Groovy Language Documentation

Version 4.0.28

Introduction

Groovy...

is an agile and dynamic language for the Java Virtual Machine

builds upon the strengths of Java but has additional power features inspired by languages like
Python, Ruby and Smalltalk

makes modern programming features available to Java developers with almost-zero learning
curve

provides the ability to statically type check and statically compile your code for robustness and
performance

supports Domain-Specific Languages and other compact syntax so your code becomes easy to
read and maintain

makes writing shell and build scripts easy with its powerful processing primitives, OO abilities
and an Ant DSL

increases developer productivity by reducing scaffolding code when developing web, GUI,
database or console applications

simplifies testing by supporting unit testing and mocking out-of-the-box
seamlessly integrates with all existing Java classes and libraries

compiles straight to Java bytecode so you can use it anywhere you can use Java

Groovy Language Specification

Syntax

This chapter covers the syntax of the Groovy programming language. The grammar of the language
derives from the Java grammar, but enhances it with specific constructs for Groovy, and allows
certain simplifications.

Comments

Single-line comment

Single-line comments start with // and can be found at any position in the line. The characters
following //, until the end of the line, are considered part of the comment.

// a standalone single line comment
println "hello" // a comment till the end of the line

Multiline comment

A multiline comment starts with /* and can be found at any position in the line. The characters
following /* will be considered part of the comment, including new line characters, up to the first
*/ closing the comment. Multiline comments can thus be put at the end of a statement, or even
inside a statement.

/* a standalone multiline comment
spanning two lines */
println "hello" /* a multiline comment starting
at the end of a statement */
println 1 /* one */ + 2 /* two */

Groovydoc comment

Similarly to multiline comments, Groovydoc comments are multiline, but start with /** and end
with */. Lines following the first Groovydoc comment line can optionally start with a star *. Those
comments are associated with:

* type definitions (classes, interfaces, enums, annotations),

* fields and properties definitions

* methods definitions

Although the compiler will not complain about Groovydoc comments not being associated with the
above language elements, you should prepend those constructs with the comment right before it.

/**

* A (Class description

*/

class Person {
/** the name of the person */
String name

/**

* Creates a greeting method for a certain person.
*

* @param otherPerson the person to greet
* @return a greeting message
*/
String greet(String otherPerson) {
"Hello ${otherPerson}"
}

Groovydoc follows the same conventions as Java’s own Javadoc. So you’ll be able to use the same
tags as with Javadoc.

In addition, Groovy supports Runtime Groovydoc since 3.0.0, i.e. Groovydoc can be retained at
runtime.

Runtime Groovydoc is disabled by default. It can be enabled by adding JVM option

NOTE -Dgroovy.attach.runtime.groovydoc=true

The Runtime Groovydoc starts with /**@ and ends with */, for example:

/**@
* Some class groovydoc for Foo
*/
class Foo {
/**@
* Some method groovydoc for bar
*/
void bar() {
}
}

assert Foo.class.groovydoc.content.contains('Some class groovydoc for Foo') @
assert Foo.class.getMethod('bar', new Class[@]).groovydoc.content.contains('Some
method groovydoc for bar') @

@ Get the runtime groovydoc for class Foo

@ Get the runtime groovydoc for method bar

Shebang line

Beside the single-line comment, there is a special line comment, often called the shebang line

understood by UNIX systems which allows scripts to be run directly from the command-line,
provided you have installed the Groovy distribution and the groovy command is available on the
PATH.

#!/usr/bin/env groovy
println "Hello from the shebang line"

The # character must be the first character of the file. Any indentation would yield a

NOTE I
compilation error.

Keywords

Groovy has the following reserved keywords:

Table 1. Reserved Keywords

abstract assert break case
catch class const continue
def default do else
enum extends final finally
for goto if implements
import instanceof interface native
new null non-sealed package
public protected private return
static strictfp super switch
synchronized this threadsafe throw
throws transient try while

Of these, const, goto, strictfp, and threadsafe are not currently in use.

The reserved keywords can’t in general be used for variable, field and method names.

A trick allows methods to be defined having the same name as a keyword by surrounding the
name in quotes as shown in the following example:

// reserved keywords can be used for method names if quoted

def "abstract"() { true }
// when calling such methods, the name must be qualified using "this."

this.abstract()

Using such names might be confusing and is often best to avoid. The trick is primarily
intended to enable certain Java integration scenarios and certain DSL scenarios where having

core-domain-specific-languages.html

"verbs" and "nouns" with the same name as keywords may be desirable.

