ./configure.

Since the File daemon does not access the Catalog database, you can remove the -—with-mysql or --with-
sqlite options, then add --enable-client-only. This will compile only the necessary libraries and the client

programs and thus avoids the necessity of installing one or another of those database programs to build the
File daemon. With the above option, you simply enter make and just the client will be built.

11.18 Awuto Starting the Daemons

If you wish the daemons to be automatically started and stopped when your system is booted (a good idea),
one more step is necessary. First, the ./configure process must recognize your system — that is it must be a
supported platform and not unknown, then you must install the platform dependent files by doing;:

(become root)
make install-autostart

Please note, that the auto-start feature is implemented only on systems that we officially support (currently,
FreeBSD, Red Hat/Fedora Linux, and Solaris), and has only been fully tested on Fedora Linux.

The make install-autostart will cause the appropriate startup scripts to be installed with the necessary
symbolic links. On Red Hat/Fedora Linux systems, these scripts reside in /etc/rc.d/init.d /bacula-dir
/etc/rc.d/init.d /bacula-fd, and /etc/rc.d/init.d/bacula-sd. However the exact location depends on
what operating system you are using.

If you only wish to install the File daemon, you may do so with:

make install-autostart-fd

11.19 Other Make Notes

To simply build a new executable in any directory, enter:

make

To clean out all the objects and binaries (including the files named 1, 2, or 3, which are development
temporary files), enter:

make clean

To really clean out everything for distribution, enter:

make distclean

note, this cleans out the Makefiles and is normally done from the top level directory to prepare for distribution
of the source. To recover from this state, you must redo the ./configure in the top level directory, since all
the Makefiles will be deleted.

To add a new file in a subdirectory, edit the Makefile.in in that directory, then simply do a make. In most
cases, the make will rebuild the Makefile from the new Makefile.in. In some case, you may need to issue the
make a second time. In extreme cases, cd to the top level directory and enter: make Makefiles.

To add dependencies:

make depend

The make depend appends the header file dependencies for each of the object files to Makefile and Make-
file.in. This command should be done in each directory where you change the dependencies. Normally, it
only needs to be run when you add or delete source or header files. make depend is normally automatically
invoked during the configuration process.

To install:

make install

This not normally done if you are developing Bacula, but is used if you are going to run it to backup your
system.

After doing a make install the following files will be installed on your system (more or less). The exact files
and location (directory) for each file depends on your ./configure command (e.g. if you are using SQLite
instead of MySQL, some of the files will be different).

NOTE: it is quite probable that this list is out of date. But it is a starting point.

bacula

bacula-dir
bacula-dir.conf
bacula-fd
bacula-fd.conf
bacula-sd
bacula-sd.conf
bacula-tray-monitor
tray-monitor.conf
bextract

bls

bscan

btape

btraceback
btraceback.gdb
bconsole
bconsole.conf
create_mysql_database
dbcheck
delete_catalog_backup
drop_bacula_tables
drop_mysql_tables
make_bacula_tables
make_catalog_backup
make_mysql_tables
mtx-changer
query.sql

bsmtp

startmysql
stopmysql
bwx-console
bwx-console.conf

9 man pages

11.20 Installing Tray Monitor

The Tray Monitor is already installed if you used the --enable-tray-monitor configure option and ran
make install.

As you don’t run your graphical environment as root (if you do, you should change that bad habit), don’t
forget to allow your user to read tray-monitor.conf, and to execute bacula-tray-monitor (this is not a
security issue).

Then log into your graphical environment (KDE, GNOME or something else), run bacula-tray-monitor as
your user, and see if a cassette icon appears somewhere on the screen, usually on the task bar. If it doesn’t,
follow the instructions below related to your environment or window manager.

11.20.1 GNOME

System tray, or notification area if you use the GNOME terminology, has been supported in GNOME since
version 2.2. To activate it, right-click on one of your panels, open the menu Add to this Panel, then
Utility and finally click on Notification Area.

11.20.2 KDE

System tray has been supported in KDE since version 3.1. To activate it, right-click on one of your panels,
open the menu Add, then Applet and finally click on System Tray.

11.20.3 Other window managers

Read the documentation to know if the Freedesktop system tray standard is supported by your window
manager, and if applicable, how to activate it.

11.21 Modifying the Bacula Configuration Files

See the chapter Configuring Bacula in this manual for instructions on how to set Bacula configuration files.

Chapter 12

Critical Items to Implement Before
Production

We recommend you take your time before implementing a production a Bacula backup system since Bacula
is a rather complex program, and if you make a mistake, you may suddenly find that you cannot restore your
files in case of a disaster. This is especially true if you have not previously used a major backup product.

If you follow the instructions in this chapter, you will have covered most of the major problems that can
occur. It goes without saying that if you ever find that we have left out an important point, please inform
us, so that we can document it to the benefit of everyone.

12.1 Critical Items

The following assumes that you have installed Bacula, you more or less understand it, you have at least
worked through the tutorial or have equivalent experience, and that you have set up a basic production
configuration. If you haven’t done the above, please do so and then come back here. The following is a sort
of checklist that points with perhaps a brief explanation of why you should do it. In most cases, you will
find the details elsewhere in the manual. The order is more or less the order you would use in setting up a
production system (if you already are in production, use the checklist anyway).

e Test your tape drive for compatibility with Bacula by using the test command in the btape| program.

e Better than doing the above is to walk through the nine steps in the [Tape Testing chapter of the
manual. It may take you a bit of time, but it will eliminate surprises.

e Test the end of tape handling of your tape drive by using the fill command in the btape| program.

e If you are using a Linux 2.4 kernel, make sure that /lib/tls is disabled. Bacula does not work with this
library. See the second point under | Supported Operating Systems.

e Do at least one restore of files. If you backup multiple OS types (Linux, Solaris, HP, MacOS, FreeBSD,
Win32, ...), restore files from each system type. The|Restoring Files chapter shows you how.

e Write a bootstrap file to a separate system for each backup job. The Write Bootstrap directive is
described in the Director Configuration| chapter of the manual, and more details are available in the
Bootstrap File| chapter. Also, the default bacula-dir.conf comes with a Write Bootstrap directive
defined. This allows you to recover the state of your system as of the last backup.

e Backup your catalog. An example of this is found in the default bacula-dir.conf file. The backup
script is installed by default and should handle any database, though you may want to make your own
local modifications. See also Backing Up Your Bacula Database - Security Considerations for more
information.

89

e Write a bootstrap file for the catalog. An example of this is found in the default bacula-dir.conf file.
This will allow you to quickly restore your catalog in the event it is wiped out — otherwise it is many
excruciating hours of work.

e Make a copy of the bacula-dir.conf, bacula-sd.conf, and bacula-fd.conf files that you are using on your
server. Put it in a safe place (on another machine) as these files can be difficult to reconstruct if your
server dies.

e Make a Bacula Rescue CDROM! See the Disaster Recovery Using a Bacula Rescue CDROM chapter.
It is trivial to make such a CDROM, and it can make system recovery in the event of a lost hard disk
infinitely easier.

e Bacula assumes all filenames are in UTF-8 format. This is important when saving the filenames to the
catalog. For Win32 machine, Bacula will automatically convert from Unicode to UTF-8, but on Unix,
Linux, *BSD, and MacOS X machines, you must explicitly ensure that your locale is set properly.
Typically this means that the bf LANG environment variable must end in .UTF-8. An full example
is en_ US.UTF-8. The exact syntax may vary a bit from OS to OS, and exactly how you define it will
also vary.

On most modern Win32 machines, you can edit the conf files with notepad and choose output encoding
UTF-8.

12.2 Recommended Items

Although these items may not be critical, they are recommended and will help you avoid problems.

e Read the Quick Start Guide to Bacula

e After installing and experimenting with Bacula, read and work carefully through the examples in the
Tutorial chapter of this manual.

e Learn what each of the Bacula Utility Programs does.

e Set up reasonable retention periods so that your catalog does not grow to be too big. See the following
three chapters:
Recycling your Volumes,
Basic Volume Management,
Using Pools to Manage Volumes|

e Perform a bare metal recovery wusing the Bacula Rescue CDROM. See the
Disaster Recovery Using a Bacula Rescue CDROM chapter.

If you absolutely must implement a system where you write a different tape each night and take it offsite in
the morning. We recommend that you do several things:

e Write a bootstrap file of your backed up data and a bootstrap file of your catalog backup to a floppy
disk or a CDROM, and take that with the tape. If this is not possible, try to write those files to
another computer or offsite computer, or send them as email to a friend. If none of that is possible, at
least print the bootstrap files and take that offsite with the tape. Having the bootstrap files will make
recovery much easier.

e [t is better not to force Bacula to load a particular tape each day. Instead, let Bacula choose the tape.
If you need to know what tape to mount, you can print a list of recycled and appendable tapes daily,
and select any tape from that list. Bacula may propose a particular tape for use that it considers
optimal, but it will accept any valid tape from the correct pool.

Chapter 13

A Brief Tutorial

This chapter will guide you through running Bacula. To do so, we assume you have installed Bacula, possibly
in a single file as shown in the previous chapter, in which case, you can run Bacula as non-root for these
tests. However, we assume that you have not changed the .conf files. If you have modified the .conf files,
please go back and uninstall Bacula, then reinstall it, but do not make any changes. The examples in this
chapter use the default configuration files, and will write the volumes to disk in your /tmp directory, in
addition, the data backed up will be the source directory where you built Bacula. As a consequence, you
can run all the Bacula daemons for these tests as non-root. Please note, in production, your File daemon(s)
must run as root. See the Security chapter for more information on this subject.

The general flow of running Bacula is:

1. cd <install-directory>

2. Start the Database (if using MySQL or PostgreSQL)

3. Start the Daemons with ./bacula start

4. Start the Console program to interact with the Director
5. Run a job

6. When the Volume fills, unmount the Volume, if it is a tape, label a new one, and continue running. In
this chapter, we will write only to disk files so you won’t need to worry about tapes for the moment.

7. Test recovering some files from the Volume just written to ensure the backup is good and that you
know how to recover. Better test before disaster strikes

8. Add a second client.

Each of these steps is described in more detail below.

13.1 Before Running Bacula

Before running Bacula for the first time in production, we recommend that you run the test command in
the btape program as described in the [Utility Program Chapter of this manual. This will help ensure that
Bacula functions correctly with your tape drive. If you have a modern HP, Sony, or Quantum DDS or DLT
tape drive running on Linux or Solaris, you can probably skip this test as Bacula is well tested with these
drives and systems. For all other cases, you are strongly encouraged to run the test before continuing.
btape also has a fill command that attempts to duplicate what Bacula does when filling a tape and writing
on the next tape. You should consider trying this command as well, but be forewarned, it can take hours
(about four hours on my drive) to fill a large capacity tape.

91

13.2 Starting the Database

If you are using MySQL or PostgreSQL as the Bacula database, you should start it before you attempt to run
a job to avoid getting error messages from Bacula when it starts. The scripts startmysql and stopmysql
are what I (Kern) use to start and stop my local MySQL. Note, if you are using SQLite, you will not want
to use startmysql or stopmysql. If you are running this in production, you will probably want to find
some way to automatically start MySQL or PostgreSQL after each system reboot.

If you are using SQLite (i.e. you specified the --—with-sqlite=xxx option on the ./configure command,
you need do nothing. SQLite is automatically started by Bacula.

13.3 Starting the Daemons

Assuming you have built from source or have installed the rpms, to start the three daemons, from your
installation directory, simply enter:

./bacula start

The bacula script starts the Storage daemon, the File daemon, and the Director daemon, which all normally
run as daemons in the background. If you are using the autostart feature of Bacula, your daemons will either
be automatically started on reboot, or you can control them individually with the files bacula-dir, bacula-
fd, and bacula-sd, which are usually located in /etc/init.d, though the actual location is system dependent.
Some distributions may do this differently.

Note, on Windows, currently only the File daemon is ported, and it must be started differently. Please see
the Windows Version of Baculal Chapter of this manual.

The rpm packages configure the daemons to run as user=root and group=bacula. The rpm installation also
creates the group bacula if it does not exist on the system. Any users that you add to the group bacula
will have access to files created by the daemons. To disable or alter this behavior edit the daemon startup
scripts:

e /etc/bacula/bacula

e /etc/init.d/bacula-dir

e /etc/init.d/bacula-sd

e /etc/init.d/bacula-fd

and then restart as noted above.

The [installation chapter of this manual explains how you can install scripts that will automatically restart
the daemons when the system starts.

13.4 Using the Director to Query and Start Jobs

To communicate with the director and to query the state of Bacula or run jobs, from the top level directory,
simply enter:

./bconsole

Alternatively to running the command line console, if you have Qt4 installed and used the --enable-bat
on the configure command, you may use the Bacula Administration Tool (bat):

./bat

Which has a graphical interface, and many more features than bconsole.

Two other possibilities are to run the GNOME console bgnome-console or the wxWidgets program bwx-
console.

For simplicity, here we will describe only the ./bconsole program. Most of what is described here applies
equally well to ./bat, ./bgnome-console, and to bwx-console.

The ./bconsole runs the Bacula Console program, which connects to the Director daemon. Since Bacula is
a network program, you can run the Console program anywhere on your network. Most frequently, however,
one runs it on the same machine as the Director. Normally, the Console program will print something similar
to the following:

[kern@polymatou bin]$./bconsole

Connecting to Director lpmatou:9101

1000 OK: HeadMan Version: 2.1.8 (14 May 2007)
*

the asterisk is the console command prompt.

Type help to see a list of available commands:

*help
Command Description
add add media to a pool
autodisplay autodisplay [onl|off] -- console messages
automount automount [on|off] -- after label
cancel cancel [<jobid=nnn> | <job=name>] -- cancel a job
create create DB Pool from resource
delete delete [pool=<pool-name> | media volume=<volume-name>]
disable disable <job=name> -- disable a job
enable enable <job=name> -- enable a job
estimate performs FileSet estimate, listing gives full listing
exit exit = quit
gui gui [on|off] -- non-interactive gui mode
help print this command
list list [pools | jobs | jobtotals | media <pool=pool-name> |
files <jobid=nn>]; from catalog
label label a tape
1list full or long list like list command
memory print current memory usage
messages = messages
mount mount <storage-name>
prune prune expired records from catalog
purge purge records from catalog
python python control commands
quit quit
query query catalog
restore restore files
relabel relabel a tape
release release <storage-name>
reload reload conf file
run run <job-name>
status status [[slots] storage | dir | client]=<name>
setdebug sets debug level
setip sets new client address -- if authorized
show show (resource records) [jobs | pools | ... | alll
sqlquery use SQL to query catalog
time print current time
trace turn on/off trace to file
unmount unmount <storage-name>
umount umount <storage-name> for old-time Unix guys
update update Volume, Pool or slots
use use catalog xxx
var does variable expansion
version print Director version

wait wait until no jobs are running [<jobname=name> | <jobid=nnn> | <ujobid=complete_name>]

Details of the console program’s commands are explained in the Console Chapter of this manual.

13.5 Running a Job

At this point, we assume you have done the following:

e Configured Bacula with ./configure --your-options

e Built Bacula using make

e Installed Bacula using make install

e Have created your database with, for example, ./create_sqlite_database
e Have created the Bacula database tables with, ./make_bacula_tables

e Have possibly edited your bacula-dir.conf file to personalize it a bit. BE CAREFUL! if you change
the Director’s name or password, you will need to make similar modifications in the other .conf files.
For the moment it is probably better to make no changes.

e You have started Bacula with ./bacula start

e You have invoked the Console program with ./bconsole

Furthermore, we assume for the moment you are using the default configuration files.

At this point, enter the following command:

show filesets

and you should get something similar to:

FileSet: name=Full Set
M

/home/kern/bacula/regress/build

/proc
/tmp
/.journal
/.fsck

Z2mmmEm=aH+H20

FileSet: name=Catalog
oM
N
I /home/kern/bacula/regress/working/bacula.sql
N

This is a pre-defined FileSet that will backup the Bacula source directory. The actual directory names
printed should correspond to your system configuration. For testing purposes, we have chosen a directory
of moderate size (about 40 Megabytes) and complexity without being too big. The FileSet Catalog is used
for backing up Bacula’s catalog and is not of interest to us for the moment. The I entries are the files or
directories that will be included in the backup and the E are those that will be excluded, and the O entries
are the options specified for the FileSet. You can change what is backed up by editing bacula-dir.conf and
changing the File = line in the FileSet resource.

Now is the time to run your first backup job. We are going to backup your Bacula source directory to a File
Volume in your /tmp directory just to show you how easy it is. Now enter:

status dir

and you should get the following output:

rufus-dir Version: 1.30 (28 April 2003)

Daemon started 28-Apr-2003 14:03, O Jobs run.
Console connected at 28-Apr-2003 14:03

No jobs are running.

Level Type Scheduled Name

Incremental Backup 29-Apr-2003 01:05 Clientl
Full Backup 29-Apr-2003 01:10 BackupCatalog

where the times and the Director’s name will be different according to your setup. This shows that an
Incremental job is scheduled to run for the Job Clientl at 1:05am and that at 1:10, a BackupCatalog is
scheduled to run. Note, you should probably change the name Client1 to be the name of your machine, if
not, when you add additional clients, it will be very confusing. For my real machine, I use Rufus rather
than Client1 as in this example.

Now enter:

status client

and you should get something like:

The defined Client resources are:

1: rufus-fd
Item 1 selected automatically.
Connecting to Client rufus-fd at rufus:8102
rufus-fd Version: 1.30 (28 April 2003)
Daemon started 28-Apr-2003 14:03, O Jobs run.
Director connected at: 28-Apr-2003 14:14
No jobs running.

In this case, the client is named rufus-fd your name will be different, but the line beginning with rufus-fd
Version ... is printed by your File daemon, so we are now sure it is up and running.

Finally do the same for your Storage daemon with:

status storage

and you should get:

The defined Storage resources are:
1: File
Item 1 selected automatically.
Connecting to Storage daemon File at rufus:8103
rufus-sd Version: 1.30 (28 April 2003)
Daemon started 28-Apr-2003 14:03, O Jobs run.
Device /tmp is not open.
No jobs running.

You will notice that the default Storage daemon device is named File and that it will use device /tmp,
which is not currently open.

Now, let’s actually run a job with:

run

you should get the following output:

Using default Catalog name=MyCatalog DB=bacula
A job name must be specified.
The defined Job resources are:
1: Client1l
2: BackupCatalog
3: RestoreFiles
Select Job resource (1-3):

Here, Bacula has listed the three different Jobs that you can run, and you should choose number 1 and type
enter, at which point you will get:

Run Backup job
JobName: Clientl
FileSet: Full Set

Level: Incremental

Client: rufus-£fd

Storage: File

Pool: Default

When: 2003-04-28 14:18:57

0K to run? (yes/mod/mno):

At this point, take some time to look carefully at what is printed and understand it. It is asking you if it
is OK to run a job named Clientl with FileSet Full Set (we listed above) as an Incremental job on your
Client (your client name will be different), and to use Storage File and Pool Default, and finally, it wants
to run it now (the current time should be displayed by your console).

Here we have the choice to run (yes), to modify one or more of the above parameters (mod), or to not
run the job (no). Please enter yes, at which point you should immediately get the command prompt (an
asterisk). If you wait a few seconds, then enter the command messages you will get back something like:

28-Apr-2003 14:22 rufus-dir: Last FULL backup time not found. Doing
FULL backup.

28-Apr-2003 14:22 rufus-dir: Start Backup JoblId 1,
Job=Client1.2003-04-28_14.22.33

28-Apr-2003 14:22 rufus-sd: Job Client1.2003-04-28_14.22.33 waiting.
Cannot find any appendable volumes.

Please use the "label" command to create a new Volume for:

Storage: FileStorage
Media type: File
Pool: Default

The first message, indicates that no previous Full backup was done, so Bacula is upgrading our Incremental
job to a Full backup (this is normal). The second message indicates that the job started with Jobld 1., and
the third message tells us that Bacula cannot find any Volumes in the Pool for writing the output. This is
normal because we have not yet created (labeled) any Volumes. Bacula indicates to you all the details of
the volume it needs.

At this point, the job is BLOCKED waiting for a Volume. You can check this if you want by doing a status

dir. In order to continue, we must create a Volume that Bacula can write on. We do so with:

label

and Bacula will print:

The defined Storage resources are:
1: File

Item 1 selected automatically.

Enter new Volume name:

at which point, you should enter some name beginning with a letter and containing only letters and numbers
(period, hyphen, and underscore) are also permitted. For example, enter Test Volume001, and you should
get back:

Defined Pools:
1: Default
Item 1 selected automatically.
Connecting to Storage daemon File at rufus:8103 ...
Sending label command for Volume "TestVolumeOO1" Slot O ...
3000 OK label. Volume=TestVolumeOOl1 Device=/tmp
Catalog record for Volume "TestVolume002", Slot O successfully created.
Requesting mount FileStorage ...
3001 OK mount. Device=/tmp

Finally, enter messages and you should get something like:

28-Apr-2003 14:30 rufus-sd: Wrote label to prelabeled Volume
"TestVolume0O1" on device /tmp
28-Apr-2003 14:30 rufus-dir: Bacula 1.30 (28Apr03): 28-Apr-2003 14:30

JobId: 1

Job: Client1.2003-04-28_14.22.33
FileSet: Full Set

Backup Level: Full

Client: rufus-£fd

Start time: 28-Apr-2003 14:22
End time: 28-Apr-2003 14:30
Files Written: 1,444

Bytes Written: 38,988,877

Rate: 81.2 KB/s
Software Compression: None

Volume names(s): TestVolumeOO1
Volume Session Id: 1

Volume Session Time: 1051531381

Last Volume Bytes: 39,072,359

FD termination status: OK

SD termination status: 0K

Termination: Backup 0K

28-Apr-2003 14:30 rufus-dir: Begin pruning Jobs.
28-Apr-2003 14:30 rufus-dir: No Jobs found to prune.
28-Apr-2003 14:30 rufus-dir: Begin pruning Files.
28-Apr-2003 14:30 rufus-dir: No Files found to prune.
28-Apr-2003 14:30 rufus-dir: End auto prune.

If you don’t see the output immediately, you can keep entering messages until the job terminates, or you
can enter, autodisplay on and your messages will automatically be displayed as soon as they are ready.

If you do an 1s -1 of your /tmp directory, you will see that you have the following item:

“rw-r----- 1 kern kern 390721563 Apr 28 14:30 TestVolumeOO1

This is the file Volume that you just wrote and it contains all the data of the job just run. If you run
additional jobs, they will be appended to this Volume unless you specify otherwise.

You might ask yourself if you have to label all the Volumes that Bacula is going to use. The answer for disk
Volumes, like the one we used, is no. It is possible to have Bacula automatically label volumes. For tape
Volumes, you will most likely have to label each of the Volumes you want to use.

If you would like to stop here, you can simply enter quit in the Console program, and you can stop Bacula
with ./bacula stop. To clean up, simply delete the file /tmp/TestVolume001, and you should also
re-initialize your database using:

./drop_bacula_tables
./make_bacula_tables

Please note that this will erase all information about the previous jobs that have run, and that you might
want to do it now while testing but that normally you will not want to re-initialize your database.

If you would like to try restoring the files that you just backed up, read the following section.

13.6 Restoring Your Files

If you have run the default configuration and the save of the Bacula source code as demonstrated above, you
can restore the backed up files in the Console program by entering:

restore all

where you will get:

First you select one or more JobIds that contain files
to be restored. You will be presented several methods
of specifying the JobIds. Then you will be allowed to
select which files from those Joblds are to be restored.

To select the JobIlds, you have the following choices:
1: List last 20 Jobs run

List Jobs where a given File is saved

Enter list of comma separated JobIlds to select

Enter SQL list command

Select the most recent backup for a client

Select backup for a client before a specified time

: Enter a list of files to restore

: Enter a list of files to restore before a specified time

: Find the JobIds of the most recent backup for a client

: Find the JobIds for a backup for a client before a specified time
11: Enter a list of directories to restore for found JobIds
12: Cancel

Select item: (1-12):

© 00N O WN

e
o

As you can see, there are a number of options, but for the current demonstration, please enter 5 to do a
restore of the last backup you did, and you will get the following output:

Defined Clients:
1: rufus-fd
Item 1 selected automatically.
The defined FileSet resources are:
1: 1 Full Set 2003-04-28 14:22:33
Item 1 selected automatically.

+ +

+ + +

JobId | Level | JobFiles | StartTime | VolumeName
| |

1 | F | 1444 | 2003-04-28 14:22:33 | TestVolume002
You have selected the following JobId: 1
Building directory tree for JobId 1
1 Job inserted into the tree and marked for extraction.
The defined Storage resources are:
1: File
Item 1 selected automatically.
You are now entering file selection mode where you add and
remove files to be restored. All files are initially added.
Enter "done" to leave this mode.
cwd is: /

$

+ — + — +

where I have truncated the listing on the right side to make it more readable. As you can see by starting
at the top of the listing, Bacula knows what client you have, and since there was only one, it selected it
automatically, likewise for the FileSet. Then Bacula produced a listing containing all the jobs that form

the current backup, in this case, there is only one, and the Storage daemon was also automatically chosen.
Bacula then took all the files that were in Job number 1 and entered them into a directory tree (a sort
of in memory representation of your filesystem). At this point, you can use the cd and ls ro dir commands
to walk up and down the directory tree and view what files will be restored. For example, if I enter cd
/home/kern/bacula/bacula-1.30 and then enter dir I will get a listing of all the files in the Bacula
source directory. On your system, the path will be somewhat different. For more information on this, please
refer to the Restore Command Chapter of this manual for more details.

To exit this mode, simply enter:

done

and you will get the following output:

Bootstrap records written to
/home/kern/bacula/testbin/working/restore.bsr
The restore job will require the following Volumes:

TestVolume001
1444 files selected to restore.
Run Restore job

JobName: RestoreFiles

Bootstrap: /home/kern/bacula/testbin/working/restore.bsr
Where: /tmp/bacula-restores

Replace: always

FileSet: Full Set

Backup Client: rufus-fd
Restore Client: rufus-fd

Storage: File
JobId: *Nonex*
When: 2005-04-28 14:53:54

0K to run? (yes/mod/mno):

If you answer yes your files will be restored to /tmp/bacula-restores. If you want to restore the files to
their original locations, you must use the mod option and explicitly set Where: to nothing (or to /). We
recommend you go ahead and answer yes and after a brief moment, enter messages, at which point you
should get a listing of all the files that were restored as well as a summary of the job that looks similar to
this:

28-Apr-2005 14:56 rufus-dir: Bacula 2.1.8 (08May07): 08-May-2007 14:56:06

Build 0S: i686-pc-linux-gnu suse 10.2
Jobld: 2

Job: RestoreFiles.2007-05-08_14.56.06
Restore Client: rufus-£fd

Start time: 08-May-2007 14:56

End time: 08-May-2007 14:56

Files Restored: 1,444

Bytes Restored: 38,816,381

Rate: 9704.1 KB/s

FD Errors: 0

FD termination status: OK

SD termination status: 0K

Termination: Restore OK

08-May-2007 14:56 rufus-dir: Begin pruning Jobs.
08-May-2007 14:56 rufus-dir: No Jobs found to prune.
08-May-2007 14:56 rufus-dir: Begin pruning Files.
08-May-2007 14:56 rufus-dir: No Files found to prune.
08-May-2007 14:56 rufus-dir: End auto prune.

After exiting the Console program, you can examine the files in /tmp/bacula-restores, which will contain
a small directory tree with all the files. Be sure to clean up at the end with:

rm -rf /tmp/bacula-restore

13.7 Quitting the Console Program

Simply enter the command quit.

13.8 Adding a Second Client

If you have gotten the example shown above to work on your system, you may be ready to add a second
Client (File daemon). That is you have a second machine that you would like backed up. The only part
you need installed on the other machine is the binary bacula-fd (or bacula-fd.exe for Windows) and its
configuration file bacula-fd.conf. You can start with the same bacula-fd.conf file that you are currently
using and make one minor modification to it to create the conf file for your second client. Change the File
daemon name from whatever was configured, rufus-fd in the example above, but your system will have a
different name. The best is to change it to the name of your second machine. For example:

#

"Global" File daemon configuration specifications
#
FileDaemon { # this is me
Name = rufus-fd
FDport = 9102 # where we listen for the director

WorkingDirectory = /home/kern/bacula/working
Pid Directory = /var/run

}

would become:

#

"Global" File daemon configuration specifications
#
FileDaemon { # this is me
Name = matou-fd
FDport = 9102 # where we listen for the director

WorkingDirectory = /home/kern/bacula/working
Pid Directory = /var/run

}

where I show just a portion of the file and have changed rufus-fd to matou-fd. The names you use are
your choice. For the moment, I recommend you change nothing else. Later, you will want to change the
password.

Now you should install that change on your second machine. Then you need to make some additions to your
Director’s configuration file to define the new File daemon or Client. Starting from our original example
which should be installed on your system, you should add the following lines (essentially copies of the existing
data but with the names changed) to your Director’s configuration file bacula-dir.conf.

#
Define the main nightly save backup job
By default, this job will back up to disk in /tmp
Job {
Name = "Matou"
Type = Backup
Client = matou-fd
FileSet = "Full Set"
Schedule = "WeeklyCycle"
Storage = File
Messages = Standard
Pool = Default
Write Bootstrap = "/home/kern/bacula/working/matou.bsr"

}
Client (File Services) to backup
Client {

Name = matou-fd

Address = matou

FDPort = 9102

Catalog = MyCatalog

Password = "xxxxx" # password for

File Retention = 30d # 30 days

Job Retention = 180d # six months

AutoPrune = yes # Prune expired Jobs/Files

Then make sure that the Address parameter in the Storage resource is set to the fully qualified domain name
and not to something like "localhost”. The address specified is sent to the File daemon (client) and it must
be a fully qualified domain name. If you pass something like ”localhost” it will not resolve correctly and will
result in a time out when the File daemon fails to connect to the Storage daemon.

That is all that is necessary. I copied the existing resource to create a second Job (Matou) to backup the
second client (matou-fd). It has the name Matou, the Client is named matou-fd, and the bootstrap file
name is changed, but everything else is the same. This means that Matou will be backed up on the same
schedule using the same set of tapes. You may want to change that later, but for now, let’s keep it simple.

The second change was to add a new Client resource that defines matou-fd and has the correct address
matou, but in real life, you may need a fully qualified domain name or an IP address. I also kept the
password the same (shown as xxxxx for the example).

At this point, if you stop Bacula and restart it, and start the Client on the other machine, everything will
be ready, and the prompts that you saw above will now include the second machine.

To make this a real production installation, you will possibly want to use different Pool, or a different
schedule. It is up to you to customize. In any case, you should change the password in both the Director’s
file and the Client’s file for additional security.

For some important tips on changing names and passwords, and a diagram of what names and passwords
must match, please see Authorization Errors in the FAQ chapter of this manual.

13.9 When The Tape Fills

If you have scheduled your job, typically nightly, there will come a time when the tape fills up and Bacula
cannot continue. In this case, Bacula will send you a message similar to the following:

rufus-sd: block.c:337 === Write error errno=28: ERR=No space left
on device

This indicates that Bacula got a write error because the tape is full. Bacula will then search the Pool specified
for your Job looking for an appendable volume. In the best of all cases, you will have properly set your
Retention Periods and you will have all your tapes marked to be Recycled, and Bacula will automatically
recycle the tapes in your pool requesting and overwriting old Volumes. For more information on recycling,
please see the Recycling chapter|of this manual. If you find that your Volumes were not properly recycled
(usually because of a configuration error), please see the Manually Recycling Volumes section of the Recycling
chapter.

If like me, you have a very large set of Volumes and you label them with the date the Volume was first
writing, or you have not set up your Retention periods, Bacula will not find a tape in the pool, and it will
send you a message similar to the following:

rufus-sd: Job kernsave.2002-09-19.10:50:48 waiting. Cannot find any
appendable volumes.
Please use the "label" command to create a new Volume for:

Storage: SDT-10000
Media type: DDS-4
Pool: Default

Until you create a new Volume, this message will be repeated an hour later, then two hours later, and so on
doubling the interval each time up to a maximum interval of one day.

The obvious question at this point is: What do I do now?

The answer is simple: first, using the Console program, close the tape drive using the unmount command.
If you only have a single drive, it will be automatically selected, otherwise, make sure you release the one
specified on the message (in this case STD-10000).

