LogisticRegressionWithLBFGS#
- class pyspark.mllib.classification.LogisticRegressionWithLBFGS[source]#
Train a classification model for Multinomial/Binary Logistic Regression using Limited-memory BFGS.
Standard feature scaling and L2 regularization are used by default. .. versionadded:: 1.2.0
Methods
train
(data[, iterations, initialWeights, ...])Train a logistic regression model on the given data.
Methods Documentation
- classmethod train(data, iterations=100, initialWeights=None, regParam=0.0, regType='l2', intercept=False, corrections=10, tolerance=1e-06, validateData=True, numClasses=2)[source]#
Train a logistic regression model on the given data.
New in version 1.2.0.
- Parameters
- data
pyspark.RDD
The training data, an RDD of
pyspark.mllib.regression.LabeledPoint
.- iterationsint, optional
The number of iterations. (default: 100)
- initialWeights
pyspark.mllib.linalg.Vector
or convertible, optional The initial weights. (default: None)
- regParamfloat, optional
The regularizer parameter. (default: 0.01)
- regTypestr, optional
The type of regularizer used for training our model. Supported values:
“l1” for using L1 regularization
“l2” for using L2 regularization (default)
None for no regularization
- interceptbool, optional
Boolean parameter which indicates the use or not of the augmented representation for training data (i.e., whether bias features are activated or not). (default: False)
- correctionsint, optional
The number of corrections used in the LBFGS update. If a known updater is used for binary classification, it calls the ml implementation and this parameter will have no effect. (default: 10)
- tolerancefloat, optional
The convergence tolerance of iterations for L-BFGS. (default: 1e-6)
- validateDatabool, optional
Boolean parameter which indicates if the algorithm should validate data before training. (default: True)
- numClassesint, optional
The number of classes (i.e., outcomes) a label can take in Multinomial Logistic Regression. (default: 2)
- data
Examples
>>> data = [ ... LabeledPoint(0.0, [0.0, 1.0]), ... LabeledPoint(1.0, [1.0, 0.0]), ... ] >>> lrm = LogisticRegressionWithLBFGS.train(sc.parallelize(data), iterations=10) >>> lrm.predict([1.0, 0.0]) 1 >>> lrm.predict([0.0, 1.0]) 0