In addition, Groovy has the following contextual keywords:

Table 2. Contextual Keywords
as in permits record

sealed trait var yields

These words are only keywords in certain contexts and can be more freely used in some places, in
particular for variables, fields and method names.

This extra lenience allows using method or variable names that were not keywords in earlier
versions of Groovy or are not keywords in Java. Examples are shown here:

// contextual keywords can be used for field and variable names
def as = true
assert as

// contextual keywords can be used for method names

def in() { true }

// when calling such methods, the name only needs to be qualified using "this."
in scenarios which would be ambiguous

this.in()

Groovy programmers familiar with these contextual keywords may still wish to avoid using
those names unless there is a good reason to use such a name.

The restrictions on reserved keywords also apply for the primitive types, the boolean literals and
the null literal (all of which are discussed later):

Table 3. Other reserved words

null true false boolean
char byte short int
long float double

While not recommended, the same trick as for reserved keywords can be used:

def "null"() { true } // not recommended; potentially confusing
assert this.null() // must be qualified

Using such words as method names is potentially confusing and is often best to avoid,
however, it might be useful for certain kinds of DSLs.

core-domain-specific-languages.html

Identifiers

Normal identifiers
Identifiers start with a letter, a dollar or an underscore. They cannot start with a number.
A letter can be in the following ranges:

* 'a' to 'z' (lowercase ascii letter)
* 'A'to "Z' (uppercase ascii letter)
* "\u00CO' to "\u00DE'
* '\uOODS8' to "\uOOF6'
* "\uOOF8' to "\uOOFF"
* "\u0100' to "uFFFE'

Then following characters can contain letters and numbers.

Here are a few examples of valid identifiers (here, variable names):

def name

def item3

def with_underscore
def $dollarStart

But the following ones are invalid identifiers:

def 3tier
def a+b
def ai#ib

All keywords are also valid identifiers when following a dot:

foo.as
foo.assert
foo.break
foo.case
foo.catch

Quoted identifiers

Quoted identifiers appear after the dot of a dotted expression. For instance, the name part of the
person.name expression can be quoted with person."name" or person.'name'. This is particularly
interesting when certain identifiers contain illegal characters that are forbidden by the Java
Language Specification, but which are allowed by Groovy when quoted. For example, characters
like a dash, a space, an exclamation mark, etc.

def map = [:]

map."an identifier with a space and double quotes" = "ALLOWED"
map.'with-dash-signs-and-single-quotes' = "ALLOWED"

assert map."an identifier with a space and double quotes" == "ALLOWED"
assert map. 'with-dash-signs-and-single-quotes' == "ALLOWED"

As we shall see in the following section on strings, Groovy provides different string literals. All kind
of strings are actually allowed after the dot:

map. 'single quote'
map. "double quote"

map.' ' 'triple single quote
map."""triple double quote
map./slashy string/

map.$/dollar slashy string/$

There’s a difference between plain character strings and Groovy’s GStrings (interpolated strings), as
in that the latter case, the interpolated values are inserted in the final string for evaluating the
whole identifier:

def firstname = "Homer"

map."Simpson-${firstname}" = "Homer Simpson"
assert map.'Simpson-Homer' == "Homer Simpson"
Strings

Text literals are represented in the form of chain of characters called strings. Groovy lets you
instantiate java.lang.String objects, as well as GStrings (groovy.lang.GString) which are also called
interpolated strings in other programming languages.

Single-quoted string

Single-quoted strings are a series of characters surrounded by single quotes:

'a single-quoted string'

NOTE Single-quoted strings are plain java.lang.String and don’t support interpolation.

String concatenation

All the Groovy strings can be concatenated with the + operator:

assert 'ab' == 'a' + 'b'

Triple-single-quoted string

Triple-single-quoted strings are a series of characters surrounded by triplets of single quotes:

"""a triple-single-quoted string'"’

NOTE Triple-single-quoted strings are plain java.lang.String and don’t support
interpolation.

Triple-single-quoted strings may span multiple lines. The content of the string can cross line

boundaries without the need to split the string in several pieces and without concatenation or

newline escape characters:

def aMultilineString = '''line one
line two
line three'''

If your code is indented, for example in the body of the method of a class, your string will contain
the whitespace of the indentation. The Groovy Development Kit contains methods for stripping out
the indentation with the String#stripIndent() method, and with the String#stripMargin() method
that takes a delimiter character to identify the text to remove from the beginning of a string.