Next, you remove the tape from the drive and insert a new blank tape. Note, on some older tape drives, you
may need to write an end of file mark (mt -f /dev/nst0 weof) to prevent the drive from running away
when Bacula attempts to read the label.

Finally, you use the label command in the Console to write a label to the new Volume. The label command
will contact the Storage daemon to write the software label, if it is successful, it will add the new Volume
to the Pool, then issue a mount command to the Storage daemon. See the previous sections of this chapter
for more details on labeling tapes.

The result is that Bacula will continue the previous Job writing the backup to the new Volume.

If you have a Pool of volumes and Bacula is cycling through them, instead of the above message ” Cannot
find any appendable volumes.”, Bacula may ask you to mount a specific volume. In that case, you should
attempt to do just that. If you do not have the volume any more (for any of a number of reasons), you can
simply mount another volume from the same Pool, providing it is appendable, and Bacula will use it. You
can use the list volumes command in the console program to determine which volumes are appendable and
which are not.

If like me, you have your Volume retention periods set correctly, but you have no more free Volumes, you
can relabel and reuse a Volume as follows:

e Do a list volumes in the Console and select the oldest Volume for relabeling.
e If you have setup your Retention periods correctly, the Volume should have VolStatus Purged.

e If the VolStatus is not set to Purged, you will need to purge the database of Jobs that are written on
that Volume. Do so by using the command purge jobs volume in the Console. If you have multiple
Pools, you will be prompted for the Pool then enter the VolumeName (or Mediald) when requested.

e Then simply use the relabel command to relabel the Volume.

To manually relabel the Volume use the following additional steps:

e To delete the Volume from the catalog use the delete volume command in the Console and select
the VolumeName (or Mediald) to be deleted.

e Use the unmount command in the Console to unmount the old tape.
e Physically relabel the old Volume that you deleted so that it can be reused.
e Insert the old Volume in the tape drive.

e From a command line do: mt -f /dev/st0 rewind and mt -f /dev/st0 weof, where you need
to use the proper tape drive name for your system in place of /dev/stO.

e Use the label command in the Console to write a new Bacula label on your tape.

e Use the mount command in the Console if it is not automatically done, so that Bacula starts using
your newly labeled tape.

13.10 Other Useful Console Commands

status dir Print a status of all running jobs and jobs scheduled in the next 24 hours.
status The console program will prompt you to select a daemon type, then will request the daemon’s status.

status jobid=nn Print a status of Jobld nn if it is running. The Storage daemon is contacted and requested
to print a current status of the job as well.

list pools List the pools defined in the Catalog (normally only Default is used).
list media Lists all the media defined in the Catalog.

list jobs Lists all jobs in the Catalog that have run.

list jobid=nn Lists Jobld nn from the Catalog.

list jobtotals Lists totals for all jobs in the Catalog.

list files jobid=nn List the files that were saved for Jobld nn.

list jobmedia List the media information for each Job run.

messages Prints any messages that have been directed to the console.

unmount storage=storage-name Unmounts the drive associated with the storage device with the name
storage-name if the drive is not currently being used. This command is used if you wish Bacula to
free the drive so that you can use it to label a tape.

mount storage=storage-name Causes the drive associated with the storage device to be mounted again.
When Bacula reaches the end of a volume and requests you to mount a new volume, you must issue
this command after you have placed the new volume in the drive. In effect, it is the signal needed by
Bacula to know to start reading or writing the new volume.

quit Exit or quit the console program.

Most of the commands given above, with the exception of list, will prompt you for the necessary arguments
if you simply enter the command name.

13.11 Debug Daemon Output

If you want debug output from the daemons as they are running, start the daemons from the install directory
as follows:

./bacula start -d100

This can be particularly helpful if your daemons do not start correctly, because direct daemon output to the
console is normally directed to the NULL device, but with the debug level greater than zero, the output will
be sent to the starting terminal.

To stop the three daemons, enter the following from the install directory:

./bacula stop

The execution of bacula stop may complain about pids not found. This is OK, especially if one of the
daemons has died, which is very rare.

To do a full system save, each File daemon must be running as root so that it will have permission to access
all the files. None of the other daemons require root privileges. However, the Storage daemon must be able
to open the tape drives. On many systems, only root can access the tape drives. Either run the Storage
daemon as root, or change the permissions on the tape devices to permit non-root access. MySQL and
PostgreSQL can be installed and run with any userid; root privilege is not necessary.

13.12 Patience When Starting Daemons or Mounting Blank Tapes

When you start the Bacula daemons, the Storage daemon attempts to open all defined storage devices and
verify the currently mounted Volume (if configured). Until all the storage devices are verified, the Storage
daemon will not accept connections from the Console program. If a tape was previously used, it will be
rewound, and on some devices this can take several minutes. As a consequence, you may need to have a bit
of patience when first contacting the Storage daemon after starting the daemons. If you can see your tape
drive, once the lights stop flashing, the drive will be ready to be used.

The same considerations apply if you have just mounted a blank tape in a drive such as an HP DLT. It can
take a minute or two before the drive properly recognizes that the tape is blank. If you attempt to mount
the tape with the Console program during this recognition period, it is quite possible that you will hang
your SCSI driver (at least on my Red Hat Linux system). As a consequence, you are again urged to have
patience when inserting blank tapes. Let the device settle down before attempting to access it.

13.13 Difficulties Connecting from the FD to the SD

If you are having difficulties getting one or more of your File daemons to connect to the Storage daemon,
it is most likely because you have not used a fully qualified domain name on the Address directive in the
Director’s Storage resource. That is the resolver on the File daemon’s machine (not on the Director’s) must
be able to resolve the name you supply into an IP address. An example of an address that is guaranteed
not to work: localhost. An example that may work: megalon. An example that is more likely to work:
magalon.mydomain.com. On Win32 if you don’t have a good resolver (often true on older Win98 systems),
you might try using an IP address in place of a name.

If your address is correct, then make sure that no other program is using the port 9103 on the Storage
daemon’s machine. The Bacula port numbers are authorized by IANA, and should not be used by other
programs, but apparently some HP printers do use these port numbers. A netstat -a on the Storage
daemon’s machine can determine who is using the 9103 port (used for FD to SD communications in Bacula).

13.14 Daemon Command Line Options

Each of the three daemons (Director, File, Storage) accepts a small set of options on the command line. In
general, each of the daemons as well as the Console program accepts the following options:

-c <file> Define the file to use as a configuration file. The default is the daemon name followed by .conf
i.e. bacula-dir.conf for the Director, bacula-fd.conf for the File daemon, and bacula-sd for the
Storage daemon.

-d nn Set the debug level to nn. Higher levels of debug cause more information to be displayed on STDOUT
concerning what the daemon is doing.

-f Run the daemon in the foreground. This option is needed to run the daemon under the debugger.
-g jgroup; Run the daemon under this group. This must be a group name, not a GID.
-s Do not trap signals. This option is needed to run the daemon under the debugger.

-t Read the configuration file and print any error messages, then immediately exit. Useful for syntax testing
of new configuration files.

-u juserj Run the daemon as this user. This must be a user name, not a UID.
-v Be more verbose or more complete in printing error and informational messages. Recommended.

-7 Print the version and list of options.

13.15 Creating a Pool

Creating the Pool is automatically done when Bacula starts, so if you understand Pools, you can skip to
the next section.

When you run a job, one of the things that Bacula must know is what Volumes to use to backup the FileSet.
Instead of specifying a Volume (tape) directly, you specify which Pool of Volumes you want Bacula to consult
when it wants a tape for writing backups. Bacula will select the first available Volume from the Pool that
is appropriate for the Storage device you have specified for the Job being run. When a volume has filled
up with data, Bacula will change its VolStatus from Append to Full, and then Bacula will use the next
volume and so on. If no appendable Volume exists in the Pool, the Director will attempt to recycle an
old Volume, if there are still no appendable Volumes available, Bacula will send a message requesting the
operator to create an appropriate Volume.

Bacula keeps track of the Pool name, the volumes contained in the Pool, and a number of attributes of each
of those Volumes.

When Bacula starts, it ensures that all Pool resource definitions have been recorded in the catalog. You can
verify this by entering:

list pools
to the console program, which should print something like the following:

*1list pools
Using default Catalog name=MySQL DB=bacula

PoolId | Name | NumVols | MaxVols | PoolType | LabelFormat |

| File | 12 | 12 | Backup

+ + + +

|
| 1 | Default | 3 | o | Backup | * |
| | File |
*

If you attempt to create the same Pool name a second time, Bacula will print:

Error: Pool Default already exists.
Once created, you may use the {\bf update} command to
modify many of the values in the Pool record.

13.16 Labeling Your Volumes

Bacula requires that each Volume contains a software label. There are several strategies for labeling volumes.
The one I use is to label them as they are needed by Bacula using the console program. That is when Bacula
needs a new Volume, and it does not find one in the catalog, it will send me an email message requesting
that I add Volumes to the Pool. I then use the label command in the Console program to label a new
Volume and to define it in the Pool database, after which Bacula will begin writing on the new Volume.
Alternatively, I can use the Console relabel command to relabel a Volume that is no longer used providing
it has VolStatus Purged.

Another strategy is to label a set of volumes at the start, then use them as Bacula requests them. This
is most often done if you are cycling through a set of tapes, for example using an autochanger. For more
details on recycling, please see the Automatic Volume Recycling chapter of this manual.

If you run a Bacula job, and you have no labeled tapes in the Pool, Bacula will inform you, and you can create
them ”on-the-fly” so to speak. In my case, I label my tapes with the date, for example: DLT-18April02.
See below for the details of using the label command.

13.17 Labeling Volumes with the Console Program

Labeling volumes is normally done by using the console program.

1. ./bconsole

2. label

If Bacula complains that you cannot label the tape because it is already labeled, simply unmount the tape
using the unmount command in the console, then physically mount a blank tape and re-issue the label
command.

Since the physical storage media is different for each device, the label command will provide you with a list
of the defined Storage resources such as the following:

The defined Storage resources are:
1: File
2: 8mmDrive
3: DLTDrive
4: SDT-10000
Select Storage resource (1-4):

At this point, you should have a blank tape in the drive corresponding to the Storage resource that you
select.

It will then ask you for the Volume name.

Enter new Volume name:
If Bacula complains:
Media record for Volume xxxx already exists.

It means that the volume name xxxx that you entered already exists in the Media database. You can list
all the defined Media (Volumes) with the list media command. Note, the LastWritten column has been
truncated for proper printing.

+ t + t t /= /- + +
| VolumeName | MediaTyp| VolStat| VolBytes | LastWri | VolReten | Recyl
| DLTV010002 | DLT8000 | Purged | 56,128,042,217 | 2001-10 | 31,536,000 | 0 |
| DLT-070ct2001 | DLT8000 | Full | 56,172,030,586 | 2001-11 | 31,536,000 | 0 |
| DLT-08Nov2001 | DLT8000 | Full | 55,691,684,216 | 2001-12 | 31,536,000 | 0 |
| DLT-01Dec2001 | DLT8000 | Full | 55,162,215,866 | 2001-12 | 31,536,000 | 0 |
| DLT-28Dec2001 | DLT8000 | Full | 57,888,007,042 | 2002-01 | 31,536,000 | O |
| DLT-20Jan2002 | DLT8000 | Full | 57,003,507,308 | 2002-02 | 31,536,000 | 0 |
| DLT-16Feb2002 | DLT8000 | Full | 55,772,630,824 | 2002-03 | 31,536,000 | 0 |
| DLT-12Mar2002 | DLT8000 | Full | 50,666,320,453 | 1970-01 | 31,536,000 | 0 |
| DLT-27Mar2002 | DLT8000 | Full | 57,592,952,309 | 2002-04 | 31,536,000 | 0 |
| DLT-15Apr2002 | DLT8000 | Full | 57,190,864,185 | 2002-05 | 31,536,000 | 0 |
| DLT-04May2002 | DLT8000 | Full | 60,486,677,724 | 2002-05 | 31,536,000 | 0 |
| DLT-26May02 | DLT8000 | Append | 1,336,699,620 | 2002-05 | 31,536,000 | 1 |
+ + + + + Rl R +

Once Bacula has verified that the volume does not already exist, it will prompt you for the name of the Pool
in which the Volume (tape) is to be created. If there is only one Pool (Default), it will be automatically
selected.

If the tape is successfully labeled, a Volume record will also be created in the Pool. That is the Volume name
and all its other attributes will appear when you list the Pool. In addition, that Volume will be available for
backup if the MediaType matches what is requested by the Storage daemon.

When you labeled the tape, you answered very few questions about it — principally the Volume name, and
perhaps the Slot. However, a Volume record in the catalog database (internally known as a Media record)
contains quite a few attributes. Most of these attributes will be filled in from the default values that were
defined in the Pool (i.e. the Pool holds most of the default attributes used when creating a Volume).

It is also possible to add media to the pool without physically labeling the Volumes. This can be done with
the add command. For more information, please see the Console Chapter of this manual.

Chapter 14

Customizing the Configuration Files

When each of the Bacula programs starts, it reads a configuration file specified on the command line or the
default bacula-dir.conf, bacula-fd.conf, bacula-sd.conf, or console.conf for the Director daemon, the
File daemon, the Storage daemon, and the Console program respectively.

Each service (Director, Client, Storage, Console) has its own configuration file containing a set of Resource
definitions. These resources are very similar from one service to another, but may contain different directives
(records) depending on the service. For example, in the Director’s resource file, the Director resource defines
the name of the Director, a number of global Director parameters and his password. In the File daemon
configuration file, the Director resource specifies which Directors are permitted to use the File daemon.

Before running Bacula for the first time, you must customize the configuration files for each daemon. Default
configuration files will have been created by the installation process, but you will need to modify them to
correspond to your system. An overall view of the resources can be seen in the following:

109

Director config (bacula-dirconf)

Director
One director
record for
general satup.

Client
A pointer to the
computer you
want to backup.

Anh
Detinition of one
| Fil=Zet from a single
Client backed up
accerding bo a
Schedule to a Peol
of tapesffiles on a
Storage device

Storage
A pointer to the
backup device
itape drive or
disk storags)

Pool
Coliection of tapes or
disk files which make

up the storage. You
may have multipls
pools in differant
rotations.

Schedute
Definition of whan
this job will run and
itz a tull or
incremental bachup.

_/.

T

FllaSet
| Defnitions of paths
to the files you want
to backup, with
rules to exclude
certaln files.

Catalogue
Details of the SQL

databaze which
stores the cataleque
{index to conbents
of backup).

File daemon config (bacula-fd.conf)

Director
Authentication
details tor the

director allowed to
| control this daemon,

Cliant
One client record
tor general setup.

Messages
Whal messages ars
sent back to the
director.

14.1 Character Sets

Bacula is designed to handle most character sets of the world, US ASCII, German, French, Chinese, ...
However, it does this by encoding everything in UTF-8, and it expects all configuration files (including those
read on Win32 machines) to be in UTF-8 format. UTF-8 is typically the default on Linux machines, but
not on all Unix machines, nor on Windows, so you must take some care to ensure that your locale is set

properly before starting Bacula.

To ensure that Bacula configuration files can be correctly read including foreign characters the bf LANG
environment variable must end in .UTF-8. An full example is en_ US.UTF-8. The exact syntax may vary
a bit from OS to OS, and exactly how you define it will also vary. On most newer Win32 machines, you can

Messages
Setup of the
netification emails.

Console config {bconsele.conf)

| Director
 Which directors this
onsale can connect
bo. (Usualiy you
hawe only one
dirsctor.)

Simplified Bacula
object definitions

Storage daemon config {bacula-sd.conf)

Storage
One storage record
tor general setup.

Director
futhentication
detaits for the

director allowsd to
control this dasmon.

Messages
Whal messages are
sent back to the
directer.

Device
Characteristics of
the storage device

{tape driver or disk).

use notepad to edit the conf files, then choose output encoding UTF-8.

Bacula assumes that all filenames are in UTF-8 format on Linux and Unix machines. On Win32 they are in

Unicode (UTF-16), and will be automatically converted to UTF-8 format.

14.2 Resource Directive Format

Although, you won’t need to know the details of all the directives a basic knowledge of Bacula resource
directives is essential. Each directive contained within the resource (within the braces) is composed of a
keyword followed by an equal sign (=) followed by one or more values. The keywords must be one of the
known Bacula resource record keywords, and it may be composed of upper or lower case characters and
spaces.

Each resource definition MUST contain a Name directive, and may optionally contain a Description directive.
The Name directive is used to uniquely identify the resource. The Description directive is (will be) used
during display of the Resource to provide easier human recognition. For example:

Director {
Name = "MyDir"
Description = "Main Bacula Director"
WorkingDirectory = "$HOME/bacula/bin/working"
}

Defines the Director resource with the name "MyDir” and a working directory SHOME /bacula/bin/working.
In general, if you want spaces in a name to the right of the first equal sign (=), you must enclose that name
within double quotes. Otherwise quotes are not generally necessary because once defined, quoted strings
and unquoted strings are all equal.

14.2.1 Comments

When reading the configuration file, blank lines are ignored and everything after a hash sign (#) until the
end of the line is taken to be a comment. A semicolon (;) is a logical end of line, and anything after the
semicolon is considered as the next statement. If a statement appears on a line by itself, a semicolon is not
necessary to terminate it, so generally in the examples in this manual, you will not see many semicolons.

14.2.2 Upper and Lower Case and Spaces

Case (upper/lower) and spaces are totally ignored in the resource directive keywords (the part before the
equal sign).

Within the keyword (i.e. before the equal sign), spaces are not significant. Thus the keywords: name,
Name, and N a m e are all identical.

Spaces after the equal sign and before the first character of the value are ignored.

In general, spaces within a value are significant (not ignored), and if the value is a name, you must enclose the
name in double quotes for the spaces to be accepted. Names may contain up to 127 characters. Currently,
a name may contain any ASCII character. Within a quoted string, any character following a backslash (\)
is taken as itself (handy for inserting backslashes and double quotes (”)).

Please note, however, that Bacula resource names as well as certain other names (e.g. Volume names)
must contain only letters (including ISO accented letters), numbers, and a few special characters (space,
underscore, ...). All other characters and punctuation are invalid.

14.2.3 Including other Configuration Files

If you wish to break your configuration file into smaller pieces, you can do so by including other files using the
syntax @Qfilename where filename is the full path and filename of another file. The @filename specification
can be given anywhere a primitive token would appear.

If you wish include all files in a specific directory, you can use the following:

Include subfiles associated with configuration of clients.

They define the bulk of the Clients, Jobs, and FileSets.

Remember to "reload" the Director after adding a client file.

#

@|"sh -c ’for f in /etc/bacula/clientdefs/*.conf ; do echo @${f} ; done’"

14.2.4 Recognized Primitive Data Types

When parsing the resource directives, Bacula classifies the data according to the types listed below. The first
time you read this, it may appear a bit overwhelming, but in reality, it is all pretty logical and straightforward.

name A keyword or name consisting of alphanumeric characters, including the hyphen, underscore, and
dollar characters. The first character of a name must be a letter. A name has a maximum length
currently set to 127 bytes. Typically keywords appear on the left side of an equal (i.e. they are Bacula
keywords — i.e. Resource names or directive names). Keywords may not be quoted.

name-string A name-string is similar to a name, except that the name may be quoted and can thus contain
additional characters including spaces. Name strings are limited to 127 characters in length. Name
strings are typically used on the right side of an equal (i.e. they are values to be associated with a
keyword).

string A quoted string containing virtually any character including spaces, or a non-quoted string. A string
may be of any length. Strings are typically values that correspond to filenames, directories, or system
command names. A backslash (\) turns the next character into itself, so to include a double quote in
a string, you precede the double quote with a backslash. Likewise to include a backslash.

directory A directory is either a quoted or non-quoted string. A directory will be passed to your standard
shell for expansion when it is scanned. Thus constructs such as $HOME are interpreted to be their
correct values.

password This is a Bacula password and it is stored internally in MD5 hashed format.
integer A 32 bit integer value. It may be positive or negative.
positive integer A 32 bit positive integer value.

long integer A 64 bit integer value. Typically these are values such as bytes that can exceed 4 billion and
thus require a 64 bit value.

yes|no Either a yes or a no.

size A size specified as bytes. Typically, this is a floating point scientific input format followed by an optional
modifier. The floating point input is stored as a 64 bit integer value. If a modifier is present, it must
immediately follow the value with no intervening spaces. The following modifiers are permitted:

k 1,024 (kilobytes)

kb 1,000 (kilobytes)

m 1,048,576 (megabytes)
mb 1,000,000 (megabytes)
g 1,073,741,824 (gigabytes)
gb 1,000,000,000 (gigabytes)

time A time or duration specified in seconds. The time is stored internally as a 64 bit integer value, but it is
specified in two parts: a number part and a modifier part. The number can be an integer or a floating
point number. If it is entered in floating point notation, it will be rounded to the nearest integer. The
modifier is mandatory and follows the number part, either with or without intervening spaces. The
following modifiers are permitted:

seconds seconds

minutes minutes (60 seconds)

hours hours (3600 seconds)

days days (3600%24 seconds)

weeks weeks (3600%24*7 seconds)
months months (3600%24*30 seconds)
quarters quarters (3600%24*91 seconds)
years years (3600%24*365 seconds)

Any abbreviation of these modifiers is also permitted (i.e. seconds may be specified as sec or s). A
specification of m will be taken as months.

The specification of a time may have as many number/modifier parts as you wish. For example:

1 week 2 days 3 hours 10 mins
1 month 2 days 30 sec

are valid date specifications.

14.3 Resource Types

The following table lists all current Bacula resource types. It shows what resources must be defined for each
service (daemon). The default configuration files will already contain at least one example of each permitted
resource, so you need not worry about creating all these kinds of resources from scratch.

Resource Director | Client | Storage | Console
Autochanger | No No Yes No
Catalog Yes No No No
Client Yes Yes No No
Console Yes No No Yes
Device No No Yes No
Director Yes Yes Yes Yes
FileSet Yes No No No
Job Yes No No No
JobDefs Yes No No No
Message Yes Yes Yes No
Pool Yes No No No
Schedule Yes No No No
Storage Yes No Yes No

14.4 Names, Passwords and Authorization

In order for one daemon to contact another daemon, it must authorize itself with a password. In most
cases, the password corresponds to a particular name, so both the name and the password must match to
be authorized. Passwords are plain text, any text. They are not generated by any special process; just use
random text.

The default configuration files are automatically defined for correct authorization with random passwords.
If you add to or modify these files, you will need to take care to keep them consistent.

Here is sort of a picture of what names/passwords in which files/Resources must match up:

CONSOLE
boonsole conf

DIRECTOR | pirector {
Name = fw-dir
bacula-dir.conf v lja_a?swnrd = xxd

}

\

Director {
Name = fw-dir

lj??swnrd = ¥xX STORAGE
bacula-sd.conf

}

Storage [
Name = fw-sd Device |
Device = DD3-2 Name = DD5-2
MediaType = DDS-2

MediaType = DD3E-2
Address = fw-=d ..
Password = abc 3
v T Director {
} -\-\—__.-_-_-\—__‘-_‘ -

Name = fw-dir
_b‘ Pazsword = abc

Client { 1
Name = fw-fd
Pazsword = def
Ny FILE DEAMON

} CLIENT
\ bacula-fd.conf
NDirector i

Hame = fw-dir
\i‘ Fassword = def

J

In the left column, you will find the Director, Storage, and Client resources, with their names and passwords
— these are all in bacula-dir.conf. In the right column are where the corresponding values should be found
in the Console, Storage daemon (SD), and File daemon (FD) configuration files.

Please note that the Address, fd-sd, that appears in the Storage resource of the Director, preceded with and
asterisk in the above example, is passed to the File daemon in symbolic form. The File daemon then resolves
it to an IP address. For this reason, you must use either an IP address or a fully qualified name. A name
such as localhost, not being a fully qualified name, will resolve in the File daemon to the localhost of the
File daemon, which is most likely not what is desired. The password used for the File daemon to authorize
with the Storage daemon is a temporary password unique to each Job created by the daemons and is not
specified in any .conf file.

14.5 Detailed Information for each Daemon

The details of each Resource and the directives permitted therein are described in the following chapters.

The following configuration files must be defined:

e |Console - to define the resources for the Console program (user interface to the Director). It defines
which Directors are available so that you may interact with them.

e Director — to define the resources necessary for the Director. You define all the Clients and Storage
daemons that you use in this configuration file.

e [Client — to define the resources for each client to be backed up. That is, you will have a separate Client
resource file on each machine that runs a File daemon.

e Storage — to define the resources to be used by each Storage daemon. Normally, you will have a single
Storage daemon that controls your tape drive or tape drives. However, if you have tape drives on
several machines, you will have at least one Storage daemon per machine.

Chapter 15

Configuring the Director

Of all the configuration files needed to run Bacula, the Director’s is the most complicated, and the one that
you will need to modify the most often as you add clients or modify the FileSets.

For a general discussion of configuration files and resources including the data types recognized by Bacula.
Please see the |Configuration chapter of this manual.

15.1 Director Resource Types

Director resource type may be one of the following;:

Job, JobDefs, Client, Storage, Catalog, Schedule, FileSet, Pool, Director, or Messages. We present them
here in the most logical order for defining them:

Note, everything revolves around a job and is tied to a job in one way or another.

e Director — to define the Director’s name and its access password used for authenticating the Console
program. Only a single Director resource definition may appear in the Director’s configuration file.
If you have either /dev/random or bc on your machine, Bacula will generate a random password
during the configuration process, otherwise it will be left blank.

e |Job|— to define the backup/restore Jobs and to tie together the Client, FileSet and Schedule resources
to be used for each Job. Normally, you will Jobs of different names corresponding to each client (i.e.
one Job per client, but a different one with a different name for each client).

e |JobDefs — optional resource for providing defaults for Job resources.

e |Schedule/— to define when a Job is to be automatically run by Bacula’s internal scheduler. You may
have any number of Schedules, but each job will reference only one.

e [FileSet/— to define the set of files to be backed up for each Client. You may have any number of FileSets
but each Job will reference only one.

e [Client — to define what Client is to be backed up. You will generally have multiple Client definitions.
Each Job will reference only a single client.

e Storage — to define on what physical device the Volumes should be mounted. You may have one or
more Storage definitions.

e [Pool| - to define the pool of Volumes that can be used for a particular Job. Most people use a single

default Pool. However, if you have a large number of clients or volumes, you may want to have multiple
Pools. Pools allow you to restrict a Job (or a Client) to use only a particular set of Volumes.

115

e |Catalog — to define in what database to keep the list of files and the Volume names where they are
backed up. Most people only use a single catalog. However, if you want to scale the Director to many
clients, multiple catalogs can be helpful. Multiple catalogs require a bit more management because
in general you must know what catalog contains what data. Currently, all Pools are defined in each
catalog. This restriction will be removed in a later release.

e Messages — to define where error and information messages are to be sent or logged. You may define
multiple different message resources and hence direct particular classes of messages to different users
or locations (files, ...).

15.2 The Director Resource

The Director resource defines the attributes of the Directors running on the network. In the current imple-
mentation, there is only a single Director resource, but the final design will contain multiple Directors to
maintain index and media database redundancy.

Director Start of the Director resource. One and only one director resource must be supplied.
Name = <name> The director name used by the system administrator. This directive is required.

Description = <text> The text field contains a description of the Director that will be displayed in the
graphical user interface. This directive is optional.

Password = <UA-password> Specifies the password that must be supplied for the default Bacula Con-
sole to be authorized. The same password must appear in the Director resource of the Console
configuration file. For added security, the password is never passed across the network but instead
a challenge response hash code created with the password. This directive is required. If you have
either /dev/random or bc on your machine, Bacula will generate a random password during the
configuration process, otherwise it will be left blank and you must manually supply it.

The password is plain text. It is not generated through any special process but as noted above, it is
better to use random text for security reasons.

Messages = <Messages-resource-name> The messages resource specifies where to deliver Director
messages that are not associated with a specific Job. Most messages are specific to a job and will
be directed to the Messages resource specified by the job. However, there are a few messages that can
occur when no job is running. This directive is required.

Working Directory = <Directory> This directive is mandatory and specifies a directory in which the
Director may put its status files. This directory should be used only by Bacula but may be shared by
other Bacula daemons. However, please note, if this directory is shared with other Bacula daemons
(the File daemon and Storage daemon), you must ensure that the Name given to each daemon is
unique so that the temporary filenames used do not collide. By default the Bacula configure process
creates unique daemon names by postfixing them with -dir, -fd, and -sd. Standard shell expansion
of the Directory is done when the configuration file is read so that values such as SHOME will be
properly expanded. This directive is required. The working directory specified must already exist and
be readable and writable by the Bacula daemon referencing it.

If you have specified a Director user and/or a Director group on your ./configure line with --with-dir-
user and/or --with-dir-group the Working Directory owner and group will be set to those values.

Pid Directory = <Directory> This directive is mandatory and specifies a directory in which the Director
may put its process Id file. The process Id file is used to shutdown Bacula and to prevent multiple
copies of Bacula from running simultaneously. Standard shell expansion of the Directory is done
when the configuration file is read so that values such as $SHOME will be properly expanded.

The PID directory specified must already exist and be readable and writable by the Bacula daemon
referencing it

Typically on Linux systems, you will set this to: /var/run. If you are not installing Bacula in the
system directories, you can use the Working Directory as defined above. This directive is required.

Scripts Directory = <Directory> This directive is optional and, if defined, specifies a directory in which
the Director will look for the Python startup script DirStartup.py. This directory may be shared by
other Bacula daemons. Standard shell expansion of the directory is done when the configuration file
is read so that values such as SHOME will be properly expanded.

QueryFile = <Path> This directive is mandatory and specifies a directory and file in which the Director
can find the canned SQL statements for the Query command of the Console. Standard shell expansion
of the Path is done when the configuration file is read so that values such as $HOME will be properly
expanded. This directive is required.

Heartbeat Interval = <time-interval> This directive is optional and if specified will cause the Director
to set a keepalive interval (heartbeat) in seconds on each of the sockets it opens for the Client resource.
This value will override any specified at the Director level. It is implemented only on systems (Linux,
...) that provide the setsockopt TCP_KEEPIDLE function. The default value is zero, which means
no change is made to the socket.

Maximum Concurrent Jobs = <number> where <number> is the maximum number of total Director
Jobs that should run concurrently. The default is set to 1, but you may set it to a larger number.

The Volume format becomes more complicated with multiple simultaneous jobs, consequently, restores
may take longer if Bacula must sort through interleaved volume blocks from multiple simultaneous
jobs. This can be avoided by having each simultaneous job write to a different volume or by using data
spooling, which will first spool the data to disk simultaneously, then write one spool file at a time to
the volume thus avoiding excessive interleaving of the different job blocks.

FD Connect Timeout = <time> where time is the time that the Director should continue attempting
to contact the File daemon to start a job, and after which the Director will cancel the job. The default
is 30 minutes.

SD Connect Timeout = <time> where time is the time that the Director should continue attempting
to contact the Storage daemon to start a job, and after which the Director will cancel the job. The
default is 30 minutes.

DirAddresses = <IP-address-specification> Specify the ports and addresses on which the Director
daemon will listen for Bacula Console connections. Probably the simplest way to explain this is to
show an example:

DirAddresses = {
ip = { addr = 1.2.3.4; port = 1205;}

ipvd = {
addr = 1.2.3.4; port = http;}
ipve = {
addr = 1.2.3.4;
port = 1205;
}
ip = {
addr = 1.2.3.4
port = 1205
}
ip = { addr = 1.2.3.4 }
ip = { addr = 201:220:222::2 }
ip = {

addr = bluedot.thun.net

}

where ip, ip4, ip6, addr, and port are all keywords. Note, that the address can be specified as either a
dotted quadruple, or IPv6 colon notation, or as a symbolic name (only in the ip specification). Also,
port can be specified as a number or as the mnemonic value from the /etc/services file. If a port is not
specified, the default will be used. If an ip section is specified, the resolution can be made either by
IPv4 or IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted, and likewise with ip6.

Please note that if you use the DirAddresses directive, you must not use either a DirPort or a DirAddress
directive in the same resource.

DirPort = <port-number> Specify the port (a positive integer) on which the Director daemon will listen
for Bacula Console connections. This same port number must be specified in the Director resource of
the Console configuration file. The default is 9101, so normally this directive need not be specified.
This directive should not be used if you specify DirAddresses (N.B plural) directive.