When creating a string as follows:

def startingAndEndingWithANewline = "'’
line one

line two

line three

You will notice that the resulting string contains a newline character as first character. It is possible
to strip that character by escaping the newline with a backslash:

def strippedFirstNewline = """\
line one

line two

line three

assert !strippedFirstNewline.startsWith('\n")

Escaping special characters

You can escape single quotes with the backslash character to avoid terminating the string literal:

'an escaped single quote: \' needs a backslash'

And you can escape the escape character itself with a double backslash:

'an escaped escape character: \\ needs a double backslash'

Some special characters also use the backslash as escape character:

Escape sequence Character

\b backspace

\f formfeed

\n newline

\r carriage return

\s single space

\t tabulation

\\ backslash

\' single quote within a single-quoted string (and optional for triple-

single-quoted and double-quoted strings)

\" double quote within a double-quoted string (and optional for
triple-double-quoted and single-quoted strings)

We’ll see some more escaping details when it comes to other types of strings discussed later.

Unicode escape sequence

For characters that are not present on your keyboard, you can use unicode escape sequences: a
backslash, followed by 'u’, then 4 hexadecimal digits.

For example, the Euro currency symbol can be represented with:

'The Euro currency symbol: \u20AC'

Double-quoted string

Double-quoted strings are a series of characters surrounded by double quotes:

"a double-quoted string"

Double-quoted strings are plain java.lang.String if there’s no interpolated

NOTE . S i L.
expression, but are groovy.lang.GString instances if interpolation is present.

NOTE To escape a double quote, you can use the backslash character: "A double quote: \"".

String interpolation

Any Groovy expression can be interpolated in all string literals, apart from single and triple-single-
quoted strings. Interpolation is the act of replacing a placeholder in the string with its value upon
evaluation of the string. The placeholder expressions are surrounded by ${}. The curly braces may
be omitted for unambiguous dotted expressions, i.e. we can use just a $ prefix in those cases. If the
GString is ever passed to a method taking a String, the expression value inside the placeholder is
evaluated to its string representation (by calling toString() on that expression) and the resulting
String is passed to the method.

Here, we have a string with a placeholder referencing a local variable:

def name = 'Guillaume' // a plain string
def greeting = "Hello ${name}"

assert greeting.toString() == 'Hello Guillaume'

Any Groovy expression is valid, as we can see in this example with an arithmetic expression:

def sum = "The sum of 2 and 3 equals ${2 + 3}"
assert sum.toString() == 'The sum of 2 and 3 equals 5'

Not only are expressions allowed in between the ${} placeholder, but so are
statements. However, a statement’s value is just null. So if several statements are
inserted in that placeholder, the last one should somehow return a meaningful
value to be inserted. For instance, "The sum of 1 and 2 is equal to ${defa =1; def b =
2; a + b}" is supported and works as expected but a good practice is usually to stick
to simple expressions inside GString placeholders.

NOTE

In addition to ${} placeholders, we can also use a lone §$ sign prefixing a dotted expression:

def person = [name: 'Guillaume', age: 36]
assert "$person.name is $person.age years old" == 'Guillaume is 36 years old'

But only dotted expressions of the form a.b, a.b.c, etc, are valid. Expressions containing
parentheses like method calls, curly braces for closures, dots which aren’t part of a property
expression or arithmetic operators would be invalid. Given the following variable definition of a
number:

10

def number = 3.14

The following statement will throw a groovy.lang.MissingPropertyException because Groovy
believes you’re trying to access the toString property of that number, which doesn’t exist:

shouldFail(MissingPropertyException) {
println "$number.toString()"

}

You can think of "$number.toString()" as being interpreted by the parser as

NOTE
"${number.toString}()".

Similarly, if the expression is ambiguous, you need to keep the curly braces:

String thing = "treasure’
assert 'The x-coordinate of the treasure is represented by treasure.x' ==
"The x-coordinate of the $thing is represented by $thing.x" // <= Not allowed:
ambiquous!!
assert 'The x-coordinate of the treasure is represented by treasure.x' ==
"The x-coordinate of the $thing is represented by ${thing}.x" // <= Curly
braces required

If you need to escape the $ or ${} placeholders in a GString so they appear as is without
interpolation, you just need to use a \ backslash character to escape the dollar sign:

assert '$5' == "\§$5"
assert '${name}' == "\${name}"

Special case of interpolating closure expressions

So far, we’ve seen we could interpolate arbitrary expressions inside the ${} placeholder, but there
is a special case and notation for closure expressions. When the placeholder contains an arrow,
${~}, the expression is actually a closure expression — you can think of it as a closure with a dollar
prepended in front of it:

def sParameterLessClosure = "1 + 2 == ${-> 3}" @
assert sParameterLessClosure == '1T + 2 == 3'

def sOneParamClosure = "1 + 2 == ${ w -> w << 3}" @
assert sOneParamClosure == '1 + 2 == 3'

@ The closure is a parameterless closure which doesn’t take arguments.

@ Here, the closure takes a single java.io.StringWriter argument, to which you can append
content with the << leftShift operator. In either case, both placeholders are embedded closures.

11

In appearance, it looks like a more verbose way of defining expressions to be interpolated, but
closures have an interesting advantage over mere expressions: lazy evaluation.

Let’s consider the following sample:
def number = 1 @®

def eagerGString = "value == ${number}"
def lazyGString = "value == ${ -> number }"

assert eagerGString == "value == 1" @
assert lazyGString == "value == 1" ®
number = 2 @

assert eagerGString == "value == 1" ®
assert lazyGString == "value == 2" ®

@ We define a number variable containing 1 that we then interpolate within two GStrings, as an
expression in eagerGString and as a closure in 1azyGString.

@ We expect the resulting string to contain the same string value of 1 for eagerGString.
® Similarly for lazyGString
@ Then we change the value of the variable to a new number

® With a plain interpolated expression, the value was actually bound at the time of creation of the
GString.

® But with a closure expression, the closure is called upon each coercion of the GString into String,
resulting in an updated string containing the new number value.

An embedded closure expression taking more than one parameter will generate an

NOTE . . .
exception at runtime. Only closures with zero or one parameter are allowed.

Interoperability with Java

When a method (whether implemented in Java or Groovy) expects a java.lang.String, but we pass
a groovy.lang.GString instance, the toString() method of the GString is automatically and
transparently called.

String takeString(String message) { @
assert message instanceof String ®
return message

}

def message = "The message is ${'hello'}" @

assert message instanceof GString @

def result = takeString(message) ©)
assert result instanceof String

assert result == 'The message is hello'

12

@ We create a GString variable

@ We double-check it’s an instance of the GString

3 We then pass that GString to a method taking a String as parameter

@ The signature of the takeString() method explicitly says its sole parameter is a String

® We also verify that the parameter is indeed a String and not a GString.

GString and String hashCodes

Although interpolated strings can be used in lieu of plain Java strings, they differ with strings in a
particular way: their hashCodes are different. Plain Java strings are immutable, whereas the
resulting String representation of a GString can vary, depending on its interpolated values. Even for
the same resulting string, GStrings and Strings don’t have the same hashCode.

assert "one: ${1}".hashCode() != "one: 1".hashCode()

GString and Strings having different hashCode values, using GString as Map keys should be
avoided, especially if we try to retrieve an associated value with a String instead of a GString.

def key = "a"
def m = ["${key}": "letter ${key}"] @

assert m["a"] == null

@ The map is created with an initial pair whose key is a GString

@ When we try to fetch the value with a String key, we will not find it, as Strings and GString have
different hashCode values

Triple-double-quoted string

Triple-double-quoted strings behave like double-quoted strings, with the addition that they are
multiline, like the triple-single-quoted strings.

def name = 'Groovy'
def template = """
Dear Mr ${name},
You're the winner of the lottery!

Yours sincerly,

Dave

assert template.toString().contains('Groovy')

13

Neither double quotes nor single quotes need be escaped in triple-double-quoted

NOTE .
strings.

Slashy string

Beyond the usual quoted strings, Groovy offers slashy strings, which use / as the opening and
closing delimiter. Slashy strings are particularly useful for defining regular expressions and
patterns, as there is no need to escape backslashes.

Example of a slashy string:

def fooPattern = /.*foo.*/
assert fooPattern == '.*foo0.*'

Only forward slashes need to be escaped with a backslash:

def escapeSlash = /The character \/ is a forward slash/
assert escapeSlash == 'The character / is a forward slash'

Slashy strings are multiline:

def multilineSlashy = /one
two
three/

assert multilineSlashy.contains('\n")

Slashy strings can be thought of as just another way to define a GString but with different escaping
rules. They hence support interpolation:

def color = 'blue'
def interpolatedSlashy = /a ${color} car/

assert interpolatedSlashy == 'a blue car’

Special cases

An empty slashy string cannot be represented with a double forward slash, as it’s understood by
the Groovy parser as a line comment. That’s why the following assert would actually not compile as
it would look like a non-terminated statement:

assert = //

As slashy strings were mostly designed to make regexp easier so a few things that are errors in

14

GStrings like $() or $5 will work with slashy strings.