DirAddress = <IP-Address> This directive is optional, but if it is specified, it will cause the Director
server (for the Console program) to bind to the specified IP-Address, which is either a domain name
or an IP address specified as a dotted quadruple in string or quoted string format. If this directive is not
specified, the Director will bind to any available address (the default). Note, unlike the DirAddresses
specification noted above, this directive only permits a single address to be specified. This directive
should not be used if you specify a DirAddresses (N.B. plural) directive.

DirSourceAddress = <IP-Address> This record is optional, and if it is specified, it will cause the
Director server (when initiating connections to a storage or file daemon) to source its connections from
the specified address. Only a single IP address may be specified. If this record is not specified, the
Director server will source its outgoing connections according to the system routing table (the default).

Statistics Retention = <time> The Statistics Retention directive defines the length of time that
Bacula will keep statistics job records in the Catalog database after the Job End time. (In JobHistory
table) When this time period expires, and if user runs prune stats command, Bacula will prune
(remove) Job records that are older than the specified period.

Theses statistics records aren’t use for restore purpose, but mainly for capacity planning, billings, etc.
See [Statistics chapteror additional information.

See the | Configuration chapter|of this manual for additional details of time specification.

The default is 5 years.

Verld = <string> where <string> is an identifier which can be used for support purpose. This string is
displayed using the version command.

MaxConsoleConnections = <number> where <number> is the maximum number of Console Connec-
tions that could run concurrently. The default is set to 20, but you may set it to a larger number.

The following is an example of a valid Director resource definition:

Director {
Name = HeadMan
WorkingDirectory = "$HOME/bacula/bin/working"
Password = UA_password
PidDirectory = "$HOME/bacula/bin/working"
QueryFile = "$HOME/bacula/bin/query.sql"
Messages = Standard

15.3 The Job Resource

The Job resource defines a Job (Backup, Restore, ...) that Bacula must perform. Each Job resource definition
contains the name of a Client and a FileSet to backup, the Schedule for the Job, where the data are to be
stored, and what media Pool can be used. In effect, each Job resource must specify What, Where, How,
and When or FileSet, Storage, Backup/Restore/Level, and Schedule respectively. Note, the FileSet must be
specified for a restore job for historical reasons, but it is no longer used.

Only a single type (Backup, Restore, ...) can be specified for any job. If you want to backup multiple
FileSets on the same Client or multiple Clients, you must define a Job for each one.

Note, you define only a single Job to do the Full, Differential, and Incremental backups since the different
backup levels are tied together by a unique Job name. Normally, you will have only one Job per Client, but
if a client has a really huge number of files (more than several million), you might want to split it into to
Jobs each with a different FileSet covering only part of the total files.

Multiple Storage daemons are not currently supported for Jobs, so if you do want to use multiple storage
daemons, you will need to create a different Job and ensure that for each Job that the combination of Client
and FileSet are unique. The Client and FileSet are what Bacula uses to restore a client, so if there are
multiple Jobs with the same Client and FileSet or multiple Storage daemons that are used, the restore will
not work. This problem can be resolved by defining multiple FileSet definitions (the names must be different,
but the contents of the FileSets may be the same).

Job Start of the Job resource. At least one Job resource is required.

Name = <name> The Job name. This name can be specified on the Run command in the console
program to start a job. If the name contains spaces, it must be specified between quotes. It is
generally a good idea to give your job the same name as the Client that it will backup. This permits
easy identification of jobs.

When the job actually runs, the unique Job Name will consist of the name you specify here followed
by the date and time the job was scheduled for execution. This directive is required.

Enabled = <yes|no> This directive allows you to enable or disable automatic execution via the scheduler
of a Job.

Type = <job-type> The Type directive specifies the Job type, which may be one of the following:
Backup, Restore, Verify, or Admin. This directive is required. Within a particular Job Type,
there are also Levels as discussed in the next item.

Backup Run a backup Job. Normally you will have at least one Backup job for each client you want
to save. Normally, unless you turn off cataloging, most all the important statistics and data
concerning files backed up will be placed in the catalog.

Restore Run a restore Job. Normally, you will specify only one Restore job which acts as a sort of
prototype that you will modify using the console program in order to perform restores. Although
certain basic information from a Restore job is saved in the catalog, it is very minimal compared
to the information stored for a Backup job — for example, no File database entries are generated
since no Files are saved.

Restore jobs cannot be automatically started by the scheduler as is the case for Backup, Verify
and Admin jobs. To restore files, you must use the restore command in the console.

Verify Run a verify Job. In general, verify jobs permit you to compare the contents of the catalog to
the file system, or to what was backed up. In addition, to verifying that a tape that was written
can be read, you can also use verify as a sort of tripwire intrusion detection.

Admin Run an admin Job. An Admin job can be used to periodically run catalog pruning, if you
do not want to do it at the end of each Backup Job. Although an Admin job is recorded in the
catalog, very little data is saved.

Level = <job-level> The Level directive specifies the default Job level to be run. Each different Job
Type (Backup, Restore, ...) has a different set of Levels that can be specified. The Level is normally
overridden by a different value that is specified in the Schedule resource. This directive is not required,
but must be specified either by a Level directive or as an override specified in the Schedule resource.

For a Backup Job, the Level may be one of the following:

Full When the Level is set to Full all files in the FileSet whether or not they have changed will be
backed up.

Incremental When the Level is set to Incremental all files specified in the FileSet that have changed
since the last successful backup of the the same Job using the same FileSet and Client, will be
backed up. If the Director cannot find a previous valid Full backup then the job will be upgraded
into a Full backup. When the Director looks for a valid backup record in the catalog database, it
looks for a previous Job with:

e The same Job name.
e The same Client name.

e The same FileSet (any change to the definition of the FileSet such as adding or deleting a file
in the Include or Exclude sections constitutes a different FileSet.

e The Job was a Full, Differential, or Incremental backup.

e The Job terminated normally (i.e. did not fail or was not canceled).

e The Job started no longer ago than Max Full Interval.
If all the above conditions do not hold, the Director will upgrade the Incremental to a Full save.
Otherwise, the Incremental backup will be performed as requested.

The File daemon (Client) decides which files to backup for an Incremental backup by comparing
start time of the prior Job (Full, Differential, or Incremental) against the time each file was last

"modified” (st_mtime) and the time its attributes were last ”changed” (st_ctime). If the file was
modified or its attributes changed on or after this start time, it will then be backed up.

Some virus scanning software may change st_ctime while doing the scan. For example, if the
virus scanning program attempts to reset the access time (st_atime), which Bacula does not use,
it will cause st_ctime to change and hence Bacula will backup the file during an Incremental or
Differential backup. In the case of Sophos virus scanning, you can prevent it from resetting the
access time (st_atime) and hence changing st_ctime by using the --no-reset-atime option. For
other software, please see their manual.

When Bacula does an Incremental backup, all modified files that are still on the system are
backed up. However, any file that has been deleted since the last Full backup remains in the
Bacula catalog, which means that if between a Full save and the time you do a restore, some files
are deleted, those deleted files will also be restored. The deleted files will no longer appear in the
catalog after doing another Full save.

In addition, if you move a directory rather than copy it, the files in it do not have their modification
time (st_mtime) or their attribute change time (st_ctime) changed. As a consequence, those files
will probably not be backed up by an Incremental or Differential backup which depend solely on
these time stamps. If you move a directory, and wish it to be properly backed up, it is generally
preferable to copy it, then delete the original.

However, to manage deleted files or directories changes in the catalog during an Incremental
backup you can use accurate mode. This is quite memory consuming process. See/Accurate mode
for more details.

Differential When the Level is set to Differential all files specified in the FileSet that have changed
since the last successful Full backup of the same Job will be backed up. If the Director cannot find
a valid previous Full backup for the same Job, FileSet, and Client, backup, then the Differential
job will be upgraded into a Full backup. When the Director looks for a valid Full backup record
in the catalog database, it looks for a previous Job with:

e The same Job name.

e The same Client name.

e The same FileSet (any change to the definition of the FileSet such as adding or deleting a file
in the Include or Exclude sections constitutes a different FileSet.

e The Job was a FULL backup.

e The Job terminated normally (i.e. did not fail or was not canceled).

e The Job started no longer ago than Max Full Interval.

If all the above conditions do not hold, the Director will upgrade the Differential to a Full save.
Otherwise, the Differential backup will be performed as requested.

The File daemon (Client) decides which files to backup for a differential backup by comparing the
start time of the prior Full backup Job against the time each file was last "modified” (st_mtime)
and the time its attributes were last ”changed” (st_ctime). If the file was modified or its attributes
were changed on or after this start time, it will then be backed up. The start time used is displayed
after the Since on the Job report. In rare cases, using the start time of the prior backup may
cause some files to be backed up twice, but it ensures that no change is missed. As with the
Incremental option, you should ensure that the clocks on your server and client are synchronized
or as close as possible to avoid the possibility of a file being skipped. Note, on versions 1.33 or
greater Bacula automatically makes the necessary adjustments to the time between the server
and the client so that the times Bacula uses are synchronized.

When Bacula does a Differential backup, all modified files that are still on the system are backed
up. However, any file that has been deleted since the last Full backup remains in the Bacula
catalog, which means that if between a Full save and the time you do a restore, some files are
deleted, those deleted files will also be restored. The deleted files will no longer appear in the
catalog after doing another Full save. However, to remove deleted files from the catalog during a
Differential backup is quite a time consuming process and not currently implemented in Bacula.
It is, however, a planned future feature.

As noted above, if you move a directory rather than copy it, the files in it do not have their
modification time (st_mtime) or their attribute change time (st_ctime) changed. As a consequence,
those files will probably not be backed up by an Incremental or Differential backup which depend
solely on these time stamps. If you move a directory, and wish it to be properly backed up, it is
generally preferable to copy it, then delete the original. Alternatively, you can move the directory,
then use the touch program to update the timestamps.

However, to manage deleted files or directories changes in the catalog during an Differential backup
you can use accurate mode. This is quite memory consuming process. See |Accurate mode for
more details.

Every once and a while, someone asks why we need Differential backups as long as Incremental
backups pickup all changed files. There are possibly many answers to this question, but the
one that is the most important for me is that a Differential backup effectively merges all the
Incremental and Differential backups since the last Full backup into a single Differential backup.
This has two effects: 1. It gives some redundancy since the old backups could be used if the
merged backup cannot be read. 2. More importantly, it reduces the number of Volumes that
are needed to do a restore effectively eliminating the need to read all the volumes on which the
preceding Incremental and Differential backups since the last Full are done.

For a Restore Job, no level needs to be specified.

For a Verify Job, the Level may be one of the following:

InitCatalog does a scan of the specified FileSet and stores the file attributes in the Catalog database.
Since no file data is saved, you might ask why you would want to do this. It turns out to be a very
simple and easy way to have a Tripwire like feature using Bacula. In other words, it allows you
to save the state of a set of files defined by the FileSet and later check to see if those files have
been modified or deleted and if any new files have been added. This can be used to detect system
intrusion. Typically you would specify a FileSet that contains the set of system files that should
not change (e.g. /sbin, /boot, /lib, /bin, ...). Normally, you run the InitCatalog level verify
one time when your system is first setup, and then once again after each modification (upgrade)
to your system. Thereafter, when your want to check the state of your system files, you use a
Verify level = Catalog. This compares the results of your InitCatalog with the current state
of the files.

Catalog Compares the current state of the files against the state previously saved during an InitCat-
alog. Any discrepancies are reported. The items reported are determined by the verify options
specified on the Include directive in the specified FileSet (see the FileSet resource below for
more details). Typically this command will be run once a day (or night) to check for any changes
to your system files.

Please note! If you run two Verify Catalog jobs on the same client at the same time, the results
will certainly be incorrect. This is because Verify Catalog modifies the Catalog database while
running in order to track new files.

VolumeToCatalog This level causes Bacula to read the file attribute data written to the Volume from
the last Job. The file attribute data are compared to the values saved in the Catalog database and
any differences are reported. This is similar to the Catalog level except that instead of comparing
the disk file attributes to the catalog database, the attribute data written to the Volume is read
and compared to the catalog database. Although the attribute data including the signatures
(MD5 or SHA1) are compared, the actual file data is not compared (it is not in the catalog).

Please note! If you run two Verify VolumeToCatalog jobs on the same client at the same time,
the results will certainly be incorrect. This is because the Verify VolumeToCatalog modifies the
Catalog database while running.

DiskToCatalog This level causes Bacula to read the files as they currently are on disk, and to compare
the current file attributes with the attributes saved in the catalog from the last backup for the job
specified on the VerifyJob directive. This level differs from the Catalog level described above
by the fact that it doesn’t compare against a previous Verify job but against a previous backup.
When you run this level, you must supply the verify options on your Include statements. Those
options determine what attribute fields are compared.

This command can be very useful if you have disk problems because it will compare the current
state of your disk against the last successful backup, which may be several jobs.

Note, the current implementation (1.32¢) does not identify files that have been deleted.

Accurate = <yes|no> In accurate mode, the File daemon knowns exactly which files were present after
the last backup. So it is able to handle deleted or renamed files.

When restoring a FileSet for a specified date (including ”most recent”), Bacula is able to restore exactly
the files and directories that existed at the time of the last backup prior to that date including ensuring
that deleted files are actually deleted, and renamed directories are restored properly.

In this mode, the File daemon must keep data concerning all files in memory. So you do not have
sufficient memory, the restore may either be terribly slow or fail.

For 500.000 files (a typical desktop linux system), it will require approximately 64 Megabytes of RAM
on your File daemon to hold the required information.

Verify Job = <Job-Resource-Name> If you run a verify job without this directive, the last job run will
be compared with the catalog, which means that you must immediately follow a backup by a verify
command. If you specify a Verify Job Bacula will find the last job with that name that ran. This
permits you to run all your backups, then run Verify jobs on those that you wish to be verified (most
often a VolumeToCatalog) so that the tape just written is re-read.

JobDefs = <JobDefs-Resource-Name> If a JobDefs-Resource-Name is specified, all the values con-
tained in the named JobDefs resource will be used as the defaults for the current Job. Any value that
you explicitly define in the current Job resource, will override any defaults specified in the JobDefs
resource. The use of this directive permits writing much more compact Job resources where the bulk of
the directives are defined in one or more JobDefs. This is particularly useful if you have many similar
Jobs but with minor variations such as different Clients. A simple example of the use of JobDefs is
provided in the default bacula-dir.conf file.

Bootstrap = <bootstrap-file> The Bootstrap directive specifies a bootstrap file that, if provided, will
be used during Restore Jobs and is ignored in other Job types. The bootstrap file contains the list of
tapes to be used in a restore Job as well as which files are to be restored. Specification of this directive
is optional, and if specified, it is used only for a restore job. In addition, when running a Restore job
from the console, this value can be changed.

If you use the Restore command in the Console program, to start a restore job, the bootstrap file
will be created automatically from the files you select to be restored.

For additional details of the bootstrap file, please see|Restoring Files with the Bootstrap File chapter
of this manual.

Write Bootstrap = <bootstrap-file-specification> The writebootstrap directive specifies a file
name where Bacula will write a bootstrap file for each Backup job run. This directive applies only to
Backup Jobs. If the Backup job is a Full save, Bacula will erase any current contents of the specified
file before writing the bootstrap records. If the Job is an Incremental or Differential save, Bacula will
append the current bootstrap record to the end of the file.

Using this feature, permits you to constantly have a bootstrap file that can recover the current state
of your system. Normally, the file specified should be a mounted drive on another machine, so that
if your hard disk is lost, you will immediately have a bootstrap record available. Alternatively, you
should copy the bootstrap file to another machine after it is updated. Note, it is a good idea to write a
separate bootstrap file for each Job backed up including the job that backs up your catalog database.

If the bootstrap-file-specification begins with a vertical bar (—), Bacula will use the specification
as the name of a program to which it will pipe the bootstrap record. It could for example be a shell
script that emails you the bootstrap record.

On versions 1.39.22 or greater, before opening the file or executing the specified command, Bacula
performs [character substitution like in RunScript directive. To automatically manage your bootstrap
files, you can use this in your JobDefs resources:

JobDefs {
Write Bootstrap = "Y%c_%n.bsr"

For more details on using this file, please see the chapter entitled|The Bootstrap File of this manual.

Client = <client-resource-name> The Client directive specifies the Client (File daemon) that will be
used in the current Job. Only a single Client may be specified in any one Job. The Client runs on the
machine to be backed up, and sends the requested files to the Storage daemon for backup, or receives
them when restoring. For additional details, see the [Client Resource section of this chapter. This
directive is required.

FileSet = <FileSet-resource-name> The FileSet directive specifies the FileSet that will be used in the
current Job. The FileSet specifies which directories (or files) are to be backed up, and what options
to use (e.g. compression, ...). Only a single FileSet resource may be specified in any one Job. For
additional details, see the [FileSet Resource section|of this chapter. This directive is required.

Messages = <messages-resource-name> The Messages directive defines what Messages resource
should be used for this job, and thus how and where the various messages are to be delivered. For
example, you can direct some messages to a log file, and others can be sent by email. For additional
details, see the Messages Resource Chapter of this manual. This directive is required.

Pool = <pool-resource-name> The Pool directive defines the pool of Volumes where your data can be
backed up. Many Bacula installations will use only the Default pool. However, if you want to specify
a different set of Volumes for different Clients or different Jobs, you will probably want to use Pools.
For additional details, see the Pool Resource section of this chapter. This directive is required.

Full Backup Pool = <pool-resource-name> The Full Backup Pool specifies a Pool to be used for Full
backups. It will override any Pool specification during a Full backup. This directive is optional.

Differential Backup Pool = <pool-resource-name> The Differential Backup Pool specifies a Pool to
be used for Differential backups. It will override any Pool specification during a Differential backup.
This directive is optional.

Incremental Backup Pool = <pool-resource-name> The Incremental Backup Pool specifies a Pool to
be used for Incremental backups. It will override any Pool specification during an Incremental backup.
This directive is optional.

Schedule = <schedule-name> The Schedule directive defines what schedule is to be used for the Job.
The schedule in turn determines when the Job will be automatically started and what Job level (i.e.
Full, Incremental, ...) is to be run. This directive is optional, and if left out, the Job can only be started
manually using the Console program. Although you may specify only a single Schedule resource for
any one job, the Schedule resource may contain multiple Run directives, which allow you to run the
Job at many different times, and each run directive permits overriding the default Job Level Pool,
Storage, and Messages resources. This gives considerable flexibility in what can be done with a single
Job. For additional details, see the |Schedule Resource Chapter|of this manual.

Storage = <storage-resource-name> The Storage directive defines the name of the storage services
where you want to backup the FileSet data. For additional details, see the Storage Resource Chapter|
of this manual. The Storage resource may also be specified in the Job’s Pool resource, in which case
the value in the Pool resource overrides any value in the Job. This Storage resource definition is not
required by either the Job resource or in the Pool, but it must be specified in one or the other, if not
an error will result.

Max Start Delay = <time> The time specifies the maximum delay between the scheduled time and the
actual start time for the Job. For example, a job can be scheduled to run at 1:00am, but because
other jobs are running, it may wait to run. If the delay is set to 3600 (one hour) and the job has not
begun to run by 2:00am, the job will be canceled. This can be useful, for example, to prevent jobs
from running during day time hours. The default is 0 which indicates no limit.

Max Run Time = <time> The time specifies the maximum allowed time that a job may run, counted
from when the job starts, (not necessarily the same as when the job was scheduled).

Incremental—Differential Max Wait Time = <time> Theses directives have been deprecated in fa-
vor of Incremental |Differential Max Run Time since bacula 2.3.18.

Incremental Max Run Time = <time> The time specifies the maximum allowed time that an Incre-
mental backup job may run, counted from when the job starts, (not necessarily the same as when the
job was scheduled).

Differential Max Wait Time = <time> The time specifies the maximum allowed time that a Differen-
tial backup job may run, counted from when the job starts, (not necessarily the same as when the job
was scheduled).

Max Run Sched Time = <time> The time specifies the maximum allowed time that a job may run,
counted from when the job was scheduled. This can be useful to prevent jobs from running during
working hours. We can see it like Max Start Delay + Max Run Time.

Max Wait Time = <time> The time specifies the maximum allowed time that a job may block waiting
for a resource (such as waiting for a tape to be mounted, or waiting for the storage or file daemons to
perform their duties), counted from the when the job starts, (not necessarily the same as when the
job was scheduled). This directive works as expected since bacula 2.3.18.

Max Run Sched Time

1 1 1
1 1 1 .
: : :
1 1 1
. : : Max We
1 1 1
1 1 | ,
1 1 1
: : Max Run Time :
1 1 1
1 ! | .
' Max Start Delay ! :
1 1 1
: > :
1 1 1
1 1 1
Wait time Run time Block

1>
D

Scheduled Time Start Time Ask sysop to
mount next
volume

Max Full Interval = <time> The time specifies the maximum allowed age (counting from start time)
of the most recent successful Full backup that is required in order to run Incremental or Differential
backup jobs. If the most recent Full backup is older than this interval, Incremental and Differential
backups will be upgraded to Full backups automatically. If this directive is not present, or specified as
0, then the age of the previous Full backup is not considered.

Prefer Mounted Volumes = <yes|no> If the Prefer Mounted Volumes directive is set to yes (default
yes), the Storage daemon is requested to select either an Autochanger or a drive with a valid Volume
already mounted in preference to a drive that is not ready. This means that all jobs will attempt to
append to the same Volume (providing the Volume is appropriate — right Pool, ... for that job), unless
you are using multiple pools. If no drive with a suitable Volume is available, it will select the first
available drive. Note, any Volume that has been requested to be mounted, will be considered valid as
a mounted volume by another job. This if multiple jobs start at the same time and they all prefer
mounted volumes, the first job will request the mount, and the other jobs will use the same volume.

If the directive is set to no, the Storage daemon will prefer finding an unused drive, otherwise, each job
started will append to the same Volume (assuming the Pool is the same for all jobs). Setting Prefer
Mounted Volumes to no can be useful for those sites with multiple drive autochangers that prefer to
maximize backup throughput at the expense of using additional drives and Volumes. This means that
the job will prefer to use an unused drive rather than use a drive that is already in use.

Despite the above, we recommend against setting this directive to no since it tends to add a lot of
swapping of Volumes between the different drives and can easily lead to deadlock situations in the
Storage daemon. We will accept bug reports against it, but we cannot guarantee that we will be able
to fix the problem in a reasonable time.

A better alternative for using multiple drives is to use multiple pools so that Bacula will be forced to
mount Volumes from those Pools on different drives.

Prune Jobs = <yes|no> Normally, pruning of Jobs from the Catalog is specified on a Client by Client
basis in the Client resource with the AutoPrune directive. If this directive is specified (not normally)
and the value is yes, it will override the value specified in the Client resource. The default is no.

Prune Files = <yes|no> Normally, pruning of Files from the Catalog is specified on a Client by Client
basis in the Client resource with the AutoPrune directive. If this directive is specified (not normally)
and the value is yes, it will override the value specified in the Client resource. The default is no.

Prune Volumes = <yes|no> Normally, pruning of Volumes from the Catalog is specified on a Client by
Client basis in the Client resource with the AutoPrune directive. If this directive is specified (not
normally) and the value is yes, it will override the value specified in the Client resource. The default
is no.

RunScript {<body-of-runscript>} The RunScript directive behaves like a resource in that it requires
opening and closing braces around a number of directives that make up the body of the runscript.

The specified Command (see below for details) is run as an external program prior or after the current
Job. This is optional. By default, the program is executed on the Client side like in ClientRunXXXJob.

Console options are special commands that are sent to the director instead of the OS. At this time,
console command ouputs are redirected to log with the jobid 0.

You can use following console command : delete, disable, enable, estimate, 1ist, 11ist, memory,
prune, purge, reload, status, setdebug, show, time, trace, update, version, .client, .jobs,
.pool, .storage. See console chapter for more information. You need to specify needed information
on command line, nothing will be prompted. Example :

Console = "prune files client=Yc"
Console = "update stats age=3"

You can specify more than one Command/Console option per RunScript.

You can use following options may be specified in the body of the runscript:

] Options ‘ Value ‘ Default ‘ Information

Runs On Success Yes/No Yes Run command if JobStatus is successful

Runs On Failure Yes/No No Run command if JobStatus isn’t successful

Runs On Client Yes/No Yes Run command on client
Runs When Before—After—Always—AfterVSS | Never | When run commands

Fail Job On Error Yes/No Yes Fail job if script returns something different froa
Command Path to your script

Console Console command

Any output sent by the command to standard output will be included in the Bacula job report. The
command string must be a valid program name or name of a shell script.

In addition, the command string is parsed then fed to the OS, which means that the path will be
searched to execute your specified command, but there is no shell interpretation, as a consequence, if
you invoke complicated commands or want any shell features such as redirection or piping, you must
call a shell script and do it inside that script.

Before submitting the specified command to the operating system, Bacula performs character substi-
tution of the following characters:

%h = "h

J%c = Client’s name

%d = Director’s name

%e = Job Exit Status

%i = JobId

%3j = Unique Job id

%1 = Job Level

%n = Job name

%s = Since time

%t = Job type (Backup, ...)
%v = Volume name (Only on director side)

The Job Exit Status code %e edits the following values:

e OK
e FError

Fatal Error

Canceled

Differences

Unknown term code

Thus if you edit it on a command line, you will need to enclose it within some sort of quotes.

You can use these following shortcuts:

Keyword RunsOnSuccess | RunsOnFailure | FailJobOnError | Runs On Client | RunsWhen
Run Before Job Yes No Before
Run After Job Yes No No After
Run After Failed Job No Yes No After
Client Run Before Job Yes Yes Before
Client Run After Job Yes No Yes After
Examples:

RunScript {

RunsWhen = Before

FailJobOnError = No

Command = "/etc/init.d/apache stop"
}

RunScript {
RunsWhen = After
RunsOnFailure = yes
Command = "/etc/init.d/apache start"

Notes about ClientRunBeforeJob

For compatibility reasons, with this shortcut, the command is executed directly when the client recieve
it. And if the command is in error, other remote runscripts will be discarded. To be sure that all
commands will be sent and executed, you have to use RunScript syntax.

Special Windows Considerations
You can run scripts just after snapshots initializations with AfterVSS keyword.

In addition, for a Windows client on version 1.33 and above, please take note that you must ensure a
correct path to your script. The script or program can be a .com, .exe or a .bat file. If you just put the
program name in then Bacula will search using the same rules that cmd.exe uses (current directory,
Bacula bin directory, and PATH). It will even try the different extensions in the same order as cmd.exe.
The command can be anything that cmd.exe or command.com will recognize as an executable file.

However, if you have slashes in the program name then Bacula figures you are fully specifying the
name, so you must also explicitly add the three character extension.

The command is run in a Win32 environment, so Unix like commands will not work unless you have
installed and properly configured Cygwin in addition to and separately from Bacula.

The System %Path% will be searched for the command. (under the environment variable dialog
you have have both System Environment and User Environment, we believe that only the System
environment will be available to bacula-fd, if it is running as a service.)

System environment variables can be referenced with %var% and used as either part of the command
name or arguments.

So if you have a script in the Bacula
bin directory then the following lines should work fine:

Client Run Before Job = systemstate
or
Client Run Before Job = systemstate.bat
or
Client Run Before Job = "systemstate"
or
Client Run Before Job = "systemstate.bat"
or
ClientRunBeforeJob = "\"C:/Program Files/Bacula/systemstate.bat\""

The outer set of quotes is removed when the configuration file is parsed. You need to escape the inner
quotes so that they are there when the code that parses the command line for execution runs so it can
tell what the program name is.

ClientRunBeforeJob = "\"C:/Program Files/Software
Vendor/Executable\" /argl /arg2 \"foo bar\""

The special characters
&<>0)e" |

will need to be quoted, if they are part of a filename or argument.

If someone is logged in, a blank ”command” window running the commands will be present during the
execution of the command.

Some Suggestions from Phil Stracchino for running on Win32 machines with the native Win32 File
daemon:

1. You might want the ClientRunBeforeJob directive to specify a .bat file which runs the actual
client-side commands, rather than trying to run (for example) regedit /e directly.

2. The batch file should explicitly ’exit 0’ on successful completion.
3. The path to the batch file should be specified in Unix form:
ClientRunBeforeJob = ”c:/bacula/bin/systemstate.bat”
rather than DOS/Windows form:
ClientRunBeforeJob =
”¢:\bacula\bin\systemstate.bat” INCORRECT

For Win32, please note that there are certain limitations:
ClientRunBeforeJob = ”C:/Program Files/Bacula/bin/pre-exec.bat”

Lines like the above do not work because there are limitations of cmd.exe that is used to execute the
command. Bacula prefixes the string you supply with cmd.exe /c . To test that your command works
you should type cmd /¢ ”C:/Program Files/test.exe” at a cind prompt and see what happens.
Once the command is correct insert a backslash (\) before each double quote (”), and then put quotes
around the whole thing when putting it in the director’s .conf file. You either need to have only one
set of quotes or else use the short name and don’t put quotes around the command path.

Below is the output from cmd’s help as it relates to the command line passed to the /c option.
If /C or /K is specified, then the remainder of the command line after the switch is processed as a

command line, where the following logic is used to process quote (”) characters:

1. If all of the following conditions are met, then quote characters on the command line are preserved:

Run

e 1o /S switch.

e exactly two quote characters.

e 1o special characters between the two quote characters, where special is one of:
k<> e~ |

e there are one or more whitespace characters between the the two quote characters.

e the string between the two quote characters is the name of an executable file.

2. Otherwise, old behavior is to see if the first character is a quote character and if so, strip the
leading character and remove the last quote character on the command line, preserving any text
after the last quote character.

The following example of the use of the Client Run Before Job directive was submitted by a user:
You could write a shell script to back up a DB2 database to a FIFO. The shell script is:

#!/bin/sh
===== backupdb.sh
DIR=/u01/mercuryd

mkfifo $DIR/dbpipe
db2 BACKUP DATABASE mercuryd TO $DIR/dbpipe WITHOUT PROMPTING &
sleep 1

The following line in the Job resource in the bacula-dir.conf file:

Client Run Before Job = "su - mercuryd -c \"/uOl/mercuryd/backupdb.sh ’%t’
)%1)\""

When the job is run, you will get messages from the output of the script stating that the backup has
started. Even though the command being run is backgrounded with &, the job will block until the
”db2 BACKUP DATABASE” command, thus the backup stalls.

To remedy this situation, the ”db2 BACKUP DATABASE” line should be changed to the following;:

db2 BACKUP DATABASE mercuryd TO $DIR/dbpipe WITHOUT PROMPTING > $DIR/backup.log
2>&1 < /dev/null &

It is important to redirect the input and outputs of a backgrounded command to /dev/null to prevent
the script from blocking.

Before Job = <command> The specified command is run as an external program prior to running
the current Job. This directive is not required, but if it is defined, and if the exit code of the program
run is non-zero, the current Bacula job will be canceled.

Run Before Job = "echo test"
it’s equivalent to :

RunScript {

Command = "echo test"
RunsOnClient = No
RunsWhen = Before

3

Lutz Kittler has pointed out that using the RunBeforeJob directive can be a simple way to modify your
schedules during a holiday. For example, suppose that you normally do Full backups on Fridays, but
Thursday and Friday are holidays. To avoid having to change tapes between Thursday and Friday when
no one is in the office, you can create a RunBeforeJob that returns a non-zero status on Thursday and
zero on all other days. That way, the Thursday job will not run, and on Friday the tape you inserted
on Wednesday before leaving will be used.

Run

Run

After Job = <command> The specified command is run as an external program if the current
job terminates normally (without error or without being canceled). This directive is not required. If
the exit code of the program run is non-zero, Bacula will print a warning message. Before submitting
the specified command to the operating system, Bacula performs character substitution as described
above for the RunScript directive.

An example of the use of this directive is given in the|Tips Chapter of this manual.

See the Run After Failed Job if you want to run a script after the job has terminated with any
non-normal status.

After Failed Job = <command> The specified command is run as an external program after
the current job terminates with any error status. This directive is not required. The command string
must be a valid program name or name of a shell script. If the exit code of the program run is non-
zero, Bacula will print a warning message. Before submitting the specified command to the operating
system, Bacula performs character substitution as described above for the RunScript directive. Note,
if you wish that your script will run regardless of the exit status of the Job, you can use this :

RunScript {

Command = "echo test"

RunsWhen = After

RunsOnFailure = yes

RunsOnClient no

RunsOnSuccess = yes # default, you can drop this line

3

An example of the use of this directive is given in the|Tips Chapter of this manual.