Remember that escaping backslashes is not required. An alternative way of thinking of this is that
in fact escaping is not supported. The slashy string /\t/ won’t contain a tab but instead a backslash
followed by the character 't". Escaping is only allowed for the slash character, i.e. /\/folder/ will be
a slashy string containing '/folder'. A consequence of slash escaping is that a slashy string can’t
end with a backslash. Otherwise that will escape the slashy string terminator. You can instead use a
special trick, /ends with slash ${'\'}/. But best just avoid using a slashy string in such a case.

Dollar slashy string

Dollar slashy strings are multiline GStrings delimited with an opening $/ and a closing /$. The
escaping character is the dollar sign, and it can escape another dollar, or a forward slash. Escaping
for the dollar and forward slash characters is only needed where conflicts arise with the special use
of those characters. The characters $foo would normally indicate a GString placeholder, so those
four characters can be entered into a dollar slashy string by escaping the dollar, i.e. §§foo. Similarly,
you will need to escape a dollar slashy closing delimiter if you want it to appear in your string.

Here are a few examples:

"Guillaume"
"April, 1st"

def name
def date

def dollarSlashy = $/
Hello $name,
today we're ${date}.

$ dollar sign

$$ escaped dollar sign

\ backslash

/ forward slash

$/ escaped forward slash

$$$/ escaped opening dollar slashy
$/$$ escaped closing dollar slashy

/$

assert [
"Guillaume',
"April, 1Tst',

'$ dollar sign',

'$ escaped dollar sign',

"\\ backslash',

'/ forward slash',

'/ escaped forward slash',

'$/ escaped opening dollar slashy',

'/$ escaped closing dollar slashy'
].every { dollarSlashy.contains(it) }

It was created to overcome some of the limitations of the slashy string escaping rules. Use it when

15

its escaping rules suit your string contents (typically if it has some slashes you don’t want to

escape).

String summary table

String name String syntax
Single-quoted

Triple-single-
quoted

Double-quoted

Illlll...""ll

Triple-double-

quoted

Slashy [/
Dollar slashy $/-/8$
Characters

Interpolated
[check empty]
[check empty]

[check]
[check]

[check]
[check]

Multiline
[check empty]
[check]

[check empty]
[checK]

[check]
[check]

Escape character
\

\

Unlike Java, Groovy doesn’t have an explicit character literal. However, you can be explicit about
making a Groovy string an actual character, by three different means:

char ¢1 = 'A' @

assert c1 instanceof Character

def ¢2 = 'B' as char @

assert c2 instanceof Character

def ¢3 = (char)'C' ®

assert c3 instanceof Character

@ by being explicit when declaring a variable holding the character by specifying the char type

@ by using type coercion with the as operator

® by using a cast to char operation

The first option 1 is interesting when the character is held in a variable, while the
NOTE other two (2 and 3) are more interesting when a char value must be passed as

argument of a method call.

Numbers

Groovy supports different kinds of integral literals and decimal literals, backed by the usual Number

types of Java.

Integral literals

The integral literal types are the same as in Java:

16

* byte
* char
* short
e int

* long

* java.math.BigInteger

You can create integral numbers of those types with the following declarations:

// primitive types

byte b =1
char ¢ =2
short s = 3
int i=4
long 1 =5

// infinite precision
BigInteger bi = 6

If you use optional typing by using the def keyword, the type of the integral number will vary: it’ll
adapt to the capacity of the type that can hold that number.
For positive numbers:

def a = 1
assert a instanceof Integer

// Integer.MAX_VALUE
def b = 2147483647
assert b instanceof Integer

// Integer.MAX_VALUE + 1
def ¢ = 2147483648
assert ¢ instanceof Long

// Long.MAX_VALUE

def d = 9223372036854775807
assert d instanceof Long

// Long.MAX_VALUE + 1

def e = 9223372036854775808
assert e instanceof BigInteger

As well as for negative numbers:

def na = -1

17

assert na instanceof Integer

// Integer.MIN_VALUE
def nb = -2147483648
assert nb instanceof Integer

// Integer .MIN_VALUE - 1
def nc = -2147483649
assert nc instanceof Long

// Long.MIN_VALUE
def nd = -9223372036854775808
assert nd instanceof Long

// Long.MIN_VALUE - 1
def ne = -9223372036854775809
assert ne instanceof BigInteger

Alternative non-base 10 representations

Numbers can also be represented in binary, octal, hexadecimal and decimal bases.