Client Run Before Job = <command> This directive is the same as Run Before Job except that

the program is run on the client machine. The same restrictions apply to Unix systems as noted above
for the RunScript.

Client Run After Job = <command> The specified command is run on the client machine as soon

as data spooling is complete in order to allow restarting applications on the client as soon as possible.

Note, please see the notes above in RunScript concerning Windows clients.

Rerun Failed Levels = <yes|no> If this directive is set to yes (default no), and Bacula detects that a

previous job at a higher level (i.e. Full or Differential) has failed, the current job level will be upgraded
to the higher level. This is particularly useful for Laptops where they may often be unreachable, and
if a prior Full save has failed, you wish the very next backup to be a Full save rather than whatever
level it is started as.

There are several points that must be taken into account when using this directive: first, a failed job
is defined as one that has not terminated normally, which includes any running job of the same name
(you need to ensure that two jobs of the same name do not run simultaneously); secondly, the Ignore
FileSet Changes directive is not considered when checking for failed levels, which means that any
FileSet change will trigger a rerun.

Spool Data = <yes|no> If this directive is set to yes (default no), the Storage daemon will be requested

to spool the data for this Job to disk rather than write it directly to tape. Once all the data arrives or
the spool files” maximum sizes are reached, the data will be despooled and written to tape. Spooling
data prevents tape shoe-shine (start and stop) during Incremental saves. If you are writing to a disk
file using this option will probably just slow down the backup jobs.

NOTE: When this directive is set to yes, Spool Attributes is also automatically set to yes.

Spool Attributes = <yes|no> The default is set to no, which means that the File attributes are sent

by the Storage daemon to the Director as they are stored on tape. However, if you want to avoid the
possibility that database updates will slow down writing to the tape, you may want to set the value
to yes, in which case the Storage daemon will buffer the File attributes and Storage coordinates to a
temporary file in the Working Directory, then when writing the Job data to the tape is completed, the
attributes and storage coordinates will be sent to the Director.

NOTE: When Spool Data is set to yes, Spool Attributes is also automatically set to yes.

Where = <directory> This directive applies only to a Restore job and specifies a prefix to the directory
name of all files being restored. This permits files to be restored in a different location from which they
were saved. If Where is not specified or is set to backslash (/), the files will be restored to their original
location. By default, we have set Where in the example configuration files to be /tmp/bacula-
restores. This is to prevent accidental overwriting of your files.

Add Prefix = <directory> This directive applies only to a Restore job and specifies a prefix to the
directory name of all files being restored. This will use [File Relocation feature implemented in Bacula
2.1.8 or later.

Add Suffix = <extention> This directive applies only to a Restore job and specifies a suffix to all files
being restored. This will use |File Relocation| feature implemented in Bacula 2.1.8 or later.

Using Add Suffix=.o0ld, /etc/passwd will be restored to /etc/passwsd.old

Strip Prefix = <directory> This directive applies only to a Restore job and specifies a prefix to remove
from the directory name of all files being restored. This will use the File Relocationl|feature implemented
in Bacula 2.1.8 or later.

Using Strip Prefix=/etc, /etc/passwd will be restored to /passwd

Under Windows, if you want to restore c:/files to d:/files, you can use :

Strip Prefix = c:

Add Prefix = d:

RegexWhere = <expressions> This directive applies only to a Restore job and specifies a regex filename

manipulation of all files being restored. This will use [File Relocation| feature implemented in Bacula
2.1.8 or later.

For more informations about how use this option, see [this.

Replace = <replace-option> This directive applies only to a Restore job and specifies what happens
when Bacula wants to restore a file or directory that already exists. You have the following options for
replace-option:

always when the file to be restored already exists, it is deleted and then replaced by the copy that
was backed up. This is the default value.

ifnewer if the backed up file (on tape) is newer than the existing file, the existing file is deleted and
replaced by the back up.

ifolder if the backed up file (on tape) is older than the existing file, the existing file is deleted and
replaced by the back up.

never if the backed up file already exists, Bacula skips restoring this file.

Prefix Links=<yes|no> If a Where path prefix is specified for a recovery job, apply it to absolute links
as well. The default is No. When set to Yes then while restoring files to an alternate directory, any
absolute soft links will also be modified to point to the new alternate directory. Normally this is what
is desired — i.e. everything is self consistent. However, if you wish to later move the files to their
original locations, all files linked with absolute names will be broken.

Maximum Concurrent Jobs = <number> where <number> is the maximum number of Jobs from
the current Job resource that can run concurrently. Note, this directive limits only Jobs with the same
name as the resource in which it appears. Any other restrictions on the maximum concurrent jobs
such as in the Director, Client, or Storage resources will also apply in addition to the limit specified
here. The default is set to 1, but you may set it to a larger number. We strongly recommend that you
read the WARNING documented under | Maximum Concurrent Jobs in the Director’s resource.

Reschedule On Error = <yes|no> If this directive is enabled, and the job terminates in error, the job
will be rescheduled as determined by the Reschedule Interval and Reschedule Times directives.
If you cancel the job, it will not be rescheduled. The default is no (i.e. the job will not be rescheduled).

This specification can be useful for portables, laptops, or other machines that are not always connected
to the network or switched on.

Reschedule Interval = <time-specification> If you have specified Reschedule On Error = yes
and the job terminates in error, it will be rescheduled after the interval of time specified by time-
specification. Seethe time specification formats in the Configure chapter for details of time specifi-
cations. If no interval is specified, the job will not be rescheduled on error.

Reschedule Times = <count> This directive specifies the maximum number of times to reschedule the
job. If it is set to zero (the default) the job will be rescheduled an indefinite number of times.

Run = <job-name> The Run directive (not to be confused with the Run option in a Schedule) allows
you to start other jobs or to clone jobs. By using the cloning keywords (see below), you can backup
the same data (or almost the same data) to two or more drives at the same time. The job-name is
normally the same name as the current Job resource (thus creating a clone). However, it may be any
Job name, so one job may start other related jobs.

The part after the equal sign must be enclosed in double quotes, and can contain any string or set
of options (overrides) that you can specify when entering the Run command from the console. For
example storage=DDS-4 In addition, there are two special keywords that permit you to clone
the current job. They are level=%]l and since=%s. The %!l in the level keyword permits entering
the actual level of the current job and the %s in the since keyword permits putting the same time for
comparison as used on the current job. Note, in the case of the since keyword, the %s must be enclosed
in double quotes, and thus they must be preceded by a backslash since they are already inside quotes.
For example:

run = "Nightly-backup level=)1l since=\"%s\" storage=DDS-4"

A cloned job will not start additional clones, so it is not possible to recurse.

Please note that all cloned jobs, as specified in the Run directives are submitted for running before
the original job is run (while it is being initialized). This means that any clone job will actually start
before the original job, and may even block the original job from starting until the original job finishes
unless you allow multiple simultaneous jobs. Even if you set a lower priority on the clone job, if no
other jobs are running, it will start before the original job.

If you are trying to prioritize jobs by using the clone feature (Run directive), you will find it much
easier to do using a RunScript resource, or a RunBeforeJob directive.

Priority = <number> This directive permits you to control the order in which your jobs will be run by
specifying a positive non-zero number. The higher the number, the lower the job priority. Assuming
you are not running concurrent jobs, all queued jobs of priority 1 will run before queued jobs of priority
2 and so on, regardless of the original scheduling order.

The priority only affects waiting jobs that are queued to run, not jobs that are already running. If one
or more jobs of priority 2 are already running, and a new job is scheduled with priority 1, the currently
running priority 2 jobs must complete before the priority 1 job is run, unless Allow Mixed Priority is
set.

The default priority is 10.

If you want to run concurrent jobs you should keep these points in mind:

e See Running Concurrent Jobs on how to setup concurrent jobs.

e Bacula concurrently runs jobs of only one priority at a time. It will not simultaneously run a
priority 1 and a priority 2 job.

e If Bacula is running a priority 2 job and a new priority 1 job is scheduled, it will wait until the
running priority 2 job terminates even if the Maximum Concurrent Jobs settings would otherwise
allow two jobs to run simultaneously.

e Suppose that bacula is running a priority 2 job and a new priority 1 job is scheduled and queued
waiting for the running priority 2 job to terminate. If you then start a second priority 2 job,
the waiting priority 1 job will prevent the new priority 2 job from running concurrently with the
running priority 2 job. That is: as long as there is a higher priority job waiting to run, no new
lower priority jobs will start even if the Maximum Concurrent Jobs settings would normally allow
them to run. This ensures that higher priority jobs will be run as soon as possible.

If you have several jobs of different priority, it may not best to start them at exactly the same time,
because Bacula must examine them one at a time. If by Bacula starts a lower priority job first, then
it will run before your high priority jobs. If you experience this problem, you may avoid it by starting
any higher priority jobs a few seconds before lower priority ones. This insures that Bacula will examine
the jobs in the correct order, and that your priority scheme will be respected.

Allow Mixed Priority = <yes|no> This directive is only implemented in version 2.5 and later. When

set to yes (default no), this job may run even if lower priority jobs are already running. This means a
high priority job will not have to wait for other jobs to finish before starting. The scheduler will only
mix priorities when all running jobs have this set to true.

Note that only higher priority jobs will start early. Suppose the director will allow two concurrent jobs,
and that two jobs with priority 10 are running, with two more in the queue. If a job with priority 5 is
added to the queue, it will be run as soon as one of the running jobs finishes. However, new priority
10 jobs will not be run until the priority 5 job has finished.

Write Part After Job = <yes|no> This directive is only implemented in version 1.37 and later. If this

directive is set to yes (default no), a new part file will be created after the job is finished.

It should be set to yes when writing to devices that require mount (for example DVD), so you are
sure that the current part, containing this job’s data, is written to the device, and that no data is left
in the temporary file on the hard disk. However, on some media, like DVD+R and DVD-R, a lot of
space (about 10Mb) is lost every time a part is written. So, if you run several jobs each after another,
you could set this directive to no for all jobs, except the last one, to avoid wasting too much space,
but to ensure that the data is written to the medium when all jobs are finished.

This directive is ignored with tape and FIFO devices.

The following is an example of a valid Job resource definition:

Job {
Name = "Minou"
Type = Backup
Level = Incremental # default

Client = Minou
FileSet="Minou Full Set"
Storage = DLTDrive

Pool = Default

Schedule

"MinouWeeklyCycle"

Messages = Standard

15.4 The JobDefs Resource

The JobDefs resource permits all the same directives that can appear in a Job resource. However, a JobDefs
resource does not create a Job, rather it can be referenced within a Job to provide defaults for that Job.
This permits you to concisely define several nearly identical Jobs, each one referencing a JobDefs resource
which contains the defaults. Only the changes from the defaults need to be mentioned in each Job.

15.5 The Schedule Resource

The Schedule resource provides a means of automatically scheduling a Job as well as the ability to override
the default Level, Pool, Storage and Messages resources. If a Schedule resource is not referenced in a Job,
the Job can only be run manually. In general, you specify an action to be taken and when.

Schedule Start of the Schedule directives. No Schedule resource is required, but you will need at least

one if you want Jobs to be automatically started.

Name = <name> The name of the schedule being defined. The Name directive is required.

Run = <Job-overrides> <Date-time-specification> The Run directive defines when a Job is to be
run, and what overrides if any to apply. You may specify multiple run directives within a Schedule
resource. If you do, they will all be applied (i.e. multiple schedules). If you have two Run directives
that start at the same time, two Jobs will start at the same time (well, within one second of each
other).

The Job-overrides permit overriding the Level, the Storage, the Messages, and the Pool specifications
provided in the Job resource. In addition, the FullPool, the IncrementalPool, and the DifferentialPool
specifications permit overriding the Pool specification according to what backup Job Level is in effect.

By the use of overrides, you may customize a particular Job. For example, you may specify a Messages
override for your Incremental backups that outputs messages to a log file, but for your weekly or
monthly Full backups, you may send the output by email by using a different Messages override.

Job-overrides are specified as: keyword=value where the keyword is Level, Storage, Messages,
Pool, FullPool, DifferentialPool, or IncrementalPool, and the value is as defined on the respective
directive formats for the Job resource. You may specify multiple Job-overrides on one Run directive
by separating them with one or more spaces or by separating them with a trailing comma. For example:

Level=Full is all files in the FileSet whether or not they have changed.
Level=Incremental is all files that have changed since the last backup.
Pool=Weekly specifies to use the Pool named Weekly.

Storage=DLT Drive specifies to use DLT _Drive for the storage device.
Messages=Verbose specifies to use the Verbose message resource for the Job.

FullPool=Full specifies to use the Pool named Full if the job is a full backup, or is upgraded from
another type to a full backup.

DifferentialPool=Differential specifies to use the Pool named Differential if the job is a differen-
tial backup.

IncrementalPool=Incremental specifies to use the Pool named Incremental if the job is an in-
cremental backup.

SpoolData=yes|no tells Bacula to request the Storage daemon to spool data to a disk file before
writing it to the Volume (normally a tape). Thus the data is written in large blocks to the Volume
rather than small blocks. This directive is particularly useful when running multiple simultaneous
backups to tape. It prevents interleaving of the job data and reduces or eliminates tape drive stop
and start commonly known as ”shoe-shine”.

SpoolSize=bytes where the bytes specify the maximum spool size for this job. The default is take
from Device Maximum Spool Size limit. This directive is available only in Bacula version 2.3.5
or later.

WritePartAfterJob=yes|no tells Bacula to request the Storage daemon to write the current part
file to the device when the job is finished (see[Write Part After Job directive in the Job resource).
Please note, this directive is implemented only in version 1.37 and later. The default is yes. We
strongly recommend that you keep this set to yes otherwise, when the last job has finished one
part will remain in the spool file and restore may or may not work.

Date-time-specification determines when the Job is to be run. The specification is a repetition,
and as a default Bacula is set to run a job at the beginning of the hour of every hour of every day of
every week of every month of every year. This is not normally what you want, so you must specify or
limit when you want the job to run. Any specification given is assumed to be repetitive in nature and
will serve to override or limit the default repetition. This is done by specifying masks or times for the
hour, day of the month, day of the week, week of the month, week of the year, and month when you
want the job to run. By specifying one or more of the above, you can define a schedule to repeat at
almost any frequency you want.

Basically, you must supply a month, day, hour, and minute the Job is to be run. Of these four
items to be specified, day is special in that you may either specify a day of the month such as 1, 2, ...
31, or you may specify a day of the week such as Monday, Tuesday, ... Sunday. Finally, you may also
specify a week qualifier to restrict the schedule to the first, second, third, fourth, or fifth week of the
month.

For example, if you specify only a day of the week, such as Tuesday the Job will be run every hour
of every Tuesday of every Month. That is the month and hour remain set to the defaults of every
month and all hours.

Note, by default with no other specification, your job will run at the beginning of every hour. If
you wish your job to run more than once in any given hour, you will need to specify multiple run
specifications each with a different minute.

The date/time to run the Job can be specified in the following way in pseudo-BNF:

<void-keyword> = on

<at-keyword> = at

<week-keyword> = 1st | 2nd | 3rd | 4th | 5th | first |
second | third | fourth | fifth

<wday-keyword> = sun | mon | tue | wed | thu | fri | sat |

sunday | monday | tuesday | wednesday |
thursday | friday | saturday

<week-of-year-keyword> = w00 | w01 | ... w52 | wh3
<month-keyword> = jan | feb | mar | apr | may | jun | jul |
aug | sep | oct | nov | dec | january |
february | ... | december
<daily-keyword> = daily

<weekly-keyword> = weekly
<monthly-keyword> = monthly
<hourly-keyword> = hourly

<digit> =112131415]161718191]0
<number> = <digit> | <digit><number>

<12hour> =0l 1121 ...12

<hour> =0l 11]2]...23

<minute> =01l 1]21]...59

<day> =112 ...31

<time> = <hour>:<minute> |

<12hour>:<minute>am |
<12hour>:<minute>pm

<time-spec> = <at-keyword> <time> |
<hourly-keyword>

<date-keyword> = <void-keyword> <weekly-keyword>

<day-range> = <day>-<day>

<month-range> = <month-keyword>-<month-keyword>

<wday-range> = <wday-keyword>-<wday-keyword>

<range> = <day-range> | <month-range> |

<wday-range>

<date> = <date-keyword> | <day> | <range>

<date-spec> = <date> | <date-spec>

<day-spec> = <day> | <wday-keyword> |

<day> | <wday-range> |
<week-keyword> <wday-keyword> |
<week-keyword> <wday-range> |
<daily-keyword>

<month-spec> = <month-keyword> | <month-range> |
<monthly-keyword>
<date-time-spec> = <month-spec> <day-spec> <time-spec>

Note, the Week of Year specification wnn follows the ISO standard definition of the week of the year, where
Week 1 is the week in which the first Thursday of the year occurs, or alternatively, the week which contains
the 4th of January. Weeks are numbered w01 to wb3. w00 for Bacula is the week that precedes the first ISO
week (i.e. has the first few days of the year if any occur before Thursday). w00 is not defined by the ISO
specification. A week starts with Monday and ends with Sunday.

According to the NIST (US National Institute of Standards and Technology), 12am and 12pm are ambiguous
and can be defined to anything. However, 12:01am is the same as 00:01 and 12:01pm is the same as 12:01, so
Bacula defines 12am as 00:00 (midnight) and 12pm as 12:00 (noon). You can avoid this abiguity (confusion)
by using 24 hour time specifications (i.e. no am/pm). This is the definition in Bacula version 2.0.3 and later.

An example schedule resource that is named WeeklyCycle and runs a job with level full each Sunday at
2:05am and an incremental job Monday through Saturday at 2:05am is:

Schedule {
Name = "WeeklyCycle"
Run = Level=Full sun at 2:05
Run = Level=Incremental mon-sat at 2:05

}

An example of a possible monthly cycle is as follows:

Schedule {
Name = "MonthlyCycle"
Run = Level=Full Pool=Monthly 1st sun at 2:05
Run = Level=Differential 2nd-5th sun at 2:05
Run =

}

Level=Incremental Pool=Daily mon-sat at 2:05

The first of every month:

Schedule {
Name = "First"
Run = Level=Full on 1 at 2:05
Run = Level=Incremental on 2-31 at 2:05

}

Every 10 minutes:

Schedule {

Name = "TenMinutes"

Run = Level=Full hourly at 0:05
Run = Level=Full hourly at 0:15
Run = Level=Full hourly at 0:25
Run = Level=Full hourly at 0:35
Run = Level=Full hourly at 0:45
Run = Level=Full hourly at 0:55

15.6 Technical Notes on Schedules

Internally Bacula keeps a schedule as a bit mask. There are six masks and a minute field to each schedule.
The masks are hour, day of the month (mday), month, day of the week (wday), week of the month (wom),
and week of the year (woy). The schedule is initialized to have the bits of each of these masks set, which
means that at the beginning of every hour, the job will run. When you specify a month for the first time,
the mask will be cleared and the bit corresponding to your selected month will be selected. If you specify
a second month, the bit corresponding to it will also be added to the mask. Thus when Bacula checks the
masks to see if the bits are set corresponding to the current time, your job will run only in the two months
you have set. Likewise, if you set a time (hour), the hour mask will be cleared, and the hour you specify will
be set in the bit mask and the minutes will be stored in the minute field.

For any schedule you have defined, you can see how these bits are set by doing a show schedules command
in the Console program. Please note that the bit mask is zero based, and Sunday is the first day of the week
(bit zero).

15.7 The FileSet Resource

The FileSet resource defines what files are to be included or excluded in a backup job. A FileSet resource
is required for each backup Job. It consists of a list of files or directories to be included, a list of files or
directories to be excluded and the various backup options such as compression, encryption, and signatures
that are to be applied to each file.

Any change to the list of the included files will cause Bacula to automatically create a new FileSet (defined
by the name and an MD5 checksum of the Include/Exclude contents). Each time a new FileSet is created,
Bacula will ensure that the next backup is always a Full save.

Bacula is designed to handle most character sets of the world, US ASCII, German, French, Chinese, ...
However, it does this by encoding everything in UTF-8, and it expects all configuration files (including those

read on Win32 machines) to be in UTF-8 format. UTF-8 is typically the default on Linux machines, but not
on all Unix machines, nor on Windows, so you must take some care to ensure that your locale is set properly
before starting Bacula. On most modern Win32 machines, you can edit the conf files with notebook and
choose output encoding UTF-8.

To ensure that Bacula configuration files can be correctly read including foreign characters the bf LANG
environment variable must end in .UTF-8. An full example is en_ US.UTF-8. The exact syntax may vary
a bit from OS to OS, and exactly how you define it will also vary.

Bacula assumes that all filenames are in UTF-8 format on Linux and Unix machines. On Win32 they are in
Unicode (UTF-16), and will be automatically converted to UTF-8 format.

FileSet Start of the FileSet resource. One FileSet resource must be defined for each Backup job.
Name = <name> The name of the FileSet resource. This directive is required.

Ignore FileSet Changes = <yes|no> Normally, if you modify the FileSet Include or Exclude lists, the
next backup will be forced to a Full so that Bacula can guarantee that any additions or deletions are
properly saved.

We strongly recommend against setting this directive to yes, since doing so may cause you to have an
incomplete set of backups.

If this directive is set to yes, any changes you make to the FileSet Include or Exclude lists, will not
force a Full during subsequent backups.

The default is no, in which case, if you change the Include or Exclude, Bacula will force a Full backup
to ensure that everything is properly backed up.

Enable VSS = <yes|no> If this directive is set to yes the File daemon will be notified that the user wants
to use a Volume Shadow Copy Service (VSS) backup for this job. The default is yes. This directive
is effective only for VSS enabled Win32 File daemons. It permits a consistent copy of open files to be
made for cooperating writer applications, and for applications that are not VSS away, Bacula can at
least copy open files. For more information, please see the 'Windows|chapter of this manual.

Include { Options {<file-options>} ...; <file-list> }
Options { <file-options> }
Exclude { <file-list> }

The Include resource must contain a list of directories and/or files to be processed in the backup job.
Normally, all files found in all subdirectories of any directory in the Include File list will be backed up.
Note, see below for the definition of <file-list>. The Include resource may also contain one or more Options
resources that specify options such as compression to be applied to all or any subset of the files found when
processing the file-list for backup. Please see below for more details concerning Options resources.

There can be any number of Include resources within the FileSet, each having its own list of directories
or files to be backed up and the backup options defined by one or more Options resources. The file-list
consists of one file or directory name per line. Directory names should be specified without a trailing slash
with Unix path notation.

Windows users, please take note to specify directories (even c:/...) in Unix path notation. If you use
Windows conventions, you will most likely not be able to restore your files due to the fact that the Windows
path separator was defined as an escape character long before Windows existed, and Bacula adheres to that
convention (i.e.

means the next character appears as itself).

You should always specify a full path for every directory and file that you list in the FileSet. In addition,
on Windows machines, you should always prefix the directory or filename with the drive specification (e.g.
c:/xxx) using Unix directory name separators (forward slash). The drive letter itself can be upper or lower
case (e.g. ¢:/xxx or C:/xxx).

Bacula’s default for processing directories is to recursively descend in the directory saving all files and
subdirectories. Bacula will not by default cross filesystems (or mount points in Unix parlance). This means

that if you specify the root partition (e.g. /), Bacula will save only the root partition and not any of the
other mounted filesystems. Similarly on Windows systems, you must explicitly specify each of the drives you
want saved (e.g. c:/ and d:/ ...). In addition, at least for Windows systems, you will most likely want to
enclose each specification within double quotes particularly if the directory (or file) name contains spaces.
The df command on Unix systems will show you which mount points you must specify to save everything.
See below for an example.

Take special care not to include a directory twice or Bacula will backup the same files two times wasting a
lot of space on your archive device. Including a directory twice is very easy to do. For example:

Include {

File = /

File = /usr

Options { compression=GZIP }
}

on a Unix system where /usr is a subdirectory (rather than a mounted filesystem) will cause /usr to be
backed up twice. In this case, on Bacula versions prior to 1.32{-5-09Mar04 due to a bug, you will not be able
to restore hard linked files that were backed up twice.

If you have used Bacula prior to version 1.36.3, you will note three things in the new FileSet syntax:

1. There is no equal sign (=) after the Include and before the opening brace ({). The same is true for
the Exclude.

2. Each directory (or filename) to be included or excluded is preceded by a File =. Previously they were
simply listed on separate lines.

3. The options that previously appeared on the Include line now must be specified within their own
Options resource.

4. The Exclude resource does not accept Options.

5. When using wild-cards or regular expressions, directory names are always terminated with a slash (/)
and filenames have no trailing slash.

The Options resource is optional, but when specified, it will contain a list of keyword=value options to be
applied to the file-list. See below for the definition of file-list. Multiple Options resources may be specified
one after another. As the files are found in the specified directories, the Options will applied to the filenames
to determine if and how the file should be backed up. The wildcard and regular expression pattern matching
parts of the Options resources are checked in the order they are specified in the FileSet until the first one
that matches. Once one matches, the compression and other flags within the Options specification will apply
to the pattern matched.

A key point is that in the absence of an Option or no other Option is matched, every file is accepted for
backing up. This means that if you want to exclude something, you must explicitly specify an Option with
an exclude = yes and some pattern matching.

Once Bacula determines that the Options resource matches the file under consideration, that file will be
saved without looking at any other Options resources that may be present. This means that any wild cards
must appear before an Options resource without wild cards.

If for some reason, Bacula checks all the Options resources to a file under consideration for backup, but there
are no matches (generally because of wild cards that don’t match), Bacula as a default will then backup the
file. This is quite logical if you consider the case of no Options clause is specified, where you want everything
to be backed up, and it is important to keep in mind when excluding as mentioned above.

However, one additional point is that in the case that no match was found, Bacula will use the options found
in the last Options resource. As a consequence, if you want a particular set of ”default” options, you should
put them in an Options resource after any other Options.

It is a good idea to put all your wild-card and regex expressions inside double quotes to prevent conf file
scanning problems.

This is perhaps a bit overwhelming, so there are a number of examples included below to illustrate how this
works.

You find yourself using a lot of Regex statements, which will cost quite a lot of CPU time, we recommend
you simplify them if you can, or better yet convert them to Wild statements which are much more efficient.

The directives within an Options resource may be one of the following:

compression=GZIP All files saved will be software compressed using the GNU ZIP compression format.
The compression is done on a file by file basis by the File daemon. If there is a problem reading
the tape in a single record of a file, it will at most affect that file and none of the other files on the
tape. Normally this option is not needed if you have a modern tape drive as the drive will do its
own compression. In fact, if you specify software compression at the same time you have hardware
compression turned on, your files may actually take more space on the volume.

Software compression is very important if you are writing your Volumes to a file, and it can also be
helpful if you have a fast computer but a slow network, otherwise it is generally better to rely your
tape drive’s hardware compression. As noted above, it is not generally a good idea to do both software
and hardware compression.

Specifying GZIP uses the default compression level 6 (i.e. GZIP is identical to GZIP6). If you want
a different compression level (1 through 9), you can specify it by appending the level number with
no intervening spaces to GZIP. Thus compression=GZIP1 would give minimum compression but
the fastest algorithm, and compression=GZIP9 would give the highest level of compression, but
requires more computation. According to the GZIP documentation, compression levels greater than
six generally give very little extra compression and are rather CPU intensive.

You can overwrite this option per Storage resource with [AllowCompression|option.

signature=SHA1 An SHA1 signature will be computed for all The SHA1 algorithm is purported to be some
what slower than the MD5 algorithm, but at the same time is significantly better from a cryptographic
point of view (i.e. much fewer collisions, much lower probability of being hacked.) It adds four more
bytes than the MD5 signature. We strongly recommend that either this option or MD5 be specified as
a default for all files. Note, only one of the two options MD5 or SHA1 can be computed for any file.

signature=MD5 An MD5 signature will be computed for all files saved. Adding this option generates
about 5% extra overhead for each file saved. In addition to the additional CPU time, the MD5
signature adds 16 more bytes per file to your catalog. We strongly recommend that this option or the
SHA1 option be specified as a default for all files.

basejob=<options> The options letters specified are used when running a Backup Level=Full with
BaseJobs. The options letters are the same than in the verify= option below.

accurate=<options> The options letters specified are used when running a Backup
Level=Incremental /Differential in Accurate mode. The options letters are the same than
in the verify= option below.

verify=<options> The options letters specified are used when running a Verify Level=Catalog as well
as the DiskToCatalog level job. The options letters may be any combination of the following:

i compare the inodes

p compare the permission bits

n compare the number of links

u compare the user id

g compare the group id

s compare the size

a compare the access time

m compare the modification time (st_mtime)

c compare the change time (st_ctime)

d report file size decreases
5 compare the MD5 signature
1 compare the SHA1 signature

A useful set of general options on the Level=Catalog or Level=DiskToCatalog verify is pins5 i.e.
compare permission bits, inodes, number of links, size, and MD5 changes.

onefs=yes|no If set to yes (the default), Bacula will remain on a single file system. That is it will not
backup file systems that are mounted on a subdirectory. If you are using a *nix system, you may not
even be aware that there are several different filesystems as they are often automatically mounted by
the OS (e.g. /dev, /net, /sys, /proc, ...). With Bacula 1.38.0 or later, it will inform you when it decides
not to traverse into another filesystem. This can be very useful if you forgot to backup a particular
partition. An example of the informational message in the job report is:

rufus-fd: /misc is a different filesystem. Will not descend from / into /misc

rufus-fd: /net is a different filesystem. Will not descend from / into /net

rufus-fd: /var/lib/nfs/rpc_pipefs is a different filesystem. Will not descend from /var/lib/nfs into /var/lib/nfs/rpc_pipe
rufus-fd: /selinux is a different filesystem. Will not descend from / into /selinux

rufus-fd: /sys is a different filesystem. Will not descend from / into /sys

rufus-fd: /dev is a different filesystem. Will not descend from / into /dev

rufus-fd: /home is a different filesystem. Will not descend from / into /home

Note: in previous versions of Bacula, the above message was of the form:

Filesystem change prohibited. Will not descend into /misc

If you wish to backup multiple filesystems, you can explicitly list each filesystem you want saved.
Otherwise, if you set the onefs option to no, Bacula will backup all mounted file systems (i.e. traverse
mount points) that are found within the FileSet. Thus if you have NFS or Samba file systems
mounted on a directory listed in your FileSet, they will also be backed up. Normally, it is preferable
to set onefs=yes and to explicitly name each filesystem you want backed up. Explicitly naming the
filesystems you want backed up avoids the possibility of getting into a infinite loop recursing filesystems.
Another possibility is to use onefs=no and to set fstype=ext2, See the example below for more
details.