Binary literal

Binary numbers start with a 0b prefix:

int xInt = 8b10101111
assert xInt == 175

short xShort = 0b11001001
assert xShort == 201 as short

byte xByte = @b11
assert xByte == 3 as byte

long xLong = 0b101101101101
assert xLong == 29251

BigInteger xBigInteger = 0b111100100001
assert xBigInteger == 3873g

int xNegativeInt = -0b10101111
assert xNegativelnt == -175

Octal literal

Octal numbers are specified in the typical format of @ followed by octal digits.

int xInt = 077

18

assert xInt == 63

short xShort = 011
assert xShort == 9 as short

byte xByte = 032
assert xByte == 26 as byte

long xLong = 0246
assert xLong == 1661

BigInteger xBigInteger = 01111
assert xBigInteger == 585¢g

int xNegativelnt = -077
assert xNegativelnt == -63

Hexadecimal literal
Hexadecimal numbers are specified in the typical format of 0x followed by hex digits.

int xInt = Ox77
assert xInt == 119

short xShort = O@xaa
assert xShort == 170 as short

byte xByte = 0x3a
assert xByte == 58 as byte

long xLong = @Oxffff
assert xLong == 655351

BigInteger xBigInteger = @xaaaa
assert xBigInteger == 436909

Double xDouble = new Double('0x1.0p0")
assert xDouble == 1.0d

int xNegativelnt = -0x77
assert xNegativelnt == -119

Decimal literals

The decimal literal types are the same as in Java:

e float
e double

* java.math.BigDecimal
You can create decimal numbers of those types with the following declarations:
// primitive types

float f = 1.234
double d = 2.345

// infinite precision
BigDecimal bd = 3.456

Decimals can use exponents, with the e or E exponent letter, followed by an optional sign, and an
integral number representing the exponent:

assert 1e3 == 1 .000.0
assert 2E4 == 20 _000.0
assert 3e+1 == 30.0
assert 4E-2 == 0.04
assert 5e-1 == 0.5

Conveniently for exact decimal number calculations, Groovy chooses java.math.BigDecimal as its
decimal number type. In addition, both float and double are supported, but require an explicit type
declaration, type coercion or suffix. Even if BigDecimal is the default for decimal numbers, such
literals are accepted in methods or closures taking float or double as parameter types.

Decimal numbers can’t be represented using a binary, octal or hexadecimal

NOTE .
representation.

Underscore in literals

When writing long literal numbers, it’s harder on the eye to figure out how some numbers are
grouped together, for example with groups of thousands, of words, etc. By allowing you to place
underscore in number literals, it’s easier to spot those groups:

long creditCardNumber = 1234_5678_9012_3456L

long socialSecurityNumbers = 999_99_9999L

double monetaryAmount = 12_345_132.12

long hexBytes = @xFF_EC_DE_5E

long hexWords = @xFFEC_DES5E

long maxLong = Ox7fff_ffff_ffff_fffflL

long alsoMaxLong = 9_223_372_036_854_775_807L

long bytes = 0b11010010_01101001_10010100_10010010

Number type suffixes

We can force a number (including binary, octals and hexadecimals) to have a specific type by giving

20

a suffix (see table below), either uppercase or lowercase.

Type Suffix
Biginteger Gorg
Long Lorl
Integer Tori
BigDecimal Gorg
Double Dord
Float Forf
Examples:

assert 421 == Integer.valueOf('42")

assert 42i == Integer.valueOf('42') // lowercase i more readable

assert 123L == Long.valueOf("123") // uppercase L more readable

assert 2147483648 == Long.valueOf('2147483648') // Long type used, value too large for
an Integer

assert 456G == new BigInteger('456")

assert 456g == new BigInteger('456")

assert 123.45 == new BigDecimal('123.45") // default BigDecimal type used
assert .321 == new BigDecimal('.321")

assert 1.200065D == Double.valueOf('1.200065")

assert 1.234F == Float.valueOf('1.234")

assert 1.23E23D == Double.valueOf('1.23E23")

assert @b1111L.class == Long // binary

assert OxFFi.class == Integer // hexadecimal

assert 034G.class == BigInteger // octal

Math operations

Although operators are covered in more detail elsewhere, it’s important to discuss the behavior of
math operations and what their resulting types are.

Division and power binary operations aside (covered below),

* binary operations between byte, char, short and int resultin int
* binary operations involving long with byte, char, short and int result in long
* binary operations involving BigInteger and any other integral type result in BigInteger

* binary operations involving BigDecimal with byte, char, short, int and BigInteger result in
BigDecimal

* binary operations between float, double and BigDecimal result in double

* binary operations between two BigDecimal result in BigDecimal

The following table summarizes those rules:

21

byte char short int long BigInteg float double BigDeci

er mal
byte int int int int long Biginteg double double BigDeci
er mal
char int int int long Biginteg double double BigDeci
er mal
short int int long Biginteg double double BigDeci
er mal
int int long Biginteg double double BigDeci
er mal
long long Biginteg double double BigDeci
er mal
BigInteg Biginteg double double BigDeci
er er mal
float double double double
double double double
BigDeci BigDeci
mal mal

Thanks to Groovy’s operator overloading, the usual arithmetic operators work as
NOTE well with BigInteger and BigDecimal, unlike in Java where you have to use explicit
methods for operating on those numbers.

The case of the division operator

The division operators / (and /= for division and assignment) produce a double result if either
operand is a float or double, and a BigDecimal result otherwise (when both operands are any
combination of an integral type short, char, byte, int, long, BigInteger or BigDecimal).

BigDecimal division is performed with the divide() method if the division is exact (i.e. yielding a
result that can be represented within the bounds of the same precision and scale), or using a
MathContext with a precision of the maximum of the two operands' precision plus an extra precision
of 10, and a scale of the maximum of 10 and the maximum of the operands' scale.

For integer division like in Java, you should use the intdiv() method, as Groovy

NOTE
doesn’t provide a dedicated integer division operator symbol.

The case of the power operator

The power operation is represented by the ** operator, with two parameters: the base and the
exponent. The result of the power operation depends on its operands, and the result of the
operation (in particular if the result can be represented as an integral value).

The following rules are used by Groovy’s power operation to determine the resulting type:

22

http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html#precision()
http://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html#scale()

* If the exponent is a decimal value
o if the result can be represented as an Integer, then return an Integer
o else if the result can be represented as a Long, then return a Long
o otherwise return a Double

* If the exponent is an integral value

o if the exponent is strictly negative, then return an Integer, Long or Double if the result value
fits in that type

o if the exponent is positive or zero
= if the base is a BigDecimal, then return a BigDecimal result value
= if the base is a BigInteger, then return a BigInteger result value

= if the base is an Integer, then return an Integer if the result value fits in it, otherwise a
BigInteger

= if the base is a Long, then return a Long if the result value fits in it, otherwise a BigInteger

We can illustrate those rules with a few examples:

// base and exponent are ints and the result can be represented by an Integer
assert 2 ** 3 instanceof Integer // 8
assert 10 *¥* 9 instanceof Integer // 1_000_000_000

// the base is a long, so fit the result in a Long
// (although it could have fit in an Integer)
assert 5L ** 2 instanceof Long // 25

// the result can't be represented as an Integer or Long, so return a BigInteger
assert 100 ** 10 instanceof BigInteger // 10e20
assert 1234 ** 123 instanceof BigInteger // 170515806212727042875. ..

// the base is a BigDecimal and the exponent a negative int
// but the result can be represented as an Integer
assert 0.5 ** -2 instanceof Integer // 4

// the base is an int, and the exponent a negative float
// but again, the result can be represented as an Integer
assert 1 ** -0.3f instanceof Integer /71

// the base is an int, and the exponent a negative int

// but the result will be calculated as a Double

// (both base and exponent are actually converted to doubles)
assert 10 o instanceof Double /0.1

// the base is a BigDecimal, and the exponent is an int, so return a BigDecimal
assert 1.2 ** 10 instanceof BigDecimal // 6.1917364224

// the base is a float or double, and the exponent is an int
// but the result can only be represented as a Double value

23

assert 3.4f ** § instanceof Double // 454.35430372146965
assert 5.6d ** 2 instanceof Double // 31.359999999999996

// the exponent is a decimal value

// and the result can only be represented as a Double value

assert 7.8 ** 1.9 instanceof Double // 49.542708423868476
assert 2 ** 0.1f instanceof Double // 1.0717734636432956

Booleans

Boolean is a special data type that is used to represent truth values: true and false. Use this data
type for simple flags that track true/false conditions.