If you think that Bacula should be backing up a particular directory and it is not, and you have
onefs=no set, before you complain, please do:

stat /
stat <filesystem>

where you replace filesystem with the one in question. If the Device: number is different for / and
for your filesystem, then they are on different filesystems. E.g.

stat /

File: ¢/’

Size: 4096 Blocks: 16 I0 Block: 4096 directory
Device: 302h/7704 Inode: 2 Links: 26

Access: (0755/drwxr-xr-x) Uid: (o/ root) Gid: (o/ root)
Access: 2005-11-10 12:28:01.000000000 +0100
Modify: 2005-09-27 17:52:32.000000000 +0200
Change: 2005-09-27 17:52:32.000000000 +0200

stat /net

File: ‘/home’

Size: 4096 Blocks: 16 I0 Block: 4096 directory
Device: 308h/776d4 Inode: 2 Links: 7

Access: (0755/drwxr-xr-x) Uid: (o/ root) Gid: (0/ root)
Access: 2005-11-10 12:28:02.000000000 +0100
Modify: 2005-11-06 12:36:48.000000000 +0100
Change: 2005-11-06 12:36:48.000000000 +0100

Also be aware that even if you include /home in your list of files to backup, as you most likely should,
you will get the informational message that ” /home is a different filesystem” when Bacula is processing
the / directory. This message does not indicate an error. This message means that while examining
the File = referred to in the second part of the message, Bacula will not descend into the directory
mentioned in the first part of the message. However, it is possible that the separate filesystem will be
backed up despite the message. For example, consider the following FileSet:

File
File

/

/var

where /var is a separate filesystem. In this example, you will get a message saying that Bacula will
not decend from / into /var. But it is important to realise that Bacula will descend into /var from
the second File directive shown above. In effect, the warning is bogus, but it is supplied to alert you
to possible omissions from your FileSet. In this example, /var will be backed up. If you changed the
FileSet such that it did not specify /var, then /var will not be backed up.

honor nodump flag=<yes|no> If your file system supports the nodump flag (e. g. most BSD-derived
systems) Bacula will honor the setting of the flag when this option is set to yes. Files having this flag
set will not be included in the backup and will not show up in the catalog. For directories with the
nodump flag set recursion is turned off and the directory will be listed in the catalog. If the honor
nodump flag option is not defined or set to no every file and directory will be eligible for backup.

portable=yes|no If set to yes (default is no), the Bacula File daemon will backup Win32 files in a portable
format, but not all Win32 file attributes will be saved and restored. By default, this option is set to
no, which means that on Win32 systems, the data will be backed up using Windows API calls and on
WinNT/2K/XP, all the security and ownership attributes will be properly backed up (and restored).
However this format is not portable to other systems — e.g. Unix, Win95/98/Me. When backing up
Unix systems, this option is ignored, and unless you have a specific need to have portable backups, we
recommend accept the default (no) so that the maximum information concerning your files is saved.

recurse=yes|no If set to yes (the default), Bacula will recurse (or descend) into all subdirectories found
unless the directory is explicitly excluded using an exclude definition. If you set recurse=no, Bacula
will save the subdirectory entries, but not descend into the subdirectories, and thus will not save the
files or directories contained in the subdirectories. Normally, you will want the default (yes).

sparse=yes|no Enable special code that checks for sparse files such as created by ndbm. The default is
no, so no checks are made for sparse files. You may specify sparse=yes even on files that are not
sparse file. No harm will be done, but there will be a small additional overhead to check for buffers of
all zero, and a small additional amount of space on the output archive will be used to save the seek
address of each non-zero record read.

Restrictions: Bacula reads files in 32K buffers. If the whole buffer is zero, it will be treated as a
sparse block and not written to tape. However, if any part of the buffer is non-zero, the whole buffer
will be written to tape, possibly including some disk sectors (generally 4098 bytes) that are all zero. As
a consequence, Bacula’s detection of sparse blocks is in 32K increments rather than the system block
size. If anyone considers this to be a real problem, please send in a request for change with the reason.

If you are not familiar with sparse files, an example is say a file where you wrote 512 bytes at address
zero, then 512 bytes at address 1 million. The operating system will allocate only two blocks, and the
empty space or hole will have nothing allocated. However, when you read the sparse file and read the
addresses where nothing was written, the OS will return all zeros as if the space were allocated, and
if you backup such a file, a lot of space will be used to write zeros to the volume. Worse yet, when
you restore the file, all the previously empty space will now be allocated using much more disk space.
By turning on the sparse option, Bacula will specifically look for empty space in the file, and any
empty space will not be written to the Volume, nor will it be restored. The price to pay for this is that
Bacula must search each block it reads before writing it. On a slow system, this may be important.
If you suspect you have sparse files, you should benchmark the difference or set sparse for only those
files that are really sparse.

readfifo=yes|no If enabled, tells the Client to read the data on a backup and write the data on a restore
to any FIFO (pipe) that is explicitly mentioned in the FileSet. In this case, you must have a program
already running that writes into the FIFO for a backup or reads from the FIFO on a restore. This
can be accomplished with the RunBeforeJob directive. If this is not the case, Bacula will hang
indefinitely on reading/writing the FIFO. When this is not enabled (default), the Client simply saves
the directory entry for the FIFO.

Unfortunately, when Bacula runs a RunBeforeJob, it waits until that script terminates, and if the script
accesses the FIFO to write into the it, the Bacula job will block and everything will stall. However,
Vladimir Stavrinov as supplied tip that allows this feature to work correctly. He simply adds the
following to the beginning of the RunBeforeJob script:

exec > /dev/null

noatime=yes|no If enabled, and if your Operating System supports the O_NOATIME file open flag, Bacula
will open all files to be backed up with this option. It makes it possible to read a file without updating
the inode atime (and also without the inode ctime update which happens if you try to set the atime
back to its previous value). It also prevents a race condition when two programs are reading the same
file, but only one does not want to change the atime. It’s most useful for backup programs and file
integrity checkers (and bacula can fit on both categories).

This option is particularly useful for sites where users are sensitive to their MailBox file access time.
It replaces both the keepatime option without the inconveniences of that option (see below).

If your Operating System does not support this option, it will be silently ignored by Bacula.

mtimeonly=yes|no If enabled, tells the Client that the selection of files during Incremental and Differential
backups should based only on the st_mtime value in the stat() packet. The default is no which means
that the selection of files to be backed up will be based on both the st_mtime and the st_ctime values.
In general, it is not recommended to use this option.

keepatime=yes|no The default is no. When enabled, Bacula will reset the st_atime (access time) field of
files that it backs up to their value prior to the backup. This option is not generally recommended as
there are very few programs that use st_atime, and the backup overhead is increased because of the
additional system call necessary to reset the times. However, for some files, such as mailboxes, when
Bacula backs up the file, the user will notice that someone (Bacula) has accessed the file. In this, case
keepatime can be useful. (I'm not sure this works on Win32).

Note, if you use this feature, when Bacula resets the access time, the change time (st_ctime) will
automatically be modified by the system, so on the next incremental job, the file will be backed up
even if it has not changed. As a consequence, you will probably also want to use mtimeonly = yes
as well as keepatime (thanks to Rudolf Cejka for this tip).

checkfilechanges=yes|no On versions 2.0.4 or greater, if enabled, the Client will check size, age of each
file after their backup to see if they have changed during backup. If time or size mismatch, an error
will raise.

zog-fd: Client1.2007-03-31_09.46.21 Error: /tmp/test mtime changed during backup.

In general, it is recommended to use this option.

hardlinks=yes|no When enabled (default), this directive will cause hard links to be backed up. However,
the File daemon keeps track of hard linked files and will backup the data only once. The process of
keeping track of the hard links can be quite expensive if you have lots of them (tens of thousands or
more). This doesn’t occur on normal Unix systems, but if you use a program like BackupPC, it can
create hundreds of thousands, or even millions of hard links. Backups become very long and the File
daemon will consume a lot of CPU power checking hard links. In such a case, set hardlinks=no and
hard links will not be backed up. Note, using this option will most likely backup more data and on a
restore the file system will not be restored identically to the original.

wild=<string> Specifies a wild-card string to be applied to the filenames and directory names. Note, if
Exclude is not enabled, the wild-card will select which files are to be included. If Exclude=yes is
specified, the wild-card will select which files are to be excluded. Multiple wild-card directives may
be specified, and they will be applied in turn until the first one that matches. Note, if you exclude a
directory, no files or directories below it will be matched.

You may want to test your expressions prior to running your backup by using the bwild program.
Please see the [Utilities chapter of this manual for more. You can also test your full FileSet definition
by using the lestimate command in the Console chapter of this manual. It is recommended to enclose
the string in double quotes.

wilddir=<string> Specifies a wild-card string to be applied to directory names only. No filenames will be
matched by this directive. Note, if Exclude is not enabled, the wild-card will select directories to be
included. If Exclude=yes is specified, the wild-card will select which directories are to be excluded.
Multiple wild-card directives may be specified, and they will be applied in turn until the first one that
matches. Note, if you exclude a directory, no files or directories below it will be matched.

It is recommended to enclose the string in double quotes.

You may want to test your expressions prior to running your backup by using the bwild program.
Please see the [Utilities chapter of this manual for more. You can also test your full FileSet definition
by using the lestimate command in the Console chapter of this manual. An example of excluding with
the WildDir option on Win32 machines is presented below.

wildfile=<string> Specifies a wild-card string to be applied to non-directories. That is no directory entries
will be matched by this directive. However, note that the match is done against the full path and
filename, so your wild-card string must take into account that filenames are preceded by the full path.
If Exclude is not enabled, the wild-card will select which files are to be included. If Exclude=yes is
specified, the wild-card will select which files are to be excluded. Multiple wild-card directives may be
specified, and they will be applied in turn until the first one that matches.

It is recommended to enclose the string in double quotes.

You may want to test your expressions prior to running your backup by using the bwild program.
Please see the [Utilities chapter of this manual for more. You can also test your full FileSet definition
by using the lestimatel command in the Console chapter of this manual. An example of excluding with
the WildFile option on Win32 machines is presented below.

regex=<string> Specifies a POSIX extended regular expression to be applied to the filenames and direc-
tory names, which include the full path. If Exclude is not enabled, the regex will select which files
are to be included. If Exclude=yes is specified, the regex will select which files are to be excluded.
Multiple regex directives may be specified within an Options resource, and they will be applied in turn
until the first one that matches. Note, if you exclude a directory, no files or directories below it will be
matched.

It is recommended to enclose the string in double quotes.

The regex libraries differ from one operating system to another, and in addition, regular expressions
are complicated, so you may want to test your expressions prior to running your backup by using the
bregex program. Please see the [Utilities chapter of this manual for more. You can also test your full
FileSet definition by using thelestimate command in the Console chapter of this manual.

You find yourself using a lot of Regex statements, which will cost quite a lot of CPU time, we recommend
you simplify them if you can, or better yet convert them to Wild statements which are much more
efficient.

regexfile=<string> Specifies a POSIX extended regular expression to be applied to non-directories. No
directories will be matched by this directive. However, note that the match is done against the full
path and filename, so your regex string must take into account that filenames are preceded by the full
path. If Exclude is not enabled, the regex will select which files are to be included. If Exclude=yes
is specified, the regex will select which files are to be excluded. Multiple regex directives may be
specified, and they will be applied in turn until the first one that matches.

It is recommended to enclose the string in double quotes.

The regex libraries differ from one operating system to another, and in addition, regular expressions
are complicated, so you may want to test your expressions prior to running your backup by using the
bregex program. Please see the |Utilities chapter of this manual for more.

regexdir=<string> Specifies a POSIX extended regular expression to be applied to directory names only.
No filenames will be matched by this directive. Note, if Exclude is not enabled, the regex will select
directories files are to be included. If Exclude=yes is specified, the regex will select which files are to
be excluded. Multiple regex directives may be specified, and they will be applied in turn until the first
one that matches. Note, if you exclude a directory, no files or directories below it will be matched.

It is recommended to enclose the string in double quotes.

The regex libraries differ from one operating system to another, and in addition, regular expressions
are complicated, so you may want to test your expressions prior to running your backup by using the
bregex program. Please see the [Utilities chapter of this manual for more.

exclude=yes|no The default is no. When enabled, any files matched within the Options will be excluded
from the backup.

aclsupport=yes|no The default is no. If this option is set to yes, and you have the POSIX libacl installed
on your system, Bacula will backup the file and directory UNIX Access Control Lists (ACL) as defined

in IEEE Std 1003.1e draft 17 and ?POSIX.1e” (abandoned). This feature is available on UNIX only
and depends on the ACL library. Bacula is automatically compiled with ACL support if the libacl
library is installed on your system (shown in config.out). While restoring the files Bacula will try to
restore the ACLs, if there is no ACL support available on the system, Bacula restores the files and
directories but not the ACL information. Please note, if you backup an EXT3 or XFS filesystem with
ACLs, then you restore them to a different filesystem (perhaps reiserfs) that does not have ACLs, the
ACLs will be ignored.

ignore case=yes|lno The default is no. On Windows systems, you will almost surely want to set this to
yes. When this directive is set to yes all the case of character will be ignored in wild-card and regex
comparisons. That is an uppercase A will match a lowercase a.

fstype=filesystem-type This option allows you to select files and directories by the filesystem type. The
permitted filesystem-type names are:

ext2, jfs, ntfs, proc, reiserfs, xfs, usbdevfs, sysfs, smbfs, is09660. For ext3 systems, use ext2.

You may have multiple Fstype directives, and thus permit matching of multiple filesystem types within
a single Options resource. If the type specified on the fstype directive does not match the filesystem
for a particular directive, that directory will not be backed up. This directive can be used to prevent
backing up non-local filesystems. Normally, when you use this directive, you would also set onefs=no
so that Bacula will traverse filesystems.

This option is not implemented in Win32 systems.

DriveType=Windows-drive-type This option is effective only on Windows machines and is somewhat
similar to the Unix/Linux fstype described above, except that it allows you to select what Windows
drive types you want to allow. By default all drive types are accepted.

The permitted drivetype names are:
removable, fixed, remote, cdrom, ramdisk

You may have multiple Driveype directives, and thus permit matching of multiple drive types within a
single Options resource. If the type specified on the drivetype directive does not match the filesystem
for a particular directive, that directory will not be backed up. This directive can be used to prevent
backing up non-local filesystems. Normally, when you use this directive, you would also set onefs=no
so that Bacula will traverse filesystems.

This option is not implemented in Unix/Linux systems.

hfsplussupport=yes|no This option allows you to turn on support for Mac OSX HFS plus finder infor-
mation.

strippath=<integer> This option will cause integer paths to be stripped from the front of the full
path/filename being backed up. This can be useful if you are migrating data from another vendor or
if you have taken a snapshot into some subdirectory. This directive can cause your filenames to be
overlayed with regular backup data, so should be used only by experts and with great care.

<file-list> is a list of directory and/or filename names specified with a File = directive. To include names
containing spaces, enclose the name between double-quotes. Wild-cards are not interpreted in file-lists. They
can only be specified in Options resources.

There are a number of special cases when specifying directories and files in a file-list. They are:

e Any name preceded by an at-sign (@) is assumed to be the name of a file, which contains a list of files
each preceded by a ”File =”. The named file is read once when the configuration file is parsed during
the Director startup. Note, that the file is read on the Director’s machine and not on the Client’s. In
fact, the @filename can appear anywhere within the conf file where a token would be read, and the
contents of the named file will be logically inserted in the place of the @filename. What must be in
the file depends on the location the @filename is specified in the conf file. For example:

Include {
Options { compression=GZIP }
@/home/files/my-files

}

e Any name beginning with a vertical bar (|) is assumed to be the name of a program. This program
will be executed on the Director’s machine at the time the Job starts (not when the Director reads
the configuration file), and any output from that program will be assumed to be a list of files or
directories, one per line, to be included. Before submitting the specified command bacula will performe
[character substitution.

This allows you to have a job that, for example, includes all the local partitions even if you change the
partitioning by adding a disk. The examples below show you how to do this. However, please note
two things:

1. if you want the local filesystems, you probably should be using the new fstype directive, which
was added in version 1.36.3 and set onefs=no.

2. the exact syntax of the command needed in the examples below is very system dependent. For
example, on recent Linux systems, you may need to add the -P option, on FreeBSD systems, the
options will be different as well.

In general, you will need to prefix your command or commands with a sh -c so that they are invoked
by a shell. This will not be the case if you are invoking a script as in the second example below. Also,
you must take care to escape (precede with a \) wild-cards, shell character, and to ensure that any
spaces in your command are escaped as well. If you use a single quotes () within a double quote (7),
Bacula will treat everything between the single quotes as one field so it will not be necessary to escape
the spaces. In general, getting all the quotes and escapes correct is a real pain as you can see by the
next example. As a consequence, it is often easier to put everything in a file and simply use the file
name within Bacula. In that case the sh -c will not be necessary providing the first line of the file is

##!/bin/sh.

As an example:

Include {
Options { signature = SHA1 }
File = "|sh -c ’df -1 | grep \""/dev/hd[ab]\" | grep -v \".*/tmp\" \

| awk \"{print \\$6}\"’"

will produce a list of all the local partitions on a Red Hat Linux system. Note, the above line was
split, but should normally be written on one line. Quoting is a real problem because you must quote
for Bacula which consists of preceding every \ and every ” with a \, and you must also quote for the
shell command. In the end, it is probably easier just to execute a small file with:

Include {
Options {
signature=MD5
}
File = "|my_partitions"

}

where my_partitions has:

#!/bin/sh
df -1 | grep ""/dev/hd[abl" | grep -v ".x/tmp" \
| awk "{print \$6}"

If the vertical bar (—) in front of my_partitions is preceded by a backslash as in \—, the program
will be executed on the Client’s machine instead of on the Director’s machine. Please note that if
the filename is given within quotes, you will need to use two slashes. An example, provided by John
Donagher, that backs up all the local UFS partitions on a remote system is:

FileSet {
Name = "All local partitions"
Include {
Options { signature=SHA1l; onefs=yes; }
File = "\\|bash -c \"df -k1F ufs | tail +2 | awk ’{print \$6}’\""
}
}

The above requires two backslash characters after the double quote (one preserves the next one). If
you are a Linux user, just change the ufs to ext3 (or your preferred filesystem type), and you will be
in business.

If you know what filesystems you have mounted on your system, e.g. for Red Hat Linux normally only
ext2 and ext3, you can backup all local filesystems using something like:

Include {
Options { signature = SHAl; onfs=no; fstype=ext2 }
File = /

Any file-list item preceded by a less-than sign (<) will be taken to be a file. This file will be read on
the Director’s machine (see below for doing it on the Client machine) at the time the Job starts, and
the data will be assumed to be a list of directories or files, one per line, to be included. The names
should start in column 1 and should not be quoted even if they contain spaces. This feature allows
you to modify the external file and change what will be saved without stopping and restarting Bacula
as would be necessary if using the @ modifier noted above. For example:

Include {

Options { signature = SHA1 }

File = "</home/files/local-filelist"
}

If you precede the less-than sign (<) with a backslash as in \ <, the file-list will be read on the Client
machine instead of on the Director’s machine. Please note that if the filename is given within quotes,
you will need to use two slashes.

Include {

Options { signature = SHA1 }

File = "\\</home/xxx/filelist-on-client"
}

If you explicitly specify a block device such as /dev/hdal, then Bacula (starting with version 1.28)
will assume that this is a raw partition to be backed up. In this case, you are strongly urged to specify
a sparse=yes include option, otherwise, you will save the whole partition rather than just the actual
data that the partition contains. For example:

Include {
Options { signature=MD5; sparse=yes }
File = /dev/hd6

}

will backup the data in device /dev/hd6. Note, the bf /dev/hd6 must be the raw partition itself.
Bacula will not back it up as a raw device if you specify a symbolic link to a raw device such as my be
created by the LVM Snapshot utilities.

Ludovic Strappazon has pointed out that this feature can be used to backup a full Microsoft Windows
disk. Simply boot into the system using a Linux Rescue disk, then load a statically linked Bacula as
described in the | Disaster Recovery Using Bacula chapter of this manual. Then save the whole disk
partition. In the case of a disaster, you can then restore the desired partition by again booting with
the rescue disk and doing a restore of the partition.

If you explicitly specify a FIFO device name (created with mkfifo), and you add the option read-
fifo=yes as an option, Bacula will read the FIFO and back its data up to the Volume. For example:

Include {

Options {
signature=SHA1
readfifo=yes

}

File = /home/abc/fifo

}

if /home/abc/fifo is a fifo device, Bacula will open the fifo, read it, and store all data thus obtained
on the Volume. Please note, you must have a process on the system that is writing into the fifo, or
Bacula will hang, and after one minute of waiting, Bacula will give up and go on to the next file. The
data read can be anything since Bacula treats it as a stream.

This feature can be an excellent way to do a "hot” backup of a very large database. You can use the
RunBeforeJob to create the fifo and to start a program that dynamically reads your database and
writes it to the fifo. Bacula will then write it to the Volume. Be sure to read the readfifo section that
gives a tip to ensure that the RunBeforeJob does not block Bacula.

During the restore operation, the inverse is true, after Bacula creates the fifo if there was any data
stored with it (no need to explicitly list it or add any options), that data will be written back to the
fifo. As a consequence, if any such FIFOs exist in the fileset to be restored, you must ensure that there
is a reader program or Bacula will block, and after one minute, Bacula will time out the write to the
fifo and move on to the next file.

e A file-list may not contain wild-cards. Use directives in the Options resource if you wish to specify
wild-cards or regular expression matching.

e The ExcludeDirContaining = <filename>> is a directive that can be added to the Include section
of the FileSet resource. If the specified filename (filename-string) is found on the Client in any
directory to be backed up, the whole directory will be ignored (not backed up). For example:

List of files to be backed up
FileSet {
Name = "MyFileSet"
Include {
Options {
signature = MD5
b
File = /home
Exclude Dir Containing = .excludeme
}
X

But in /home, there may be hundreds of directories of users and some people want to indicate that
they don’t want to have certain directories backed up. For example, with the above FileSet, if the user
or sysadmin creates a file named .excludeme in specific directories, such as

/home/user/www/cache/.excludeme
/home/user/temp/ .excludeme

then Bacula will not backup the two directories named:

/home/user/www/cache
/home/user/temp

NOTE: subdirectories will not be backed up. That is, the directive applies to the two directories in
question and any children (be they files, directories, etc).

15.8 FileSet Examples

The following is an example of a valid FileSet resource definition. Note, the first Include pulls in the contents
of the file /etc/backup.list when Bacula is started (i.e. the @), and that file must have each filename to
be backed up preceded by a File = and on a separate line.

FileSet {
Name = "Full Set"
Include {

Options {
Compression=GZIP
signature=SHA1
Sparse = yes

}

@/etc/backup.list

}
Include {
Options {
wildfile
wildfile = "*.exe"
Exclude = yes

"k o"

}
File
File

/root/myfile
/usr/lib/another_file

In the above example, all the files contained in /etc/backup.list will be compressed with GZIP compression,
an SHA1 signature will be computed on the file’s contents (its data), and sparse file handling will apply.

The two directories /root/myfile and /usr/lib/another_file will also be saved without any options, but all
files in those directories with the extensions .o and .exe will be excluded.

Let’s say that you now want to exclude the directory /tmp. The simplest way to do so is to add an exclude
directive that lists /tmp. The example above would then become:

FileSet {
Name = "Full Set"
Include {

Options {
Compression=GZIP
signature=SHA1
Sparse = yes

}
@/etc/backup.list
}
Include {
Options {
wildfile = "*.o0"
wildfile = "*.exe"
Exclude = yes
}
File = /root/myfile
File = /usr/lib/another_file
}
Exclude {
File = /tmp
}

}

You can add wild-cards to the File directives listed in the Exclude directory, but you need to take care
because if you exclude a directory, it and all files and directories below it will also be excluded.

Now lets take a slight variation on the above and suppose you want to save all your whole filesystem except
/tmp. The problem that comes up is that Bacula will not normally cross from one filesystem to another.
Doing a df command, you get the following output:

[kern@rufus k]$ df

Filesystem 1k-blocks Used Available Use) Mounted on
/dev/hdab 5044156 439232 4348692 10% /
/dev/hdal 62193 4935 54047 9% /boot
/dev/hda9 20161172 5524660 13612372 29% /home
/dev/hda2 62217 6843 52161 12% /rescue
/dev/hda8 5044156 42548 4745376 1%, /tmp
/dev/hdaé 5044156 2613132 2174792 55} /usr

none 127708 0 127708 0% /dev/shm

//minimatou/c$ 14099200 9895424 4203776 71% /mnt/mmatou
lmatou:/ 1554264 215884 1258056 15% /mnt/matou

Imatou:/home 2478140 1589952 760072 68% /mnt/matou/home

lmatou:/usr 1981000 1199960 678628 647 /mnt/matou/usr
lpmatou:/ 995116 484112 459596 52 /mnt/pmatou
lpmatou:/home 19222656 2787880 15458228 16% /mnt/pmatou/home
lpmatou:/usr 2478140 2038764 311260 87% /mnt/pmatou/usr
deuter:/ 4806936 97684 4465064 3% /mnt/deuter
deuter: /home 4806904 280100 4282620 7% /mnt/deuter/home

deuter:/files 44133352 27652876 14238608 67% /mnt/deuter/files

And we see that there are a number of separate filesystems (/ /boot /home /rescue /tmp and /usr not to
mention mounted systems). If you specify only / in your Include list, Bacula will only save the Filesystem
/dev/hdab. To save all filesystems except /tmp with out including any of the Samba or NFS mounted
systems, and explicitly excluding a /tmp, /proc, .journal, and .autofsck, which you will not want to be saved
and restored, you can use the following:

FileSet {
Name = Include_example
Include {
Options {
wilddir = /proc
wilddir = /tmp
wildfile = "/.journal"
wildfile = "/.autofsck"
exclude = yes
}
File = /
File = /boot
File = /home
File = /rescue
File = /usr
}

Since /tmp is on its own filesystem and it was not explicitly named in the Include list, it is not really needed
in the exclude list. It is better to list it in the Exclude list for clarity, and in case the disks are changed so
that it is no longer in its own partition.

Now, lets assume you only want to backup .Z and .gz files and nothing else. This is a bit trickier because
Bacula by default will select everything to backup, so we must exclude everything but .Z and .gz files. If
we take the first example above and make the obvious modifications to it, we might come up with a FileSet
that looks like this:

FileSet {
Name = "Full Set"
Include { rrrrrrrrrnnd
Options { This
wildfile = "*.Z" example
wildfile = "*.gz" doesn’t
work
} ERRRRNRRRNY!
File = /myfile
}
}

The *.Z and *.gz files will indeed be backed up, but all other files that are not matched by the Options
directives will automatically be backed up too (i.e. that is the default rule).

To accomplish what we want, we must explicitly exclude all other files. We do this with the following:

FileSet {
Name = "Full Set"
Include {
Options {
wildfile = "*.Z"
wildfile = "*.gz"

Options {
Exclude = yes
RegexFile = ".x"

}

File = /myfile

The ”trick” here was to add a RegexF'ile expression that matches all files. It does not match directory names,
so all directories in /myfile will be backed up (the directory entry) and any *.Z and *.gz files contained in
them. If you know that certain directories do not contain any *.Z or *.gz files and you do not want the
directory entries backed up, you will need to explicitly exclude those directories. Backing up a directory
entries is not very expensive.

Bacula uses the system regex library and some of them are different on different OSes. The above has
been reported not to work on FreeBSD. This can be tested by using the estimate job=job-name listing
command in the console and adapting the RegexFile expression appropriately. In a future version of Bacula,
we will supply our own Regex code to avoid such system dependencies.

Please be aware that allowing Bacula to traverse or change file systems can be very dangerous. For example,
with the following:

FileSet {
Name = "Bad example"
Include {
Options { onefs=no }
File = /mnt/matou
}
}

you will be backing up an NFS mounted partition (/mnt/matou), and since onefs is set to no, Bacula will
traverse file systems. Now if /mnt/matou has the current machine’s file systems mounted, as is often the
case, you will get yourself into a recursive loop and the backup will never end.

As a final example, let’s say that you have only one or two subdirectories of /home that you want to backup.
For example, you want to backup only subdirectories beginning with the letter a and the letter b — i.e.
/home/a* and /home/b*. Now, you might first try:

FileSet {
Name = "Full Set"
Include {

Options {
wilddir
wilddir

"/home/ax*"
"/home/bx"

}
File = /home

The problem is that the above will include everything in /home. To get things to work correctly, you need
to start with the idea of exclusion instead of inclusion. So, you could simply exclude all directories except
the two you want to use:

FileSet {
Name = "Full Set"
Include {
Options {
RegexDir = "~/home/[c-z]"
exclude = yes
}
File = /home
}
}

And assuming that all subdirectories start with a lowercase letter, this would work.

An alternative would be to include the two subdirectories desired and exclude everything else:

FileSet {
Name = "Full Set"
Include {
Options {
wilddir = "/home/a*"
wilddir = "/home/b*"

}

Options {
RegexDir = ".*"
exclude = yes

}

File = /home

The following example shows how to back up only the My Pictures directory inside the My Documents
directory for all users in C:/Documents and Settings, i.e. everything matching the pattern:

C:/Documents and Settings/* /My Documents/My Pictures/*
To understand how this can be achieved, there are two important points to remember:

Firstly, Bacula walks over the filesystem depth-first starting from the File = lines. It stops descending when
a directory is excluded, so you must include all ancestor directories of each directory containing files to be
included.

Secondly, each directory and file is compared to the Options clauses in the order they appear in the FileSet.
When a match is found, no further clauses are compared and the directory or file is either included or
excluded.

The FileSet resource definition below implements this by including specifc directories and files and excluding
everything else.

FileSet {
Name = "AllPictures"

Include {

"

File = "C:/Documents and Settings

Options {
signature = SHA1
verify = si
IgnoreCase = yes

Include all users’ directories so we reach the inner ones. Unlike a
WildDir pattern ending in *, this RegExDir only matches the top-level
directories and not any inner ones.

RegExDir = "~C:/Documents and Settings/[~/]+$"

Ditto all users’ My Documents directories.
WildDir = "C:/Documents and Settings/*/My Documents"

Ditto all users’ My Documents/My Pictures directories.
WildDir = "C:/Documents and Settings/*/My Documents/My Pictures"

Include the contents of the My Documents/My Pictures directories and
any subdirectories.
Wild = "C:/Documents and Settings/*/My Documents/My Pictures/*"

}

Options {
Exclude = yes
IgnoreCase = yes

Exclude everything else, in particular any files at the top level and
any other directories or files in the users’ directories.
Wild = "C:/Documents and Settings/*"

15.9 Backing up Raw Partitions

The following FileSet definition will backup a raw partition:

FileSet {
Name = "RawPartition"
Include {
Options { sparse=yes }
File = /dev/hda2
}
}

While backing up and restoring a raw partition, you should ensure that no other process including the system
is writing to that partition. As a precaution, you are strongly urged to ensure that the raw partition is not
mounted or is mounted read-only. If necessary, this can be done using the RunBeforeJob directive.

15.10 Excluding Files and Directories

You may also include full filenames or directory names in addition to using wild-cards and Exclude=yes in
the Options resource as specified above by simply including the files to be excluded in an Exclude resource
within the FileSet. For example:

FileSet {
Name = Exclusion_example
Include {
Options {
Signature = SHA1
¥
File = /
File = /boot
File = /home
File = /rescue
File = /usr
}
Exclude {
File = /proc
File = /tmp
File = .journal
File = .autofsck
}
}

15.11 Windows FileSets

If you are entering Windows file names, the directory path may be preceded by the drive and a colon (as in
c:). However, the path separators must be specified in Unix convention (i.e. forward slash (/)). If you wish
to include a quote in a file name, precede the quote with a backslash (\). For example you might use the
following for a Windows machine to backup the "My Documents” directory:

FileSet {
Name = "Windows Set"
Include {
Options {
WildFile = "*.obj"
WildFile = "*.exe"
exclude = yes
}
File = "c:/My Documents"
}

For exclude lists to work correctly on Windows, you must observe the following rules:

e Filenames are case sensitive, so you must use the correct case.

To exclude a directory, you must not have a trailing slash on the directory name.

If you have spaces in your filename, you must enclose the entire name in double-quote characters (7).
Trying to use a backslash before the space will not work.

If you are using the old Exclude syntax (noted below), you may not specify a drive letter in the exclude.
The new syntax noted above should work fine including driver letters.

Thanks to Thiago Lima for summarizing the above items for us. If you are having difficulties getting includes
or excludes to work, you might want to try using the estimate job=xxx listing command documented in

the |Console chapter of this manual.

On Win32 systems, if you move a directory or file or rename a file into the set of files being backed up,
and a Full backup has already been made, Bacula will not know there are new files to be saved during an
Incremental or Differential backup (blame Microsoft, not me). To avoid this problem, please copy any new
directory or files into the backup area. If you do not have enough disk to copy the directory or files, move
them, but then initiate a Full backup.

A Windows Example FileSet The following example was contributed by Russell Howe. Please note
that for presentation purposes, the lines beginning with Data and Internet have been wrapped and should
included on the previous line with one space.

This is my Windows 2000 fileset:
FileSet {
Name = "Windows 2000"
Include {
Options {
signature = MD5
Exclude = yes
IgnoreCase = yes
Exclude Mozilla-based programs’ file caches
WildDir = "[A-Z]:/Documents and Settings/*/Application
Data/*/Profiles/*/*/Cache"
WildDir = "[A-Z]:/Documents and Settings/*/Application
Data/#*/Profiles/*/+*/Cache.Trash"
WildDir = "[A-Z]:/Documents and Settings/*/Application
Data/*/Profiles/*/*/ImapMail"

Exclude user’s registry files - they’re always in use anyway.

WildFile = "[A-Z]:/Documents and Settings/*/Local Settings/Application
Data/Microsoft/Windows/usrclass.*"

WildFile = "[A-Z]:/Documents and Settings/*/ntuser.x*"

Exclude directories full of lots and lots of useless little files

WildDir = "[A-Z]:/Documents and Settings/*/Cookies"
WildDir = "[A-Z]:/Documents and Settings/*/Recent"
WildDir = "[A-Z]:/Documents and Settings/*/Local Settings/History"

WildDir = "[A-Z]:/Documents and Settings/*/Local Settings/Temp"
WildDir = "[A-Z]:/Documents and Settings/*/Local Settings/Temporary
Internet Files"

These are always open and unable to be backed up
WildFile = "[A-Z]:/Documents and Settings/All Users/Application
Data/Microsoft/Network/Downloader/qmgr [01] .dat"

Some random bits of Windows we want to ignore
WildFile = "[A-Z]:/WINNT/security/logs/scepol.log"
WildDir = "[A-Z]:/WINNT/system32/config"

WildDir = "[A-Z]:/WINNT/msdownld.tmp"

WildDir = "[A-Z]:/WINNT/Internet Logs"

WildDir = "[A-Z]:/WINNT/$Nt*Uninstallx"

WildDir = "[A-Z]:/WINNT/sysvol"

WildFile = "[A-Z]:/WINNT/cluster/CLUSDB"

WildFile
WildFile

WildFile =

WildFile
WildFile
WildFile

WildFile =

WildFile
WildFile

WildFile =

WildFile
WildFile
WildFile
WildFile
WildFile
WildFile

WildFile =

= n [A-Z]

" [A-Z]
" [A-Z]
" [A—Z]
" [A-Z]
" [A-Z]
" [A-Z]
" [A-Z]
" [A-Z]
" [A-Z]
" [A_Z]
" [A-Z]
" [A-Z]

= "[A-Z]

" [A-Z]
" [A-Z]
" [A-Z]

:/WINNT/cluster/CLUSDB.LOG"
:/WINNT/NTDS/edb.log"
:/WINNT/NTDS/ntds.dit"
:/WINNT/NTDS/temp.edb"
:/WINNT/ntfrs/jet/log/edb.log"
:/WINNT/ntfrs/jet/ntfrs.jdb"
:/WINNT/ntfrs/jet/temp/tmp.edb"
:/WINNT/system32/CPL.CFG"
:/WINNT/system32/dhcp/dhcp.mdb"
:/WINNT/system32/dhcp/j50.1log"
:/WINNT/system32/dhcp/tmp.edb"
:/WINNT/system32/LServer/edb.log"
:/WINNT/system32/LServer/TLSLic.edb"
:/WINNT/system32/LServer/tmp.edb"
:/WINNT/system32/wins/j50.log"
:/WINNT/system32/wins/wins.mdb"
:/WINNT/system32/wins/winstmp.mdb"

Temporary directories & files

WildDir
WildDir
WildFile
WildDir

"[A-Z]:
"[A-Z]:

/WINNT/Temp"
/temp"

"y .tmp"

"[A-Z]:

/tmp"

WildDir = "[A-Z]:/var/tmp"

Recycle bins
WildDir = "[A-Z]:/RECYCLER"

Swap files

WildFile

"[A-Z]

:/pagefile.sys"

These are programs and are easier to reinstall than restore from

backup

WildDir =

WildDir
WildDir

WildDir =

WildDir
WildDir
WildDir

WildDir =

WildDir

WildDir =

}

"[A-Z]:
"[A-Z]:
"[A-Z]:
"[A-2]:
"[A-Z]:
"[A-2]:
"[A-Z]:
"[A-Z]:
"[A-Z]:
"[A-2]:

Our Win2k boxen
File = "C:/"
File = "D:/"

/cygwin"

/Program Files/Grisoft"

/Program Files/Java"

/Program Files/Java Web Start"
/Program Files/JavaSoft"

/Program Files/Microsoft Office"
/Program Files/Mozilla Firefox"
/Program Files/Mozilla Thunderbird"
/Program Files/mozilla.org"
/Program Files/OpenOfficex"

all have C: and D:

as the main hard drives.

Note, the three line of the above Exclude were split to fit on the document page, they should be written on
a single line in real use.

Windows NTFS Naming Considerations NTFS filenames containing Unicode characters should now
be supported as of version 1.37.30 or later.

15.12 Testing Your FileSet

If you wish to get an idea of what your FileSet will really backup or if your exclusion rules will work correctly,
you can test it by using the estimate command in the Console program. See the estimate in the Console
chapter of this manual.

As an example, suppose you add the following test FileSet:

FileSet {

Name = Test

Include {
File = /home/xxx/test
Options {
regex = ".*\.c$"
}
}

}

You could then add some test files to the directory /home/xxx/test and use the following command in
the console:

estimate job=<any-job-name> listing client=<desired-client> fileset=Test

to give you a listing of all files that match.

15.13 The Client Resource

The Client resource defines the attributes of the Clients that are served by this Director; that is the machines
that are to be backed up. You will need one Client resource definition for each machine to be backed up.

Client (or FileDaemon) Start of the Client directives.

Name = <name> The client name which will be used in the Job resource directive or in the console run
command. This directive is required.

Address = <address> Where the address is a host name, a fully qualified domain name, or a network
address in dotted quad notation for a Bacula File server daemon. This directive is required.

FD Port = <port-number> Where the port is a port number at which the Bacula File server daemon
can be contacted. The default is 9102.

Catalog = <Catalog-resource-name> This specifies the name of the catalog resource to be used for
this Client. This directive is required.

Password = <password> This is the password to be used when establishing a connection with the File
services, so the Client configuration file on the machine to be backed up must have the same password
defined for this Director. This directive is required. If you have either /dev/random bc on your
machine, Bacula will generate a random password during the configuration process, otherwise it will
be left blank.

The password is plain text. It is not generated through any special process, but it is preferable for
security reasons to make the text random.

File Retention = <time-period-specification> The File Retention directive defines the length of time
that Bacula will keep File records in the Catalog database after the End time of the Job corresponding
to the File records. When this time period expires, and if AutoPrune is set to yes Bacula will prune
(remove) File records that are older than the specified File Retention period. Note, this affects only
records in the catalog database. It does not affect your archive backups.

File records may actually be retained for a shorter period than you specify on this directive if you specify
either a shorter Job Retention or a shorter Volume Retention period. The shortest retention period
of the three takes precedence. The time may be expressed in seconds, minutes, hours, days, weeks,
months, quarters, or years. See the| Configuration chapter|of this manual for additional details of time
specification.

The default is 60 days.

Job Retention = <time-period-specification> The Job Retention directive defines the length of time
that Bacula will keep Job records in the Catalog database after the Job End time. When this time
period expires, and if AutoPrune is set to yes Bacula will prune (remove) Job records that are older

than the specified File Retention period. As with the other retention periods, this affects only records
in the catalog and not data in your archive backup.

If a Job record is selected for pruning, all associated File and JobMedia records will also be pruned
regardless of the File Retention period set. As a consequence, you normally will set the File retention
period to be less than the Job retention period. The Job retention period can actually be less than the
value you specify here if you set the Volume Retention directive in the Pool resource to a smaller
duration. This is because the Job retention period and the Volume retention period are independently
applied, so the smaller of the two takes precedence.

The Job retention period is specified as seconds, minutes, hours, days, weeks, months, quarters, or
years. See the| Configuration chapter of this manual for additional details of time specification.

The default is 180 days.

AutoPrune = <yes/no> If AutoPrune is set to yes (default), Bacula (version 1.20 or greater) will auto-
matically apply the File retention period and the Job retention period for the Client at the end of the
Job. If you set AutoPrune = no, pruning will not be done, and your Catalog will grow in size each
time you run a Job. Pruning affects only information in the catalog and not data stored in the backup
archives (on Volumes).

Maximum Concurrent Jobs = <number> where <number> is the maximum number of Jobs with the
current Client that can run concurrently. Note, this directive limits only Jobs for Clients with the same
name as the resource in which it appears. Any other restrictions on the maximum concurrent jobs
such as in the Director, Job, or Storage resources will also apply in addition to any limit specified here.
The default is set to 1, but you may set it to a larger number.

Priority = <number> The number specifies the priority of this client relative to other clients that the
Director is processing simultaneously. The priority can range from 1 to 1000. The clients are ordered
such that the smaller number priorities are performed first (not currently implemented).

The following is an example of a valid Client resource definition:

Client {
Name = Minimatou
FDAddress = minimatou
Catalog = MySQL
Password = very_good

}

15.14 The Storage Resource

The Storage resource defines which Storage daemons are available for use by the Director.

Storage Start of the Storage resources. At least one storage resource must be specified.

Name = <name> The name of the storage resource. This name appears on the Storage directive specified
in the Job resource and is required.

Address = <address> Where the address is a host name, a fully qualified domain name, or an IP
address. Please note that the <address> as specified here will be transmitted to the File daemon
who will then use it to contact the Storage daemon. Hence, it is not, a good idea to use localhost as
the name but rather a fully qualified machine name or an IP address. This directive is required.

SD Port = <port> Where port is the port to use to contact the storage daemon for information and
to start jobs. This same port number must appear in the Storage resource of the Storage daemon’s
configuration file. The default is 9103.

Password = <password> This is the password to be used when establishing a connection with the Storage
services. This same password also must appear in the Director resource of the Storage daemon’s
configuration file. This directive is required. If you have either /dev/random bc on your machine,

Bacula will generate a random password during the configuration process, otherwise it will be left
blank.

The password is plain text. It is not generated through any special process, but it is preferable for
security reasons to use random text.

Device = <device-name> This directive specifies the Storage daemon’s name of the device resource to
be used for the storage. If you are using an Autochanger, the name specified here should be the name of
the Storage daemon’s Autochanger resource rather than the name of an individual device. This name is
not the physical device name, but the logical device name as defined on the Name directive contained
in the Device or the Autochanger resource definition of the Storage daemon configuration file.
You can specify any name you would like (even the device name if you prefer) up to a maximum of 127
characters in length. The physical device name associated with this device is specified in the Storage
daemon configuration file (as Archive Device). Please take care not to define two different Storage
resource directives in the Director that point to the same Device in the Storage daemon. Doing so
may cause the Storage daemon to block (or hang) attempting to open the same device that is already
open. This directive is required.

Media Type = <MediaType> This directive specifies the Media Type to be used to store the data. This
is an arbitrary string of characters up to 127 maximum that you define. It can be anything you want.
However, it is best to make it descriptive of the storage media (e.g. File, DAT, ”HP DLT8000”, 8mm,
...). In addition, it is essential that you make the Media Type specification unique for each storage
media type. If you have two DDS-4 drives that have incompatible formats, or if you have a DDS-4
drive and a DDS-4 autochanger, you almost certainly should specify different Media Types. During
a restore, assuming a DDS-4 Media Type is associated with the Job, Bacula can decide to use any
Storage daemon that supports Media Type DDS-4 and on any drive that supports it.

If you are writing to disk Volumes, you must make doubly sure that each Device resource defined in
the Storage daemon (and hence in the Director’s conf file) has a unique media type. Otherwise for
Bacula versions 1.38 and older, your restores may not work because Bacula will assume that you can
mount any Media Type with the same name on any Device associated with that Media Type. This is
possible with tape drives, but with disk drives, unless you are very clever you cannot mount a Volume
in any directory — this can be done by creating an appropriate soft link.

Currently Bacula permits only a single Media Type per Storage and Device definition. Consequently,
if you have a drive that supports more than one Media Type, you can give a unique string to Volumes
with different intrinsic Media Type (Media Type = DDS-3-4 for DDS-3 and DDS-4 types), but then
those volumes will only be mounted on drives indicated with the dual type (DDS-3-4).

If you want to tie Bacula to using a single Storage daemon or drive, you must specify a unique Media
Type for that drive. This is an important point that should be carefully understood. Note, this applies
equally to Disk Volumes. If you define more than one disk Device resource in your Storage daemon’s
conf file, the Volumes on those two devices are in fact incompatible because one can not be mounted
on the other device since they are found in different directories. For this reason, you probably should
use two different Media Types for your two disk Devices (even though you might think of them as both
being File types). You can find more on this subject in the Basic Volume Management chapter of this
manual.

The MediaType specified in the Director’s Storage resource, must correspond to the Media Type
specified in the Device resource of the Storage daemon configuration file. This directive is required,
and it is used by the Director and the Storage daemon to ensure that a Volume automatically selected
from the Pool corresponds to the physical device. If a Storage daemon handles multiple devices (e.g.
will write to various file Volumes on different partitions), this directive allows you to specify exactly
which device.

As mentioned above, the value specified in the Director’s Storage resource must agree with the value
specified in the Device resource in the Storage daemon’s configuration file. It is also an additional
check so that you don’t try to write data for a DLT onto an 8mm device.

Autochanger = <yes|no> If you specify yes for this command (the default is no), when you use the label
command or the add command to create a new Volume, Bacula will also request the Autochanger
Slot number. This simplifies creating database entries for Volumes in an autochanger. If you forget
to specify the Slot, the autochanger will not be used. However, you may modify the Slot associated
with a Volume at any time by using the update volume or update slots command in the console
program. When autochanger is enabled, the algorithm used by Bacula to search for available volumes

will be modified to consider only Volumes that are known to be in the autochanger’s magazine. If no
in changer volume is found, Bacula will attempt recycling, pruning, ..., and if still no volume is found,
Bacula will search for any volume whether or not in the magazine. By privileging in changer volumes,
this procedure minimizes operator intervention. The default is no.

For the autochanger to be used, you must also specify Autochanger = yes in the [Device Resourcel
in the Storage daemon’s configuration file as well as other important Storage daemon configuration
information. Please consult the Using Autochangers| manual of this chapter for the details of using
autochangers.

Maximum Concurrent Jobs = <number> where <number> is the maximum number of Jobs with
the current Storage resource that can run concurrently. Note, this directive limits only Jobs for Jobs
using this Storage daemon. Any other restrictions on the maximum concurrent jobs such as in the
Director, Job, or Client resources will also apply in addition to any limit specified here. The default
is set to 1, but you may set it to a larger number. However, if you set the Storage daemon’s number
of concurrent jobs greater than one, we recommend that you read the waring documented under
[Maximum Concurrent Jobs|in the Director’s resource or simply turn data spooling on as documented

in the Data Spooling| chapter of this manual.

AllowCompression = <yes|no> This directive is optional, and if you specify No (the default is Yes), it
will cause backups jobs running on this storage resource to run without client File Daemon compression.
This effectively overrides compression options in FileSets used by jobs which use this storage resource.

Heartbeat Interval = <time-interval> This directive is optional and if specified will cause the Director
to set a keepalive interval (heartbeat) in seconds on each of the sockets it opens for the Storage resource.
This value will override any specified at the Director level. It is implemented only on systems (Linux,
...) that provide the setsockopt TCP_KEEPIDLE function. The default value is zero, which means
no change is made to the socket.

The following is an example of a valid Storage resource definition:

Definition of tape storage device

Storage {
Name = DLTDrive
Address = lpmatou
Password = storage_password # password for Storage daemon
Device = "HP DLT 80" # same as Device in Storage daemon
Media Type = DLT8000 # same as MediaType in Storage daemon

15.15 The Pool Resource

The Pool resource defines the set of storage Volumes (tapes or files) to be used by Bacula to write the data.
By configuring different Pools, you can determine which set of Volumes (media) receives the backup data.
This permits, for example, to store all full backup data on one set of Volumes and all incremental backups
on another set of Volumes. Alternatively, you could assign a different set of Volumes to each machine that
you backup. This is most easily done by defining multiple Pools.

Another important aspect of a Pool is that it contains the default attributes (Maximum Jobs, Retention
Period, Recycle flag, ...) that will be given to a Volume when it is created. This avoids the need for you
to answer a large number of questions when labeling a new Volume. Each of these attributes can later be
changed on a Volume by Volume basis using the update command in the console program. Note that you
must explicitly specify which Pool Bacula is to use with each Job. Bacula will not automatically search for
the correct Pool.

Most often in Bacula installations all backups for all machines (Clients) go to a single set of Volumes. In
this case, you will probably only use the Default Pool. If your backup strategy calls for you to mount a
different tape each day, you will probably want to define a separate Pool for each day. For more information
on this subject, please see the Backup Strategies| chapter of this manual.

To use a Pool, there are three distinct steps. First the Pool must be defined in the Director’s configuration
file. Then the Pool must be written to the Catalog database. This is done automatically by the Director
each time that it starts, or alternatively can be done using the create command in the console program.
Finally, if you change the Pool definition in the Director’s configuration file and restart Bacula, the pool will
be updated alternatively you can use the update pool console command to refresh the database image. It is
this database image rather than the Director’s resource image that is used for the default Volume attributes.
Note, for the pool to be automatically created or updated, it must be explicitly referenced by a Job resource.

Next the physical media must be labeled. The labeling can either be done with the label command in the
console program or using the btape program. The preferred method is to use the label command in the
console program.

Finally, you must add Volume names (and their attributes) to the Pool. For Volumes to be used by Bacula
they must be of the same Media Type as the archive device specified for the job (i.e. if you are going to
back up to a DLT device, the Pool must have DLT volumes defined since 8mm volumes cannot be mounted
on a DLT drive). The Media Type has particular importance if you are backing up to files. When running
a Job, you must explicitly specify which Pool to use. Bacula will then automatically select the next Volume
to use from the Pool, but it will ensure that the Media Type of any Volume selected from the Pool is
identical to that required by the Storage resource you have specified for the Job.

If you use the label command in the console program to label the Volumes, they will automatically be added
to the Pool, so this last step is not normally required.

It is also possible to add Volumes to the database without explicitly labeling the physical volume. This is
done with the add console command.

As previously mentioned, each time Bacula starts, it scans all the Pools associated with each Catalog, and
if the database record does not already exist, it will be created from the Pool Resource definition. Bacula
probably should do an update pool if you change the Pool definition, but currently, you must do this
manually using the update pool command in the Console program.

The Pool Resource defined in the Director’s configuration file (bacula-dir.conf) may contain the following
directives:

Pool Start of the Pool resource. There must be at least one Pool resource defined.

Name = <name> The name of the pool. For most applications, you will use the default pool name
Default. This directive is required.

Maximum Volumes = <number> This directive specifies the maximum number of volumes (tapes or
files) contained in the pool. This directive is optional, if omitted or set to zero, any number of volumes
will be permitted. In general, this directive is useful for Autochangers where there is a fixed number
of Volumes, or for File storage where you wish to ensure that the backups made to disk files do not
become too numerous or consume too much space.

Pool Type = <type> This directive defines the pool type, which corresponds to the type of Job being
run. It is required and may be one of the following:

Backup
*Archive
*Cloned
*Migration
*Copy

*Save

Note, only Backup is current implemented.

Storage = <storage-resource-name> The Storage directive defines the name of the storage services
where you want to backup the FileSet data. For additional details, see the Storage Resource Chapter|
of this manual. The Storage resource may also be specified in the Job resource, but the value, if any,
in the Pool resource overrides any value in the Job. This Storage resource definition is not required by

either the Job resource or in the Pool, but it must be specified in one or the other. If not configuration
error will result.

Use Volume Once = <yes|no> This directive if set to yes specifies that each volume is to be used only
once. This is most useful when the Media is a file and you want a new file for each backup that is done.
The default is no (i.e. use volume any number of times). This directive will most likely be phased out
(deprecated), so you are recommended to use Maximum Volume Jobs = 1 instead.

The value defined by this directive in the bacula-dir.conf file is the default value used when a Volume
is created. Once the volume is created, changing the value in the bacula-dir.conf file will not change
what is stored for the Volume. To change the value for an existing Volume you must use the update
command in the Console.

Please see the notes below under Maximum Volume Jobs concerning using this directive with
multiple simultaneous jobs.

Maximum Volume Jobs = <positive-integer> This directive specifies the maximum number of Jobs
that can be written to the Volume. If you specify zero (the default), there is no limit. Otherwise,
when the number of Jobs backed up to the Volume equals positive-integer the Volume will be
marked Used. When the Volume is marked Used it can no longer be used for appending Jobs, much
like the Full status but it can be recycled if recycling is enabled, and thus used again. By setting
MaximumVolumeJobs to one, you get the same effect as setting UseVolumeOnce = yes.

The value defined by this directive in the bacula-dir.conf file is the default value used when a Volume
is created. Once the volume is created, changing the value in the bacula-dir.conf file will not change
what is stored for the Volume. To change the value for an existing Volume you must use the update
command in the Console.

If you are running multiple simultaneous jobs, this directive may not work correctly because when a
drive is reserved for a job, this directive is not taken into account, so multiple jobs may try to start
writing to the Volume. At some point, when the Media record is updated, multiple simultaneous jobs
may fail since the Volume can no longer be written.

Maximum Volume Files = <positive-integer> This directive specifies the maximum number of files
that can be written to the Volume. If you specify zero (the default), there is no limit. Otherwise, when
the number of files written to the Volume equals positive-integer the Volume will be marked Used.
When the Volume is marked Used it can no longer be used for appending Jobs, much like the Full
status but it can be recycled if recycling is enabled and thus used again. This value is checked and the
Used status is set only at the end of a job that writes to the particular volume.

The value defined by this directive in the bacula-dir.conf file is the default value used when a Volume
is created. Once the volume is created, changing the value in the bacula-dir.conf file will not change
what is stored for the Volume. To change the value for an existing Volume you must use the update
command in the Console.

Maximum Volume Bytes = <size> This directive specifies the maximum number of bytes that can be
written to the Volume. If you specify zero (the default), there is no limit except the physical size of
the Volume. Otherwise, when the number of bytes written to the Volume equals size the Volume will
be marked Used. When the Volume is marked Used it can no longer be used for appending Jobs,
much like the Full status but it can be recycled if recycling is enabled, and thus the Volume can be
re-used after recycling. This value is checked and the Used status set while the job is writing to the
particular volume.

This directive is particularly useful for restricting the size of disk volumes, and will work correctly even
in the case of multiple simultaneous jobs writing to the volume.

The value defined by this directive in the bacula-dir.conf file is the default value used when a Volume
is created. Once the volume is created, changing the value in the bacula-dir.conf file will not change
what is stored for the Volume. To change the value for an existing Volume you must use the update
command in the Console.

Volume Use Duration = <time-period-specification> The Volume Use Duration directive defines
the time period that the Volume can be written beginning from the time of first data write to the
Volume. If the time-period specified is zero (the default), the Volume can be written indefinitely. Oth-
erwise, the next time a job runs that wants to access this Volume, and the time period from the first
write to the volume (the first Job written) exceeds the time-period-specification, the Volume will be
marked Used, which means that no more Jobs can be appended to the Volume, but it may be recycled

if recycling is enabled. Using the command status dir applies algorithms similar to running jobs, so
during such a command, the Volume status may also be changed. Once the Volume is recycled, it will
be available for use again.

You might use this directive, for example, if you have a Volume used for Incremental backups, and
Volumes used for Weekly Full backups. Once the Full backup is done, you will want to use a different
Incremental Volume. This can be accomplished by setting the Volume Use Duration for the Incremental
Volume to six days. L.e. it will be used for the 6 days following a Full save, then a different Incremental
volume will be used. Be careful about setting the duration to short periods such as 23 hours, or you
might experience problems of Bacula waiting for a tape over the weekend only to complete the backups
Monday morning when an operator mounts a new tape.

The use duration is checked and the Used status is set only at the end of a job that writes to the
particular volume, which means that even though the use duration may have expired, the catalog entry
will not be updated until the next job that uses this volume is run. This directive is not intended to
be used to limit volume sizes and will not work correctly (i.e. will fail jobs) if the use duration expires
while multiple simultaneous jobs are writing to the volume.

Please note that the value defined by this directive in the bacula-dir.conf file is the default value used
when a Volume is created. Once the volume is created, changing the value in the bacula-dir.conf file
will not change what is stored for the Volume. To change the value for an existing Volume you must
use the|update volume|command in the Console.

Catalog Files = <yes|no> This directive defines whether or not you want the names of the files that were
saved to be put into the catalog. The default is yes. The advantage of specifying Catalog Files =
No is that you will have a significantly smaller Catalog database. The disadvantage is that you will not
be able to produce a Catalog listing of the files backed up for each Job (this is often called Browsing).
Also, without the File entries in the catalog, you will not be able to use the Console restore command
nor any other command that references File entries.

AutoPrune = <yes/no> If AutoPrune is set to yes (default), Bacula (version 1.20 or greater) will auto-
matically apply the Volume Retention period when new Volume is needed and no appendable Volumes
exist in the Pool. Volume pruning causes expired Jobs (older than the Volume Retention period)
to be deleted from the Catalog and permits possible recycling of the Volume.

Volume Retention = <time-period-specification> The Volume Retention directive defines the length
of time that Bacula will keep records associated with the Volume in the Catalog database after the
End time of each Job written to the Volume. When this time period expires, and if AutoPrune is
set to yes Bacula may prune (remove) Job records that are older than the specified Volume Retention
period if it is necessary to free up a Volume. Recycling will not occur until it is absolutely necessary
to free up a volume (i.e. no other writable volume exists). All File records associated with pruned
Jobs are also pruned. The time may be specified as seconds, minutes, hours, days, weeks, months,
quarters, or years. The Volume Retention is applied independently of the Job Retention and the
File Retention periods defined in the Client resource. This means that all the retentions periods are
applied in turn and that the shorter period is the one that effectively takes precedence. Note, that
when the Volume Retention period has been reached, and it is necessary to obtain a new volume,
Bacula will prune both the Job and the File records. This pruning could also occur during a status
dir command because it uses similar algorithms for finding the next available Volume.

It is important to know that when the Volume Retention period expires, Bacula does not automatically
recycle a Volume. It attempts to keep the Volume data intact as long as possible before over writing
the Volume.

By defining multiple Pools with different Volume Retention periods, you may effectively have a set of
tapes that is recycled weekly, another Pool of tapes that is recycled monthly and so on. However, one
must keep in mind that if your Volume Retention period is too short, it may prune the last valid
Full backup, and hence until the next Full backup is done, you will not have a complete backup of
your system, and in addition, the next Incremental or Differential backup will be promoted to a Full
backup. As a consequence, the minimum Volume Retention period should be at twice the interval
of your Full backups. This means that if you do a Full backup once a month, the minimum Volume
retention period should be two months.

The default Volume retention period is 365 days, and either the default or the value defined by this
directive in the bacula-dir.conf file is the default value used when a Volume is created. Once the volume
is created, changing the value in the bacula-dir.conf file will not change what is stored for the Volume.
To change the value for an existing Volume you must use the update command in the Console.

Action On Purge = <Truncate This directive ActionOnPurge=Truncate instructs Bacula to trun-
cate the volume when it is purged. It is useful to prevent disk based volumes from consuming too much
space.

Pool {
Name = Default
Action On Purge = Truncate

ScratchPool = <pool-resource-name> This directive permits to specify a dedicate Scratch for the cur-
rent pool. This pool will replace the special pool named Scrach for volume selection. For more
information about Scratch see|Scratch Pool section of this manual. This is useful when using multiple
storage sharing the same mediatype or when you want to dedicate volumes to a particular set of pool.

RecyclePool = <pool-resource-name> This directive defines to which pool the Volume will be placed
(moved) when it is recycled. Without this directive, a Volume will remain in the same pool when it is
recycled. With this directive, it can be moved automatically to any existing pool during a recycle. This
directive is probably most useful when defined in the Scratch pool, so that volumes will be recycled
back into the Scratch pool. For more on the see the[Scratch Pooll section of this manual.

Although this directive is called RecyclePool, the Volume in question is actually moved from its current
pool to the one you specify on this directive when Bacula prunes the Volume and discovers that there
are no records left in the catalog and hence marks it as Purged.

Recycle = <yes|no> This directive specifies whether or not Purged Volumes may be recycled. If it is set
to yes (default) and Bacula needs a volume but finds none that are appendable, it will search for and
recycle (reuse) Purged Volumes (i.e. volumes with all the Jobs and Files expired and thus deleted from
the Catalog). If the Volume is recycled, all previous data written to that Volume will be overwritten.
If Recycle is set to no, the Volume will not be recycled, and hence, the data will remain valid. If you
want to reuse (re-write) the Volume, and the recycle flag is no (0 in the catalog), you may manually
set the recycle flag (update command) for a Volume to be reused.

Please note that the value defined by this directive in the bacula-dir.conf file is the default value used
when a Volume is created. Once the volume is created, changing the value in the bacula-dir.conf file
will not change what is stored for the Volume. To change the value for an existing Volume you must
use the update command in the Console.

When all Job and File records have been pruned or purged from the catalog for a particular Volume,
if that Volume is marked as Append, Full, Used, or Error, it will then be marked as Purged. Only
Volumes marked as Purged will be considered to be converted to the Recycled state if the Recycle
directive is set to yes.

Recycle Oldest Volume = <yes|no> This directive instructs the Director to search for the oldest used
Volume in the Pool when another Volume is requested by the Storage daemon and none are available.
The catalog is then pruned respecting the retention periods of all Files and Jobs written to this
Volume. If all Jobs are pruned (i.e. the volume is Purged), then the Volume is recycled and will be
used as the next Volume to be written. This directive respects any Job, File, or Volume retention
periods that you may have specified, and as such it is much better to use this directive than the Purge
Oldest Volume.

This directive can be useful if you have a fixed number of Volumes in the Pool and you want to cycle
through them and you have specified the correct retention periods.

However, if you use this directive and have only one Volume in the Pool, you will immediately recycle
your Volume if you fill it and Bacula needs another one. Thus your backup will be totally invalid.
Please use this directive with care. The default is no.

Recycle Current Volume = <yes|no> If Bacula needs a new Volume, this directive instructs Bacula
to Prune the volume respecting the Job and File retention periods. If all Jobs are pruned (i.e. the
volume is Purged), then the Volume is recycled and will be used as the next Volume to be written.
This directive respects any Job, File, or Volume retention periods that you may have specified, and
thus it is much better to use it rather than the Purge Oldest Volume directive.

This directive can be useful if you have: a fixed number of Volumes in the Pool, you want to cycle
through them, and you have specified retention periods that prune Volumes before you have cycled
through the Volume in the Pool.

However, if you use this directive and have only one Volume in the Pool, you will immediately recycle
your Volume if you fill it and Bacula needs another one. Thus your backup will be totally invalid.
Please use this directive with care. The default is no.

Purge Oldest Volume = <yes|no> This directive instructs the Director to search for the oldest used
Volume in the Pool when another Volume is requested by the Storage daemon and none are available.
The catalog is then purged irrespective of retention periods of all Files and Jobs written to this
Volume. The Volume is then recycled and will be used as the next Volume to be written. This
directive overrides any Job, File, or Volume retention periods that you may have specified.

This directive can be useful if you have a fixed number of Volumes in the Pool and you want to cycle
through them and reusing the oldest one when all Volumes are full, but you don’t want to worry about
setting proper retention periods. However, by using this option you risk losing valuable data.

Please be aware that Purge Oldest Volume disregards all retention periods. If you have only a single
Volume defined and you turn this variable on, that Volume will always be immediately overwritten
when it fills! So at a minimum, ensure that you have a decent number of Volumes in your Pool before
running any jobs. If you want retention periods to apply do not use this directive. To specify a
retention period, use the Volume Retention directive (see above).

We highly recommend against using this directive, because it is sure that some day, Bacula will recycle
a Volume that contains current data. The default is no.

File Retention = <time-period-specification> The File Retention directive defines the length of time
that Bacula will keep File records in the Catalog database after the End time of the Job corresponding
to the File records.

This directive takes precedence over Client directives of the same name. For example, you can decide
to increase Retention times for Archive or OffSite Pool.

Note, this affects only records in the catalog database. It does not affect your archive backups.

For more information see Client documentation about |FileRetention

Job Retention = <time-period-specification> The Job Retention directive defines the length of time
that Bacula will keep Job records in the Catalog database after the Job End time. As with the other
retention periods, this affects only records in the catalog and not data in your archive backup.

This directive takes precedence over Client directives of the same name. For example, you can decide
to increase Retention times for Archive or OffSite Pool.

For more information see Client side documentation [JobRetention

Cleaning Prefix = <string> This directive defines a prefix string, which if it matches the beginning
of a Volume name during labeling of a Volume, the Volume will be defined with the VolStatus set
to Cleaning and thus Bacula will never attempt to use this tape. This is primarily for use with
autochangers that accept barcodes where the convention is that barcodes beginning with CLIN are
treated as cleaning tapes.

Label Format = <format> This directive specifies the format of the labels contained in this pool. The
format directive is used as a sort of template to create new Volume names during automatic Volume
labeling.

The format should be specified in double quotes, and consists of letters, numbers and the special
characters hyphen (-), underscore (_), colon (:), and period (.), which are the legal characters for a
Volume name. The format should be enclosed in double quotes (7).

In addition, the format may contain a number of variable expansion characters which will be expanded
by a complex algorithm allowing you to create Volume names of many different formats. In all cases,
the expansion process must resolve to the set of characters noted above that are legal Volume names.
Generally, these variable expansion characters begin with a dollar sign ($) or a left bracket ([). If
you specify variable expansion characters, you should always enclose the format with double quote
characters (™). For more details on variable expansion, please see the |[Variable Expansion Chapter of
this manual.

If no variable expansion characters are found in the string, the Volume name will be formed from the
format string appended with the a unique number that increases. If you do not remove volumes from
the pool, this number should be the number of volumes plus one, but this is not guaranteed. The
unique number will be edited as four digits with leading zeros. For example, with a Label Format =
”File-", the first volumes will be named File-0001, File-0002, ...

With the exception of Job specific variables, you can test your LabelFormat by using the
var command the Console Chapter of this manual.

In almost all cases, you should enclose the format specification (part after the equal sign) in double
quotes. Please note that this directive is deprecated and is replaced in version 1.37 and greater with a
Python script for creating volume names.

In order for a Pool to be used during a Backup Job, the Pool must have at least one Volume associated with
it. Volumes are created for a Pool using the label or the add commands in the Bacula Console, program.
In addition to adding Volumes to the Pool (i.e. putting the Volume names in the Catalog database), the
physical Volume must be labeled with a valid Bacula software volume label before Bacula will accept the
Volume. This will be automatically done if you use the label command. Bacula can automatically label
Volumes if instructed to do so, but this feature is not yet fully implemented.

The following is an example of a valid Pool resource definition:

Pool {
Name = Default
Pool Type = Backup
}

15.15.1 The Scratch Pool

In general, you can give your Pools any name you wish, but there is one important restriction: the Pool
named Scratch, if it exists behaves like a scratch pool of Volumes in that when Bacula needs a new Volume
for writing and it cannot find one, it will look in the Scratch pool, and if it finds an available Volume, it will
move it out of the Scratch pool into the Pool currently being used by the job.

15.16 The Catalog Resource

The Catalog Resource defines what catalog to use for the current job. Currently, Bacula can only handle a
single database server (SQLite, MySQL, PostgreSQL) that is defined when configuring Bacula. However,
there may be as many Catalogs (databases) defined as you wish. For example, you may want each Client to
have its own Catalog database, or you may want backup jobs to use one database and verify or restore jobs
to use another database.

Since SQLite is compiled in, it always runs on the same machine as the Director and the database must
be directly accessible (mounted) from the Director. However, since both MySQL and PostgreSQL are
networked databases, they may reside either on the same machine as the Director or on a different machine
on the network. See below for more details.

Catalog Start of the Catalog resource. At least one Catalog resource must be defined.
Name = <name> The name of the Catalog. No necessary relation to the database server name. This
name will be specified in the Client resource directive indicating that all catalog data for that Client

is maintained in this Catalog. This directive is required.

password = <password> This specifies the password to use when logging into the database. This direc-
tive is required.

DB Name = <name> This specifies the name of the database. If you use multiple catalogs (databases),
you specify which one here. If you are using an external database server rather than the internal one,
you must specify a name that is known to the server (i.e. you explicitly created the Bacula tables using
this name. This directive is required.

user = <user> This specifies what user name to use to log into the database. This directive is required.

DB Socket = <socket-name> This is the name of a socket to use on the local host to connect to the
database. This directive is used only by MySQL and is ignored by SQLite. Normally, if neither DB
Socket or DB Address are specified, MySQL will use the default socket. If the DB Socket is specified,
the MySQL server must reside on the same machine as the Director.

DB Address = <address> This is the host address of the database server. Normally, you would specify
this instead of DB Socket if the database server is on another machine. In that case, you will also
specify DB Port. This directive is used only by MySQL and PostgreSQL and is ignored by SQLite if
provided. This directive is optional.

DB Port = <port> This defines the port to be used in conjunction with DB Address to access the
database if it is on another machine. This directive is used only by MySQL and PostgreSQL and is
ignored by SQLite if provided. This directive is optional.

the different

The following is an example of a valid Catalog resource definition:

Catalog
{
Name = SQLite
dbname = bacula;
user = bacula;
password = "" # no password = no security

or for a Catalog on another machine:

Catalog
{
Name = MySQL
dbname = bacula
user = bacula
password = ""
DB Address = remote.acme.com
DB Port = 1234

15.17 The Messages Resource

For the details of the Messages Resource, please see the Messages Resource Chapter|of this manual.

15.18 The Console Resource

As of Bacula version 1.33 and higher, there are three different kinds of consoles, which the administrator or
user can use to interact with the Director. These three kinds of consoles comprise three different security
levels.

e The first console type is an anonymous or default console, which has full privileges. There is no
console resource necessary for this type since the password is specified in the Director’s resource and
consequently such consoles do not have a name as defined on a Name = directive. This is the kind
of console that was initially implemented in versions prior to 1.33 and remains valid. Typically you
would use it only for administrators.

e The second type of console, and new to version 1.33 and higher is a "named” console defined within a
Console resource in both the Director’s configuration file and in the Console’s configuration file. Both
the names and the passwords in these two entries must match much as is the case for Client programs.

This second type of console begins with absolutely no privileges except those explicitly specified in the
Director’s Console resource. Thus you can have multiple Consoles with different names and passwords,
sort, of like multiple users, each with different privileges. As a default, these consoles can do absolutely
nothing — no commands whatsoever. You give them privileges or rather access to commands and
resources by specifying access control lists in the Director’s Console resource. The ACLs are specified
by a directive followed by a list of access names. Examples of this are shown below.

e The third type of console is similar to the above mentioned one in that it requires a Console resource
definition in both the Director and the Console. In addition, if the console name, provided on the
Name = directive, is the same as a Client name, that console is permitted to use the SetIP command
to change the Address directive in the Director’s client resource to the IP address of the Console. This
permits portables or other machines using DHCP (non-fixed IP addresses) to "notify” the Director of
their current IP address.

The Console resource is optional and need not be specified. The following directives are permitted within
the Director’s configuration resource:

Name = <name> The name of the console. This name must match the name specified in the Console’s
configuration resource (much as is the case with Client definitions).

Password = <password> Specifies the password that must be supplied for a named Bacula Console to
be authorized. The same password must appear in the Console resource of the Console configura-
tion file. For added security, the password is never actually passed across the network but rather a
challenge response hash code created with the password. This directive is required. If you have either
/dev/random bc on your machine, Bacula will generate a random password during the configuration
process, otherwise it will be left blank.

The password is plain text. It is not generated through any special process. However, it is preferable
for security reasons to choose random text.

JobACL = <name-list> This directive is used to specify a list of Job resource names that can be accessed
by the console. Without this directive, the console cannot access any of the Director’s Job resources.
Multiple Job resource names may be specified by separating them with commas, and/or by specifying
multiple JobACL directives. For example, the directive may be specified as:

JobACL
JobACL

kernsave, "Backup client 1", "Backup client 2"
"RestoreFiles"

With the above specification, the console can access the Director’s resources for the four jobs named
on the JobACL directives, but for no others.

Client ACL = <name-list> This directive is used to specify a list of Client resource names that can be
accessed by the console.

Storage ACL = <name-list> This directive is used to specify a list of Storage resource names that can
be accessed by the console.

ScheduleACL = <name-list> This directive is used to specify a list of Schedule resource names that can
be accessed by the console.

PoolACL = <name-list> This directive is used to specify a list of Pool resource names that can be
accessed by the console.

FileSet ACL = <name-list> This directive is used to specify a list of FileSet resource names that can be
accessed by the console.

CatalogACL = <name-list> This directive is used to specify a list of Catalog resource names that can
be accessed by the console.

CommandACL = <name-list> This directive is used to specify a list of of console commands that can
be executed by the console.

WhereACL = <string> This directive permits you to specify where a restricted console can restore files.
If this directive is not specified, only the default restore location is permitted (normally /tmp/bacula-
restores. If *all* is specified any path the user enters will be accepted (not very secure), any other
value specified (there may be multiple WhereACL directives) will restrict the user to use that path.
For example, on a Unix system, if you specify ” /7, the file will be restored to the original location.
This directive is untested.

Aside from Director resource names and console command names, the special keyword *all* can be specified
in any of the above access control lists. When this keyword is present, any resource or command name (which
ever is appropriate) will be accepted. For an example configuration file, please see the|Console Configuration|
chapter of this manual.

15.19 The Counter Resource

The Counter Resource defines a counter variable that can be accessed by variable expansion used for creating
Volume labels with the LabelFormat directive. See the [LabelFormat directive in this chapter for more
details.

Counter Start of the Counter resource. Counter directives are optional.

Name = <name> The name of the Counter. This is the name you will use in the variable expansion to
reference the counter value.

Minimum = <integer> This specifies the minimum value that the counter can have. It also becomes the
default. If not supplied, zero is assumed.

Maximum = <integer> This is the maximum value value that the counter can have. If not specified or
set to zero, the counter can have a maximum value of 2,147,483,648 (2 to the 31 power). When the
counter is incremented past this value, it is reset to the Minimum.

*WrapCounter = <counter-name> If this value is specified, when the counter is incremented past the
maximum and thus reset to the minimum, the counter specified on the WrapCounter is incremented.
(This is not currently implemented).

Catalog = <catalog-name> If this directive is specified, the counter and its values will be saved in the
specified catalog. If this directive is not present, the counter will be redefined each time that Bacula
is started.

15.20 Example Director Configuration File

An example Director configuration file might be the following:

Default Bacula Director Configuration file

The only thing that MUST be changed is to add one or more
file or directory names in the Include directive of the
FileSet resource.

For Bacula release 1.15 (5 March 2002) -- redhat

You might also want to change the default email address
from root to your address. See the "mail" and "operator"

directives in the Messages resource.

irector { # define myself

Name = rufus-dir
QueryFile = "/home/kern/bacula/bin/query.sql"
WorkingDirectory = "/home/kern/bacula/bin/working"
PidDirectory = "/home/kern/bacula/bin/working"
Password = "XkSfzu/Cf/wX4L8Zh4G4/yhCbpLcz3YVdmVoQvU3EyF/"
}
Define the backup Job
Job {
Name "NightlySave"
Type = Backup
Level = Incremental # default
Client=rufus-fd
FileSet="Full Set"
Schedule = "WeeklyCycle"
Storage = DLTDrive
Messages = Standard
Pool = Default

}

Job {
Name = "Restore"
Type = Restore
Client=rufus-fd
FileSet="Full Set"
Where = /tmp/bacula-restores
Storage = DLTDrive
Messages = Standard
Pool = Default

}

List of files to be backed up
FileSet {
Name = "Full Set"
Include {
Options { signature=SHA1}

#
Put your list of files here, one per line or include an
external list with:
#
@file-name
#
Note: / backs up everything
File = /
}
Exclude {}
}
When to do the backups
Schedule {
Name = "WeeklyCycle"
Run = level=Full sun at 2:05
Run = level=Incremental mon-sat at 2:05
}
Client (File Services) to backup
Client {
Name = rufus-fd
Address = rufus
Catalog = MyCatalog
Password = "MQk61Vinz4GG2hdIZk1dsKE/LxMZGo6znMHiD7t7vzF+"
File Retention = 60d # sixty day file retention
Job Retention = 1y # 1 year Job retention
AutoPrune = yes # Auto apply retention periods
}
Definition of DLT tape storage device
Storage {
Name = DLTDrive
Address = rufus
Password = "jMeWZvfikUHvt3kzKVVPpQOccmV6emPnF2cPYFdhLAPQ"

Device = "HP DLT 80" # same as Device in Storage daemon
Media Type = DLT8000 # same as MediaType in Storage daemon
}
Definition for a DLT autochanger device
Storage {

Name = Autochanger

Address = rufus

Password = "jMeWZvfikUHvt3kzKVVPpQOccmV6emPnF2cPYFdhLAPQ"
Device = "Autochanger" # same as Device in Storage daemon
Media Type = DLT-8000 # Different from DLTDrive

Autochanger = yes
}
Definition of DDS tape storage device
Storage {
Name = SDT-10000
Address = rufus
Password = "jMeWZvfikUHvt3kzKVVPpQOccmV6emPnF2cPYFdhLApQ"

Device = SDT-10000 # same as Device in Storage daemon
Media Type = DDS-4 # same as MediaType in Storage daemon
}
Definition of 8mm tape storage device
Storage {
Name = "8mmDrive"

Address = rufus
Password = "jMeWZvfikUHvt3kzKVVPpQOccmV6emPnF2cPYFdhLAPQ"
Device = "Exabyte 8mm"
MediaType = "8mm"
}
Definition of file storage device
Storage {
Name = File
Address = rufus
Password = "jMeWZvfikUHvt3kzKVVPpQOccmV6emPnF2cPYFdhLApPQ"
Device = FileStorage
Media Type = File
}
Generic catalog service
Catalog {
Name = MyCatalog
dbname = bacula; user = bacula; password = ""
}
Reasonable message delivery -- send most everything to
the email address and to the comsole
Messages {
Name = Standard
mail = root@localhost = all, !skipped, !terminate
operator = root@localhost = mount
console = all, !skipped, !saved

}

Default pool definition
Pool {
Name = Default
Pool Type = Backup
AutoPrune = yes
Recycle = yes

Restricted console used by tray-monitor to get the status of the director

H H Y

Console {
Name = Monitor
Password = "GNOuRo7PTUmlMbqrJ2Gr1pO0fkOHQJTxwnFyE4WSST3MWZseR"
CommandACL = status, .status

}

Chapter 16

Client /File daemon Configuration

The Client (or File Daemon) Configuration is one of the simpler ones to specify. Generally, other than
changing the Client name so that error messages are easily identified, you will not need to modify the default
Client configuration file.

For a general discussion of configuration file and resources including the data types recognized by Bacula,
please see the |Configuration chapter of this manual. The following Client Resource definitions must be
defined:

e [Client — to define what Clients are to be backed up.
e Director — to define the Director’s name and its access password.

e |Messages — to define where error and information messages are to be sent.

16.1 The Client Resource

The Client Resource (or FileDaemon) resource defines the name of the Client (as used by the Director) as
well as the port on which the Client listens for Director connections.

Client (or FileDaemon) Start of the Client records. There must be one and only one Client resource in
the configuration file, since it defines the properties of the current client program.

Name = <name> The client name that must be used by the Director when connecting. Generally, it is a
good idea to use a name related to the machine so that error messages can be easily identified if you
have multiple Clients. This directive is required.

Working Directory = <Directory> This directive is mandatory and specifies a directory in which the
File daemon may put its status files. This directory should be used only by Bacula, but may be
shared by other Bacula daemons provided the daemon names on the Name definition are unique for
each daemon. This directive is required.

On Win32 systems, in some circumstances you may need to specify a drive letter in the specified
working directory path. Also, please be sure that this directory is writable by the SYSTEM user
otherwise restores may fail (the bootstrap file that is transferred to the File daemon from the Director
is temporarily put in this directory before being passed to the Storage daemon).

Pid Directory = <Directory> This directive is mandatory and specifies a directory in which the Director
may put its process Id file files. The process Id file is used to shutdown Bacula and to prevent multiple
copies of Bacula from running simultaneously. This record is required. Standard shell expansion of the
Directory is done when the configuration file is read so that values such as $HOME will be properly
expanded.

Typically on Linux systems, you will set this to: /var/run. If you are not installing Bacula in the
system directories, you can use the Working Directory as defined above.

169

Heartbeat Interval = <time-interval> This record defines an interval of time in seconds. For each
heartbeat that the File daemon receives from the Storage daemon, it will forward it to the Director.
In addition, if no heartbeat has been received from the Storage daemon and thus forwarded the File
daemon will send a heartbeat signal to the Director and to the Storage daemon to keep the channels
active. The default interval is zero which disables the heartbeat. This feature is particularly useful
if you have a router such as 3Com that does not follow Internet standards and times out a valid
connection after a short duration despite the fact that keepalive is set. This usually results in a broken
pipe error message.

If you continue getting broken pipe error messages despite using the Heartbeat Interval, and you are
using Windows, you should consider upgrading your ethernet driver. This is a known problem with
NVidia NForce 3 drivers (4.4.2 17/05/2004), or try the following workaround suggested by Thomas
Simmons for Win32 machines:

Browse to: Start > Control Panel > Network Connections

Right click the connection for the nvidia adapter and select properties. Under the General tab, click
”Configure...”. Under the Advanced tab set ”Checksum Offload” to disabled and click OK to save the
change.

Lack of communications, or communications that get interrupted can also be caused by Linux firewalls
where you have a rule that throttles connections or traffic.

Maximum Concurrent Jobs = <number> where <number> is the maximum number of Jobs that
should run concurrently. The default is set to 2, but you may set it to a larger number. Each contact
from the Director (e.g. status request, job start request) is considered as a Job, so if you want to be
able to do a status request in the console at the same time as a Job is running, you will need to set
this value greater than 1.

FDAddresses = <IP-address-specification> Specify the ports and addresses on which the File daemon
listens for Director connections. Probably the simplest way to explain is to show an example:

FDAddresses = {
ip = { addr = 1.2.3.4; port = 1205; }

ipvd = {
addr = 1.2.3.4; port = http; }
ipve = {
addr = 1.2.3.4;
port = 1205;
}
ip = {
addr = 1.2.3.4
port = 1205
}
ip = { addr = 1.2.3.4 }
ip = {
addr = 201:220:222::2
}
ip = {
addr = bluedot.thun.net
}

where ip, ip4, ip6, addr, and port are all keywords. Note, that the address can be specified as either a
dotted quadruple, or IPv6 colon notation, or as a symbolic name (only in the ip specification). Also,
port can be specified as a number or as the mnemonic value from the /etc/services file. If a port is not
specified, the default will be used. If an ip section is specified, the resolution can be made either by
IPv4 or IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted, and likewise with ip6.

FDPort = <port-number> This specifies the port number on which the Client listens for Director con-
nections. It must agree with the FDPort specified in the Client resource of the Director’s configuration
file. The default is 9102.

FDAddress = <IP-Address> This record is optional, and if it is specified, it will cause the File daemon
server (for Director connections) to bind to the specified IP-Address, which is either a domain name
or an IP address specified as a dotted quadruple. If this record is not specified, the File daemon will
bind to any available address (the default).

FDSourceAddress = <IP-Address> This record is optional, and if it is specified, it will cause the File
daemon server (for Storage connections) to bind to the specified IP-Address, which is either a domain
name or an IP address specified as a dotted quadruple. If this record is not specified, the kernel will
choose the best address according to the routing table (the default).

SDConnectTimeout = <time-interval> This record defines an interval of time that the File daemon
will try to connect to the Storage daemon. The default is 30 minutes. If no connection is made in the
specified time interval, the File daemon cancels the Job.

Maximum Network Buffer Size = <bytes> where <bytes> specifies the initial network buffer size to
use with the File daemon. This size will be adjusted down if it is too large until it is accepted by the
OS. Please use care in setting this value since if it is too large, it will be trimmed by 512 bytes until
the OS is happy, which may require a large number of system calls. The default value is 65,536 bytes.

Note, on certain Windows machines, there are reports that the transfer rates are very slow and this
seems to be related to the default 65,536 size. On systems where the transfer rates seem abnormally
slow compared to other systems, you might try setting the Maximum Network Buffer Size to 32,768 in
both the File daemon and in the Storage daemon.

Heartbeat Interval = <time-interval> This directive is optional and if specified will cause the File
daemon to set a keepalive interval (heartbeat) in seconds on each of the sockets to communicate with
the Storage daemon. It is implemented only on systems (Linux, ...) that provide the setsockopt
TCP_KEEPIDLE function. The default value is zero, which means no change is made to the socket.

PKI Encryption See the[Data Encryption chapter of this manual.

PKI Signatures See the Data Encryption|chapter of this manual.

PKI Keypair See the Data Encryption|chapter of this manual.

PKI Master Key See the Data Encryption|chapter of this manual.

The following is an example of a valid Client resource definition:

Client { # this is me
Name = rufus-fd
WorkingDirectory = $HOME/bacula/bin/working
Pid Directory = $HOME/bacula/bin/working

}

16.2 The Director Resource

The Director resource defines the name and password of the Directors that are permitted to contact this
Client.

Director Start of the Director records. There may be any number of Director resources in the Client
configuration file. Each one specifies a Director that is allowed to connect to this Client.

Name = <name> The name of the Director that may contact this Client. This name must be the same
as the name specified on the Director resource in the Director’s configuration file. Note, the case
(upper/lower) of the characters in the name are significant (i.e. S is not the same as s). This directive
is required.

Password = <password> Specifies the password that must be supplied for a Director to be authorized.
This password must be the same as the password specified in the Client resource in the Director’s
configuration file. This directive is required.

Monitor = <yes|no> If Monitor is set to no (default), this director will have full access to this Client. If
Monitor is set to yes, this director will only be able to fetch the current status of this Client.

Please note that if this director is being used by a Monitor, we highly recommend to set this directive
to yes to avoid serious security problems.

Thus multiple Directors may be authorized to use this Client’s services. Each Director will have a different
name, and normally a different password as well.

The following is an example of a valid Director resource definition:

#
List Directors who are permitted to contact the File daemon
#
Director {

Name = HeadMan

Password = very_good # password HeadMan must supply
}
Director {

Name = Worker

Password = not_as_good

Monitor = Yes

}

16.3 The Message Resource

Please see the Messages Resource| Chapter of this manual for the details of the Messages Resource.

There must be at least one Message resource in the Client configuration file.

16.4 Example Client Configuration File

An example File Daemon configuration file might be the following:

Default Bacula File Daemon Configuration file
For Bacula release 1.35.2 (16 August 2004) -- gentoo 1.4.16
There is not much to change here except perhaps to

set the Director’s name and File daemon’s name
to something more appropriate for your site.

List Directors who are permitted to contact this File daemon

H O HOHE H R HE R

Director {
Name = rufus-dir
Password = "/LgPRkX++saVyQE7w7mmiFg/qxYclkufww6FEyY/47jU"

Restricted Director, used by tray-monitor to get the
status of the file daemon

H H H Y

Director {
Name = rufus-mon
Password = "FYpq4yyIly562EMS35bA0JOQCOM2L3t5cZ0bxT3XQxgxppTn"
Monitor = yes

}
#
"Global" File daemon configuration specifications
#
FileDaemon { # this is me
Name = rufus-fd
WorkingDirectory = $HOME/bacula/bin/working
Pid Directory = $HOME/bacula/bin/working
}

Send all messages except skipped files back to Director
Messages {

Name = Standard

director = rufus-dir = all, !skipped

}

Chapter 17

Storage Daemon Configuration

The Storage Daemon configuration file has relatively few resource definitions. However, due to the great
variation in backup media and system capabilities, the storage daemon must be highly configurable. As a
consequence, there are quite a large number of directives in the Device Resource definition that allow you
to define all the characteristics of your Storage device (normally a tape drive). Fortunately, with modern
storage devices, the defaults are sufficient, and very few directives are actually needed.

Examples of Device resource directives that are known to work for a number of common tape drives can
be found in the <bacula-src>/examples/devices directory, and most will also be listed here.

For a general discussion of configuration file and resources including the data types recognized by Bacula,
please see the |Configuration chapter of this manual. The following Storage Resource definitions must be
defined:

e [Storage|— to define the name of the Storage daemon.
e |Director — to define the Director’s name and his access password.
e Device — to define the characteristics of your storage device (tape drive).

o |Messages — to define where error and information messages are to be sent.

17.1 Storage Resource

In general, the properties specified under the Storage resource define global properties of the Storage daemon.
Each Storage daemon configuration file must have one and only one Storage resource definition.

Name = <Storage-Daemon-Name> Specifies the Name of the Storage daemon. This directive is re-
quired.

Working Directory = <Directory> This directive is mandatory and specifies a directory in which the
Storage daemon may put its status files. This directory should be used only by Bacula, but may be
shared by other Bacula daemons provided the names given to each daemon are unique. This directive
is required

Pid Directory = <Directory> This directive is mandatory and specifies a directory in which the Director
may put its process Id file files. The process Id file is used to shutdown Bacula and to prevent multiple
copies of Bacula from running simultaneously. This directive is required. Standard shell expansion
of the Directory is done when the configuration file is read so that values such as SHOME will be
properly expanded.

Typically on Linux systems, you will set this to: /var/run. If you are not installing Bacula in the
system directories, you can use the Working Directory as defined above.

173

Heartbeat Interval = <time-interval> This directive defines an interval of time in seconds. When the
Storage daemon is waiting for the operator to mount a tape, each time interval, it will send a heartbeat
signal to the File daemon. The default interval is zero which disables the heartbeat. This feature is
particularly useful if you have a router such as 3Com that does not follow Internet standards and times
out an valid connection after a short duration despite the fact that keepalive is set. This usually results
in a broken pipe error message.

Client Connect Wait = <time-interval> This directive defines an interval of time in seconds that the
Storage daemon will wait for a Client (the File daemon) to connect. The default is 30 minutes. Be
aware that the longer the Storage daemon waits for a Client, the more resources will be tied up.

Maximum Concurrent Jobs = <number> where <number> is the maximum number of Jobs that
may run concurrently. The default is set to 10, but you may set it to a larger number. Each contact
from the Director (e.g. status request, job start request) is considered as a Job, so if you want to
be able to do a status request in the console at the same time as a Job is running, you will need
to set this value greater than 1. To run simultaneous Jobs, you will need to set a number of other
directives in the Director’s configuration file. Which ones you set depend on what you want, but you
will almost certainly need to set the Maximum Concurrent Jobs in the Storage resource in the
Director’s configuration file and possibly those in the Job and Client resources.

SDAddresses = <IP-address-specification> Specify the ports and addresses on which the Storage dae-
mon will listen for Director connections. Normally, the default is sufficient and you do not need to
specify this directive. Probably the simplest way to explain how this directive works is to show an
example:

SDAddresses = { ip = {
addr = 1.2.3.4; port = 1205; }

ipvd = {
addr = 1.2.3.4; port = http; }
ipvé = {
addr = 1.2.3.4;
port = 1205;
}
ip = {
addr = 1.2.3.4
port = 1205
}
ip = {
addr = 1.2.3.4
}
ip = {
addr = 201:220:222::2
}
ip = {
addr = bluedot.thun.net
}

where ip, ip4, ip6, addr, and port are all keywords. Note, that the address can be specified as either a
dotted quadruple, or IPv6 colon notation, or as a symbolic name (only in the ip specification). Also,
port can be specified as a number or as the mnemonic value from the /etc/services file. If a port is not
specified, the default will be used. If an ip section is specified, the resolution can be made either by
IPv4 or IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted, and likewise with ip6.

Using this directive, you can replace both the SDPort and SDAddress directives shown below.

SDPort = <port-number> Specifies port number on which the Storage daemon listens for Director con-
nections. The default is 9103.

SDAddress = <IP-Address> This directive is optional, and if it is specified, it will cause the Storage
daemon server (for Director and File daemon connections) to bind to the specified IP-Address, which
is either a domain name or an IP address specified as a dotted quadruple. If this directive is not
specified, the Storage daemon will bind to any available address (the default).

The following is a typical Storage daemon Storage definition.

#
"Global" Storage daemon configuration specifications appear
under the Storage resource.
#
Storage {
Name = "Storage daemon"
Address = localhost
WorkingDirectory = "~/bacula/working"
Pid Directory = "~ /bacula/working"

}

17.2 Director Resource

The Director resource specifies the Name of the Director which is permitted to use the services of the
Storage daemon. There may be multiple Director resources. The Director Name and Password must match
the corresponding values in the Director’s configuration file.

Name = <Director-Name> Specifies the Name of the Director allowed to connect to the Storage daemon.
This directive is required.

Password = <Director-password> Specifies the password that must be supplied by the above named
Director. This directive is required.

Monitor = <yes|no> If Monitor is set to no (default), this director will have full access to this Storage
daemon. If Monitor is set to yes, this director will only be able to fetch the current status of this
Storage daemon.

Please note that if this director is being used by a Monitor, we highly recommend to set this directive
to yes to avoid serious security problems.

The following is an example of a valid Director resource definition:

Director {
Name = MainDirector
Password = my_secret_password

}

17.3 Device Resource

The Device Resource specifies the details of each device (normally a tape drive) that can be used by the
Storage daemon. There may be multiple Device resources for a single Storage daemon. In general, the
properties specified within the Device resource are specific to the Device.

Name = Dewvice-Name Specifies the Name that the Director will use when asking to backup or restore to
or from to this device. This is the logical Device name, and may be any string up to 127 characters
in length. It is generally a good idea to make it correspond to the English name of the backup device.
The physical name of the device is specified on the Archive Device directive described below. The
name you specify here is also used in your Director’s conf file on the in its Storage

resource.

Archive Device = name-string The specified name-string gives the system file name of the storage device
managed by this storage daemon. This will usually be the device file name of a removable storage
device (tape drive), for example ” /dev/nst0” or ” /dev/rmt/Ombn”. For a DVD-writer, it will be
for example /dev/hdc. It may also be a directory name if you are archiving to disk storage. In this
case, you must supply the full absolute path to the directory. When specifying a tape device, it is
preferable that the "non-rewind” variant of the device file name be given. In addition, on systems
such as Sun, which have multiple tape access methods, you must be sure to specify to use Berkeley

I/O conventions with the device. The b in the Solaris (Sun) archive specification /dev/rmt/Ombn
is what is needed in this case. Bacula does not support SysV tape drive behavior.

As noted above, normally the Archive Device is the name of a tape drive, but you may also specify an
absolute path to an existing directory. If the Device is a directory Bacula will write to file storage in
the specified directory, and the filename used will be the Volume name as specified in the Catalog. If
you want to write into more than one directory (i.e. to spread the load to different disk drives), you
will need to define two Device resources, each containing an Archive Device with a different directory.
In addition to a tape device name or a directory name, Bacula will accept the name of a FIFO. A FIFO
is a special kind of file that connects two programs via kernel memory. If a FIFO device is specified for
a backup operation, you must have a program that reads what Bacula writes into the FIFO. When the
Storage daemon starts the job, it will wait for MaximumOpenWait seconds for the read program
to start reading, and then time it out and terminate the job. As a consequence, it is best to start the
read program at the beginning of the job perhaps with the RunBeforeJob directive. For this kind of
device, you never want to specify AlwaysOpen, because you want the Storage daemon to open it only
when a job starts, so you must explicitly set it to No. Since a FIFO is a one way device, Bacula will
not attempt to read a label of a FIFO device, but will simply write on it. To create a FIFO Volume
in the catalog, use the add command rather than the label command to avoid attempting to write a
label.

Device {
Name = FifoStorage
Media Type = Fifo
Device Type = Fifo
Archive Device = /tmp/fifo
LabelMedia = yes
Random Access = no
AutomaticMount no
RemovableMedia = no
MaximumOpenWait = 60
AlwaysOpen = no

During a restore operation, if the Archive Device is a FIFO, Bacula will attempt to read from the
FIFO, so you must have an external program that writes into the FIFO. Bacula will wait Maximu-
mOpenWait seconds for the program to begin writing and will then time it out and terminate the
job. As noted above, you may use the RunBeforeJob to start the writer program at the beginning
of the job.

The Archive Device directive is required.

Device Type = type-specification The Device Type specification allows you to explicitly tell Bacula what
kind of device you are defining. It the type-specification may be one of the following:

File Tells Bacula that the device is a file. It may either be a file defined on fixed medium or a removable
filesystem such as USB. All files must be random access devices.

Tape The device is a tape device and thus is sequential access. Tape devices are controlled using
ioctl() calls.

Fifo The device is a first-in-first out sequential access read-only or write-only device.

DVD The device is a DVD. DVDs are sequential access for writing, but random access for reading.

The Device Type directive is not required, and if not specified, Bacula will attempt to guess what
kind of device has been specified using the Archive Device specification supplied. There are several
advantages to explicitly specifying the Device Type. First, on some systems, block and character
devices have the same type, which means that on those systems, Bacula is unlikely to be able to
correctly guess that a device is a DVD. Secondly, if you explicitly specify the Device Type, the mount
point need not be defined until the device is opened. This is the case with most removable devices such
as USB that are mounted by the HAL daemon. If the Device Type is not explicitly specified, then the
mount point must exist when the Storage daemon starts.

This directive was implemented in Bacula version 1.38.6.
Media Type = name-string The specified name-string names the type of media supported by this device,

for example, "DLT7000”. Media type names are arbitrary in that you set them to anything you want,
but they must be known to the volume database to keep track of which storage daemons can read

which volumes. In general, each different storage type should have a unique Media Type associated
with it. The same name-string must appear in the appropriate Storage resource definition in the
Director’s configuration file.

Even though the names you assign are arbitrary (i.e. you choose the name you want), you should take
care in specifying them because the Media Type is used to determine which storage device Bacula will
select during restore. Thus you should probably use the same Media Type specification for all drives
where the Media can be freely interchanged. This is not generally an issue if you have a single Storage
daemon, but it is with multiple Storage daemons, especially if they have incompatible media.

For example, if you specify a Media Type of ”DDS-4” then during the restore, Bacula will be able to
choose any Storage Daemon that handles "DDS-4”. If you have an autochanger, you might want to
name the Media Type in a way that is unique to the autochanger, unless you wish to possibly use the
Volumes in other drives. You should also ensure to have unique Media Type names if the Media is not
compatible between drives. This specification is required for all devices.

In addition, if you are using disk storage, each Device resource will generally have a different mount
point or directory. In order for Bacula to select the correct Device resource, each one must have a
unique Media Type.

Autochanger = yes|no If Yes, this device belongs to an automatic tape changer, and you must specify
an Autochanger resource that points to the Device resources. You must also specify a Changer
Device. If the Autochanger directive is set to No (default), the volume must be manually changed.
You should also have an identical directive to the Storage resource|in the Director’s configuration file
so that when labeling tapes you are prompted for the slot.

Changer Device = name-string The specified name-string must be the generic SCSI device name of
the autochanger that corresponds to the normal read/write Archive Device specified in the Device
resource. This generic SCSI device name should be specified if you have an autochanger or if you have
a standard tape drive and want to use the Alert Command (see below). For example, on Linux
systems, for an Archive Device name of /dev/nst0, you would specify /dev/sg0 for the Changer
Device name. Depending on your exact configuration, and the number of autochangers or the type of
autochanger, what you specify here can vary. This directive is optional. See the| Using Autochangers|
chapter of this manual for more details of using this and the following autochanger directives.

Changer Command = name-string The name-string specifies an external program to be called that will
automatically change volumes as required by Bacula. Normally, this directive will be specified only
in the AutoChanger resource, which is then used for all devices. However, you may also specify the
different Changer Command in each Device resource. Most frequently, you will specify the Bacula
supplied mtx-changer script as follows:

Changer Command = "/path/mtx-changer %c %o %S %a %d"

and you will install the mtx on your system (found in the depkgs release). An example of this
command is in the default bacula-sd.conf file. For more details on the substitution characters that may
be specified to configure your autochanger please see the Autochangers chapter of this manual. For
FreeBSD users, you might want to see one of the several chio scripts in examples/autochangers.

Alert Command = name-string The name-string specifies an external program to be called at the com-
pletion of each Job after the device is released. The purpose of this command is to check for Tape
Alerts, which are present when something is wrong with your tape drive (at least for most modern
tape drives). The same substitution characters that may be specified in the Changer Command may
also be used in this string. For more information, please see the Autochangers chapter of this manual.

Note, it is not necessary to have an autochanger to use this command. The example below uses the
tapeinfo program that comes with the mtx package, but it can be used on any tape drive. However,
you will need to specify a Changer Device directive in your Device resource (see above) so that the
generic SCSI device name can be edited into the command (with the %c).

An example of the use of this command to print Tape Alerts in the Job report is:

Alert Command = "sh -c ’tapeinfo -f Jc | grep TapeAlert’"

and an example output when there is a problem could be:

bacula-sd Alert: TapeAlert[32]: Interface: Problem with SCSI interface
between tape drive and initiator.

Drive Index = number The Drive Index that you specify is passed to the mtx-changer script and is
thus passed to the mtx program. By default, the Drive Index is zero, so if you have only one drive
in your autochanger, everything will work normally. However, if you have multiple drives, you must
specify multiple Bacula Device resources (one for each drive). The first Device should have the Drive
Index set to 0, and the second Device Resource should contain a Drive Index set to 1, and so on. This
will then permit you to use two or more drives in your autochanger. As of Bacula version 1.38.0, using
the Autochanger resource, Bacula will automatically ensure that only one drive at a time uses the
autochanger script, so you no longer need locking scripts as in the past — the default mtx-changer script
works for any number of drives.

Autoselect = yes|no If this directive is set to yes (default), and the Device belongs to an autochanger,
then when the Autochanger is referenced by the Director, this device can automatically be selected. If
this directive is set to no, then the Device can only be referenced by directly using the Device name in
the Director. This is useful for reserving a drive for something special such as a high priority backup
or restore operations.

Maximum Concurent Jobs = num Maximum Concurrent Jobs is a directive that permits setting
the maximum number of Jobs that can run concurrently on a specified Device. Using this directive, it
is possible to have different Jobs using multiple drives, because when the Maximum Concurrent Jobs
limit is reached, the Storage Daemon will start new Jobs on any other available compatible drive. This
facilitates writing to multiple drives with multiple Jobs that all use the same Pool.

Maximum Changer Wait = time This directive specifies the maximum time in seconds for Bacula to
wait for an autochanger to change the volume. If this time is exceeded, Bacula will invalidate the
Volume slot number stored in the catalog and try again. If no additional changer volumes exist,
Bacula will ask the operator to intervene. The default is 5 minutes.

Maximum Rewind Wait = time This directive specifies the maximum time in seconds for Bacula to wait
for a rewind before timing out. If this time is exceeded, Bacula will cancel the job. The default is 5
minutes.

Maximum Open Wait = time This directive specifies the maximum time in seconds for Bacula to wait
for a open before timing out. If this time is exceeded, Bacula will cancel the job. The default is 5
minutes.

Always Open = yes|no If Yes (default), Bacula will always keep the device open unless specifically un-
mounted by the Console program. This permits Bacula to ensure that the tape drive is always
available, and properly positioned. If you set AlwaysOpen to no Bacula will only open the drive
when necessary, and at the end of the Job if no other Jobs are using the drive, it will be freed. The
next time Bacula wants to append to a tape on a drive that was freed, Bacula will rewind the tape and
position it to the end. To avoid unnecessary tape positioning and to minimize unnecessary operator
intervention, it is highly recommended that Always Open = yes. This also ensures that the drive is
available when Bacula needs it.

If you have Always Open = yes (recommended) and you want to use the drive for something else,
simply use the unmount command in the Console program to release the drive. However, don’t forget
to remount the drive with mount when the drive is available or the next Bacula job will block.

For File storage, this directive is ignored. For a FIFO storage device, you must set this to No.

Please note that if you set this directive to No Bacula will release the tape drive between each job, and
thus the next job will rewind the tape and position it to the end of the data. This can be a very time
consuming operation. In addition, with this directive set to no, certain multiple drive autochanger
operations will fail. We strongly recommend to keep Always Open set to Yes

Volume Poll Interval = time If the time specified on this directive is non-zero, after asking the operator
to mount a new volume Bacula will periodically poll (or read) the drive at the specified interval to
see if a new volume has been mounted. If the time interval is zero (the default), no polling will occur.
This directive can be useful if you want to avoid operator intervention via the console. Instead, the
operator can simply remove the old volume and insert the requested one, and Bacula on the next poll
will recognize the new tape and continue. Please be aware that if you set this interval too small, you

may excessively wear your tape drive if the old tape remains in the drive, since Bacula will read it on
each poll. This can be avoided by ejecting the tape using the Offline On Unmount and the Close
on Poll directives. However, if you are using a Linux 2.6 kernel or other OSes such as FreeBSD or
Solaris, the Offline On Unmount will leave the drive with no tape, and Bacula will not be able to
properly open the drive and may fail the job. For more information on this problem, please see the
'description of Offline On Unmount in the Tape Testing chapter.

Close on Poll= yes|no If Yes, Bacula close the device (equivalent to an unmount except no mount is
required) and reopen it at each poll. Normally this is not too useful unless you have the Offline on
Unmount directive set, in which case the drive will be taken offline preventing wear on the tape during
any future polling. Once the operator inserts a new tape, Bacula will recognize the drive on the next
poll and automatically continue with the backup. Please see above more more details.

Maximum Open Wait = time This directive specifies the maximum amount of time in seconds that
Bacula will wait for a device that is busy. The default is 5 minutes. If the device cannot be obtained,
the current Job will be terminated in error. Bacula will re-attempt to open the drive the next time a
Job starts that needs the the drive.

Removable media = yes|no If Yes, this device supports removable media (for example, tapes or CDs).
If No, media cannot be removed (for example, an intermediate backup area on a hard disk). If
Removable media is enabled on a File device (as opposed to a tape) the Storage daemon will assume
that device may be something like a USB device that can be removed or a simply a removable harddisk.
When attempting to open such a device, if the Volume is not found (for File devices, the Volume name
is the same as the Filename), then the Storage daemon will search the entire device looking for likely
Volume names, and for each one found, it will ask the Director if the Volume can be used. If so, the
Storage daemon will use the first such Volume found. Thus it acts somewhat like a tape drive — if the
correct Volume is not found, it looks at what actually is found, and if it is an appendable Volume, it
will use it.

If the removable medium is not automatically mounted (e.g. udev), then you might consider us-
ing additional Storage daemon device directives such as Requires Mount, Mount Point, Mount
Command, and Unmount Command, all of which can be used in conjunction with Removable
Media.

Random access = yes|no If Yes, the archive device is assumed to be a random access medium which
supports the lseek (or Iseek64 if Largefile is enabled during configuration) facility. This should be set
to Yes for all file systems such as DVD, USB, and fixed files. It should be set to No for non-random
access devices such as tapes and named pipes.

Requires Mount = yes|no When this directive is enabled, the Storage daemon will submit a Mount
Command before attempting to open the device. You must set this directive to yes for DVD-writers
and removable file systems such as USB devices that are not automatically mounted by the operating
system when plugged in or opened by Bacula. It should be set to no for all other devices such as
tapes and fixed filesystems. It should also be set to no for any removable device that is automatically
mounted by the operating system when opened (e.g. USB devices mounted by udev or hotplug). This
directive indicates if the device requires to be mounted using the Mount Command. To be able
to write a DVD, the following directives must also be defined: Mount Point, Mount Command,
Unmount Command and Write Part Command.

Mount Point = directory Directory where the device can be mounted. This directive is used only for
devices that have Requires Mount enabled such as DVD or USB file devices.

Mount Command = name-string This directive specifies the command that must be executed to mount
devices such as DVDs and many USB devices. For DVDs, the device is written directly, but the mount
command is necessary in order to determine the free space left on the DVD. Before the command is
executed, %a is replaced with the Archive Device, and %m with the Mount Point.

Most frequently, for a DVD, you will define it as follows:

Mount Command = "/bin/mount -t iso09660 -o ro %a %m"

However, if you have defined a mount point in /etc/fstab, you might be able to use a mount command
such as:

Mount Command = "/bin/mount /media/dvd"

See the|Edit Codes/section below for more details of the editing codes that can be used in this directive.

If you need to specify multiple commands, create a shell script.

Unmount Command = name-string This directive specifies the command that must be executed to un-
mount devices such as DVDs and many USB devices. Before the command is executed, %a is replaced
with the Archive Device, and %m with the Mount Point.

Most frequently, you will define it as follows:

Unmount Command = "/bin/umount %m"

See the|Edit Codes|section below for more details of the editing codes that can be used in this directive.

If you need to specify multiple commands, create a shell script.

Block Checksum = yes/no You may turn off the Block Checksum (CRC32) code that Bacula uses when
writing blocks to a Volume. Doing so can reduce the Storage daemon CPU usage slightly. It will also
permit Bacula to read a Volume that has corrupted data.

The default is yes — i.e. the checksum is computed on write and checked on read.

We do not recommend to turn this off particularly on older tape drives or for disk Volumes where
doing so may allow corrupted data to go undetected.

Minimum block size = size-in-bytes On most modern tape drives, you will not need or want to specify
this directive, and if you do so, it will be to make Bacula use fixed block sizes. This statement applies
only to non-random access devices (e.g. tape drives). Blocks written by the storage daemon to a
non-random archive device will never be smaller than the given size-in-bytes. The Storage daemon
will attempt to efficiently fill blocks with data received from active sessions but will, if necessary, add
padding to a block to achieve the required minimum size.

To force the block size to be fixed, as is the case for some non-random access devices (tape drives), set
the Minimum block size and the Maximum block size to the same value (zero included). The
default is that both the minimum and maximum block size are zero and the default block size is 64,512
bytes.

For example, suppose you want a fixed block size of 100K bytes, then you would specify:

100K
100K

Minimum block size
Maximum block size

Please note that if you specify a fixed block size as shown above, the tape drive must either be in
variable block size mode, or if it is in fixed block size mode, the block size (generally defined by mt)
must be identical to the size specified in Bacula — otherwise when you attempt to re-read your Volumes,
you will get an error.

If you want the block size to be variable but with a 64K minimum and 200K maximum (and default
as well), you would specify:

Minimum block size = 64K
Maximum blocksize = 200K

Maximum block size = size-in-bytes On most modern tape drives, you will not need to specify this di-
rective. If you do so, it will most likely be to use fixed block sizes (see Minimum block size above).
The Storage daemon will always attempt to write blocks of the specified size-in-bytes to the archive
device. As a consequence, this statement specifies both the default block size and the maximum block
size. The size written never exceed the given size-in-bytes. If adding data to a block would cause it
to exceed the given maximum size, the block will be written to the archive device, and the new data
will begin a new block.

If no value is specified or zero is specified, the Storage daemon will use a default block size of 64,512
bytes (126 * 512).

The maximum size-in-bytes possible is 2,000,000.

Hardware End of Medium = yes|no If No, the archive device is not required to support end of medium
ioctl request, and the storage daemon will use the forward space file function to find the end of the
recorded data. If Yes, the archive device must support the ioctl MTEOM call, which will position the
tape to the end of the recorded data. In addition, your SCSI driver must keep track of the file number
on the tape and report it back correctly by the MTIOCGET ioctl. Note, some SCSI drivers will
correctly forward space to the end of the recorded data, but they do not keep track of the file number.
On Linux machines, the SCSI driver has a fast-eod option, which if set will cause the driver to lose
track of the file number. You should ensure that this option is always turned off using the mt program.

Default setting for Hardware End of Medium is Yes. This function is used before appending to a tape
to ensure that no previously written data is lost. We recommend if you have a non-standard or unusual
tape drive that you use the btape program to test your drive to see whether or not it supports this
function. All modern (after 1998) tape drives support this feature.

Fast Forward Space File = yes|no If No, the archive device is not required to support keeping track
of the file number (MTIOCGET ioctl) during forward space file. If Yes, the archive device must
support the ioctl MTFSF call, which virtually all drivers support, but in addition, your SCSI driver
must keep track of the file number on the tape and report it back correctly by the MTIOCGET ioctl.
Note, some SCSI drivers will correctly forward space, but they do not keep track of the file number or
more seriously, they do not report end of medium.

Default setting for Fast Forward Space File is Yes.

Use MTIOCGET = yes|no If No, the operating system is not required to support keeping track of the
file number and reporting it in the (MTIOCGET ioctl). The default is Yes. If you must set this to
No, Bacula will do the proper file position determination, but it is very unfortunate because it means
that tape movement is very inefficient. Fortunately, this operation system deficiency seems to be the
case only on a few *BSD systems. Operating systems known to work correctly are Solaris, Linux and
FreeBSD.

BSF at EOM = yes|no If No, the default, no special action is taken by Bacula with the End of Medium
(end of tape) is reached because the tape will be positioned after the last EOF tape mark, and Bacula
can append to the tape as desired. However, on some systems, such as FreeBSD, when Bacula reads
the End of Medium (end of tape), the tape will be positioned after the second EOF tape mark (two
successive EOF marks indicated End of Medium). If Bacula appends from that point, all the appended
data will be lost. The solution for such systems is to specify BSF at EOM which causes Bacula to
backspace over the second EOF mark. Determination of whether or not you need this directive is done
using the test command in the btape program.

TWO EOF = yes|no If Yes, Bacula will write two end of file marks when terminating a tape — i.e. after
the last job or at the end of the medium. If No, the default, Bacula will only write one end of file to
terminate the tape.

Backward Space Record = yes|no If Yes, the archive device supports the MTBSR ioctl to backspace
records. If No, this call is not used and the device must be rewound and advanced forward to the
desired position. Default is Yes for non random-access devices. This function if enabled is used at
the end of a Volume after writing the end of file and any ANSI/IBM labels to determine whether or
not the last block was written correctly. If you turn this function off, the test will not be done. This
causes no harm as the re-read process is precautionary rather than required.

Backward Space File = yes|no If Yes, the archive device supports the MTBSF and MTBSF ioctls
to backspace over an end of file mark and to the start of a file. If No, these calls are not used and
the device must be rewound and advanced forward to the desired position. Default is Yes for non
random-access devices.

Forward Space Record = yes|no If Yes, the archive device must support the MTFSR ioctl to forward
space over records. If No, data must be read in order to advance the position on the device. Default
is Yes for non random-access devices.

Forward Space File = yes|no If Yes, the archive device must support the MTFSF ioctl to forward space
by file marks. If No, data must be read to advance the position on the device. Default is Yes for non
random-access devices.

Offline On Unmount = yes|no The default for this directive is No. If Yes the archive device must
support the MTOFFL ioctl to rewind and take the volume offline. In this case, Bacula will issue the
offline (eject) request before closing the device during the unmount command. If No Bacula will
not attempt to offline the device before unmounting it. After an offline is issued, the cassette will be
ejected thus requiring operator intervention to continue, and on some systems require an explicit
load command to be issued (mt -f /dev/xxx load) before the system will recognize the tape. If you
are using an autochanger, some devices require an offline to be issued prior to changing the volume.
However, most devices do not and may get very confused.

If you are using a Linux 2.6 kernel or other OSes such as FreeBSD or Solaris, the Offline On Unmount
will leave the drive with no tape, and Bacula will not be able to properly open the drive and may fail
the job. For more information on this problem, please see the description of Offline On Unmount in
the Tape Testing chapter.

Maximum Concurrent Jobs = <number> where <number> is the maximum number of Jobs that can
run concurrently on a specified Device. Using this directive, it is possible to have different Jobs using
multiple drives, because when the Maximum Concurrent Jobs limit is reached, the Storage Daemon
will start new Jobs on any other available compatible drive. This facilitates writing to multiple drives
with multiple Jobs that all use the same Pool.

Maximum Volume Size = size No more than size bytes will be written onto a given volume on the
archive device. This directive is used mainly in testing Bacula to simulate a small Volume. It can also
be useful if you wish to limit the size of a File Volume to say less than 2GB of data. In some rare cases
of really antiquated tape drives that do not properly indicate when the end of a tape is reached during
writing (though I have read about such drives, I have never personally encountered one). Please note,
this directive is deprecated (being phased out) in favor of the Maximum Volume Bytes defined in
the Director’s configuration file.

Maximum File Size = size No more than size bytes will be written into a given logical file on the volume.
Once this size is reached, an end of file mark is written on the volume and subsequent data are written
into the next file. Breaking long sequences of data blocks with file marks permits quicker positioning
to the start of a given stream of data and can improve recovery from read errors on the volume. The
default is one Gigabyte. This directive creates EOF marks only on tape media. However, regardless of
the medium type (tape, disk, DVD, ...) each time a the Maximum File Size is exceeded, a record is put
into the catalog database that permits seeking to that position on the medium for restore operations.
If you set this to a small value (e.g. 1IMB), you will generate lots of database records (JobMedia) and
may significantly increase CPU/disk overhead.

If you are configuring an LTO-3 or LTO-4 tape, you probably will want to set the Maximum File
Size to 2GB to avoid making the drive stop to write an EOF mark.

Note, this directive does not limit the size of Volumes that Bacula will create regardless of whether
they are tape or disk volumes. It changes only the number of EOF marks on a tape and the number of
block positioning records (see below) that are generated. If you want to limit the size of all Volumes
for a particular device, use the Maximum Volume Size directive (above), or use the Maximum
Volume Bytes directive in the Director’s Pool resource, which does the same thing but on a Pool
(Volume) basis.

Block Positioning = yes|no This directive tells Bacula not to use block positioning when doing restores.
Turning this directive off can cause Bacula to be extremely slow when restoring files. You might use
this directive if you wrote your tapes with Bacula in variable block mode (the default), but your drive
was in fixed block mode. The default is yes.

Maximum Network Buffer Size = bytes where bytes specifies the initial network buffer size to use with
the File daemon. This size will be adjusted down if it is too large until it is accepted by the OS. Please
use care in setting this value since if it is too large, it will be trimmed by 512 bytes until the OS is
happy, which may require a large number of system calls. The default value is 32,768 bytes.

The default size was chosen to be relatively large but not too big in the case that you are transmitting
data over Internet. It is clear that on a high speed local network, you can increase this number and
improve performance. For example, some users have found that if you use a value of 65,536 bytes they
get five to ten times the throughput. Larger values for most users don’t seem to improve performance.
If you are interested in improving your backup speeds, this is definitely a place to experiment. You
will probably also want to make the corresponding change in each of your File daemons conf files.

Maximum Spool Size = bytes where the bytes specify the maximum spool size for all jobs that are run-
ning. The default is no limit.

Maximum Job Spool Size = bytes where the bytes specify the maximum spool size for any one job that
is running. The default is no limit. This directive is implemented only in version 1.37 and later.

Spool Directory = directory specifies the name of the directory to be used to store the spool files for this
device. This directory is also used to store temporary part files when writing to a device that requires
mount (DVD). The default is to use the working directory.

Maximum Part Size = bytes This is the maximum size of a volume part file. The default is no limit.
This directive is implemented only in version 1.37 and later.

If the device requires mount, it is transferred to the device when this size is reached. In this case, you
must take care to have enough disk space left in the spool directory.

Otherwise, it is left on the hard disk.
It is ignored for tape and FIFO devices.

17.4 Edit Codes for Mount and Unmount Directives

Before submitting the Mount Command, Unmount Command, Write Part Command, or Free
Space Command directives to the operating system, Bacula performs character substitution of the following
characters:

Wl ="h

%a = Archive device name

%e = erase (set if cannot mount and first part)
%n = part number

%m = mount point

%v = last part name (i.e. filename)

17.5 Devices that require a mount (DVD)

All the directives in this section are implemented only in Bacula version 1.37 and later and hence are available
in version 1.38.6.

As of version 1.39.5, the directives ”Requires Mount”, ” Mount Point”, ” Mount Command”, and ” Unmount
Command” apply to removable filesystems such as USB in addition to DVD.

Requires Mount = yes|no You must set this directive to yes for DVD-writers, and to no for all other
devices (tapes/files). This directive indicates if the device requires to be mounted to be read, and if it
must be written in a special way. If it set, Mount Point, Mount Command, Unmount Command
and Write Part Command directives must also be defined.

Mount Point = directory Directory where the device can be mounted.

Mount Command = name-string Command that must be executed to mount the device. Before the
command is executed, %a is replaced with the Archive Device, and %m with the Mount Point.

Most frequently, you will define it as follows:

Mount Command = "/bin/mount -t is09660 -o ro %a %m"

For some media, you may need multiple commands. If so, it is recommended that you use a shell script
instead of putting them all into the Mount Command. For example, instead of this:

Mount Command = "/usr/local/bin/mymount"

Where that script contains:

#!/bin/sh

ndasadmin enable -s 1 -o w

sleep 2

mount /dev/ndas-00323794-0p1 /backup

Similar consideration should be given to all other Command parameters.

Unmount Command = name-string Command that must be executed to unmount the device. Before

the command is executed, %a is replaced with the Archive Device, and %m with the Mount Point.

Most frequently, you will define it as follows:

Unmount Command = "/bin/umount %m"

If you need to specify multiple commands, create a shell script.

Write Part Command = name-string Command that must be executed to write a part to the device.

Free

Before the command is executed, %a is replaced with the Archive Device, %m with the Mount Point,
%e 1is replaced with 1 if we are writing the first part, and with 0 otherwise, and %v with the current
part filename.

For a DVD, you will most frequently specify the Bacula supplied dvd-handler script as follows:

Write Part Command = "/path/dvd-handler %a write %e %v"

Where /path is the path to your scripts install directory, and dvd-handler is the Bacula supplied script
file. This command will already be present, but commented out, in the default bacula-sd.conf file. To
use it, simply remove the comment (#) symbol.

If you need to specify multiple commands, create a shell script.
Space Command = name-string Command that must be executed to check how much free space is
left on the device. Before the command is executed,%a is replaced with the Archive Device, %m with

the Mount Point, %e is replaced with 1 if we are writing the first part, and with 0 otherwise, and %v
with the current part filename.

For a DVD, you will most frequently specify the Bacula supplied dvd-handler script as follows:

Free Space Command = "/path/dvd-handler %a free"

Where /path is the path to your scripts install directory, and dvd-handler is the Bacula supplied script
file. If you want to specify your own command, please look at the code of dvd-handler to see what
output Bacula expects from this command. This command will already be present, but commented
out, in the default bacula-sd.conf file. To use it, simply remove the comment (#) symbol.

If you do not set it, Bacula will expect there is always free space on the device.

If you need to specify multiple commands, create a shell script.

Chapter 18

Autochanger Resource

The Autochanger resource supports single or multiple drive autochangers by grouping one or more Device
resources into one unit called an autochanger in Bacula (often referred to as a ”tape library” by autochanger
manufacturers).

If you have an Autochanger, and you want it to function correctly, you must have an Autochanger resource
in your Storage conf file, and your Director’s Storage directives that want to use an Autochanger must refer
to the Autochanger resource name. In previous versions of Bacula, the Director’s Storage directives referred
directly to Device resources that were autochangers. In version 1.38.0 and later, referring directly to Device
resources will not work for Autochangers.

Name = <Autochanger-Name> Specifies the Name of the Autochanger. This name is used in the
Director’s Storage definition to refer to the autochanger. This directive is required.

Device = <Device-namel, device-name2, ...> Specifies the names of the Device resource or resources
that correspond to the autochanger drive. If you have a multiple drive autochanger, you must specify
multiple Device names, each one referring to a separate Device resource that contains a Drive Index
specification that corresponds to the drive number base zero. You may specify multiple device names
on a single line separated by commas, and/or you may specify multiple Device directives. This directive
is required.

Changer Device = name-string The specified name-string gives the system file name of the autochanger
device name. If specified in this resource, the Changer Device name is not needed in the Device resource.
If it is specified in the Device resource (see above), it will take precedence over one specified in the
Autochanger resource.

Changer Command = name-string The name-string specifies an external program to be called that will
automatically change volumes as required by Bacula. Most frequently, you will specify the Bacula
supplied mtx-changer script as follows. If it is specified here, it need not be specified in the Device
resource. If it is also specified in the Device resource, it will take precedence over the one specified in
the Autochanger resource.

The following is an example of a valid Autochanger resource definition:

Autochanger {

Name = "DDS-4-changer"

Device = DDS-4-1, DDS-4-2, DDS-4-3

Changer Device = /dev/sg0

Changer Command = "/etc/bacula/mtx-changer %c %o %S %a %d"
}
Device {

Name = "DDS-4-1"

Drive Index = 0

Autochanger = yes

185

Device {
Name = "DDS-4-2"
Drive Index 1

Autochanger = yes
Device {

Name = "DDS-4-3"

Drive Index = 2

Autochanger = yes

Autoselect = no

Please note that it is important to include the Autochanger = yes directive in each Device definition that
belongs to an Autochanger. A device definition should not belong to more than one Autochanger resource.
Also, your Device directive in the Storage resource of the Director’s conf file should have the Autochanger’s
resource name rather than a name of one of the Devices.

If you have a drive that physically belongs to an Autochanger but you don’t want to have it automatically
used when Bacula references the Autochanger for backups, for example, you want to reserve it for restores,
you can add the directive:

Autoselect = no

to the Device resource for that drive. In that case, Bacula will not automatically select that drive when
accessing the Autochanger. You can, still use the drive by referencing it by the Device name directly rather
than the Autochanger name. An example of such a definition is shown above for the Device DDS-4-3, which
will not be selected when the name DDS-4-changer is used in a Storage definition, but will be used if DDS-4-3
is used.

18.1 Capabilities

Label media = yes|no If Yes, permits this device to automatically label blank media without an explicit
operator command. It does so by using an internal algorithm as defined on the record
in each Pool resource. If this is No as by default, Bacula will label tapes only by specific operator
command (label in the Console) or when the tape has been recycled. The automatic labeling feature
is most useful when writing to disk rather than tape volumes.

Automatic mount = yes|no If Yes (the default), permits the daemon to examine the device to determine
if it contains a Bacula labeled volume. This is done initially when the daemon is started, and then
at the beginning of each job. This directive is particularly important if you have set Always Open
= no because it permits Bacula to attempt to read the device before asking the system operator to
mount a tape. However, please note that the tape must be mounted before the job begins.

18.2 Messages Resource

For a description of the Messages Resource, please see the Messages Resource Chapter of this manual.

18.3 Sample Storage Daemon Configuration File

A example Storage Daemon configuration file might be the following:

#
Default Bacula Storage Daemon Configuration file

For Bacula release 1.37.2 (07 July 2005) -- gentoo 1.4.16

You may need to change the name of your tape drive
on the "Archive Device" directive in the Device
resource. If you change the Name and/or the
"Media Type" in the Device resource, please ensure
that bacula-dir.conf has corresponding changes.

H OH B H O H R

Storage { # definition of myself
Name = rufus-sd
Address = rufus
WorkingDirectory = "$HOME/bacula/bin/working"
Pid Directory = "$HOME/bacula/bin/working"
Maximum Concurrent Jobs = 20

List Directors who are permitted to contact Storage daemon

H* H oY

Director {
Name = rufus-dir
Password = "ZF9Ctf5PQoWCPkmR3s4atCBOusUPg+vWWyIlo2VS5ti6k"

Restricted Director, used by tray-monitor to get the
status of the storage daemon

H OB Y

Director {
Name = rufus-mon
Password = "9usxgc307dMbe7 jbD16vOPX1hD64UVasIDDODH2WAujcDsc6"
Monitor = yes
}
#
Devices supported by this Storage daemon
To connect, the Director’s bacula-dir.conf must have the
same Name and MediaType.
#
Autochanger {
Name = Autochanger
Device = Drive-1
Device = Drive-2
Changer Command = "/home/kern/bacula/bin/mtx-changer Y%c %o %S %a %d"
Changer Device = /dev/sg0
}

Device {
Name = Drive-1 #
Drive Index = 0
Media Type = DLT-8000
Archive Device = /dev/nst0
AutomaticMount = yes; # when device opened, read it
AlwaysOpen = yes;
RemovableMedia = yes;
RandomAccess = no;

AutoChanger = yes

Alert Command = "sh -c ’tapeinfo -f Jc |grep TapeAlert|cat’"
}
Device {

Name = Drive-2 #

Drive Index =1
Media Type = DLT-8000
Archive Device = /dev/mnstl
AutomaticMount = yes; # when device opened, read it
AlwaysOpen = yes;
RemovableMedia = yes;
RandomAccess = no;
AutoChanger = yes
Alert Command = "sh -c ’tapeinfo -f Jc |grep TapeAlert|cat’"
}

Device {
Name = "HP DLT 80"
Media Type = DLT8000
Archive Device = /dev/nstO
AutomaticMount = yes; # when device opened, read it

AlwaysOpen = yes;
RemovableMedia = yes;

}

#Device {

Name = SDT-7000

Media Type = DDS-2

Archive Device = /dev/nst0

AutomaticMount = yes; # when device opened, read it
AlwaysOpen = yes;

RemovableMedia = yes;

#2

#Device {

Name = Floppy

Media Type = Floppy

Archive Device = /mnt/floppy

RemovableMedia = yes;

Random Access = Yes;