Boolean values can be stored in variables, assigned into fields, just like any other data type:

def myBooleanVariable = true
boolean untypedBooleanVar = false
booleanField = true

true and false are the only two primitive boolean values. But more complex boolean expressions
can be represented using logical operators.

In addition, Groovy has special rules (often referred to as Groovy Truth) for coercing non-boolean
objects to a boolean value.

Lists

Groovy uses a comma-separated list of values, surrounded by square brackets, to denote lists.
Groovy lists are plain JDK java.util.List, as Groovy doesn’t define its own collection classes. The
concrete list implementation used when defining list literals are java.util.ArraylList by default,
unless you decide to specify otherwise, as we shall see later on.

def numbers = [1, 2, 3] ©)

assert numbers instanceof List @
assert numbers.size() == ®

® We define a list numbers delimited by commas and surrounded by square brackets, and we
assign that list into a variable

@ The list is an instance of Java’s java.util.List interface
® The size of the list can be queried with the size() method, and shows our list contains 3

elements

In the above example, we used a homogeneous list, but you can also create lists containing values
of heterogeneous types:

24

def heterogeneous = [1, "a", true] @

@ Our list here contains a number, a string and a boolean value

We mentioned that by default, list literals are actually instances of java.util.Arraylist, but it is
possible to use a different backing type for our lists, thanks to using type coercion with the as
operator, or with explicit type declaration for your variables:

def arraylList = [1, 2, 3]
assert arraylList instanceof java.util.ArraylList

def linkedList = [2, 3, 4] as LinkedList ©)
assert linkedlList instanceof java.util.LinkedList

LinkedList otherLinked = [3, 4, 5] @
assert otherlLinked instanceof java.util.LinkedlList

@ We use coercion with the as operator to explicitly request a java.util.LinkedList
implementation

@ We can say that the variable holding the list literal is of type java.util.LinkedList
You can access elements of the list with the [] subscript operator (both for reading and setting

values) with positive indices or negative indices to access elements from the end of the list, as well
as with ranges, and use the << leftShift operator to append elements to a list:

def letters = ['a', 'b", 'c¢', 'd']

assert letters[0] == 'a' @
assert letters[1] == 'b'

assert letters[-1] == 'd' @

assert letters[-2] == 'c

letters[2] = 'C' ®
assert letters[2] == 'C'

letters << 'e' @

assert letters[4] == 'e'

assert letters[-1] == 'e'

assert letters[1, 3] == ['b', 'd'] ®

assert letters[2..4] == ['C', 'd', 'e'] ®

@ Access the first element of the list (zero-based counting)

@ Access the last element of the list with a negative index: -1 is the first element from the end of
the list

25

® Use an assignment to set a new value for the third element of the list
@ Use the << leftShift operator to append an element at the end of the list
® Access two elements at once, returning a new list containing those two elements

® Use a range to access a range of values from the list, from a start to an end element position

As lists can be heterogeneous in nature, lists can also contain other lists to create multidimensional

lists:

def multi = [[0, 1], [2, 3]1] @D
assert multi[1][0] == @

@ Define a list of numbers

@ Access the second element of the top-most list, and the first element of the inner list

Arrays

Groovy reuses the list notation for arrays, but to make such literals arrays, you need to explicitly

define the type of the array through coercion or type declaration.

String[] arrStr = ['Ananas', 'Banana', 'Kiwi'] @

assert arrStr instanceof String[] @
assert !(arrStr instanceof List)

def numArr = [1, 2, 3] as int[] ©)

assert numArr instanceof int[] @
assert numArr.size() ==

@ Define an array of strings using explicit variable type declaration
@ Assert that we created an array of strings
® Create an array of ints with the as operator

@ Assert that we created an array of primitive ints

You can also create multi-dimensional arrays:

def matrix3 = new Integer[3][3] O)
assert matrix3.size() ==

Integer[][] matrix2 @
matrix2 = [[1, 2], [3, 4]]
assert matrix2 instanceof Integer[][]

@ You can define the bounds of a new array

26

@ Or declare an array without specifying its bounds

Access to elements of an array follows the same notation as for lists:

String[] names = ['Cédric', 'Guillaume', 'Jochen', 'Paul']

assert names[@] == 'Cédric’ ©)
names[2] = 'Blackdrag’ @
assert names[2] == 'Blackdrag’

@ Retrieve the first element of the array

@ Set the value of the third element of the array to a new value

Java-style array initialization

Groovy has always supported literal list/array definitions using square brackets and has avoided
Java-style curly braces so as not to conflict with closure definitions. In the case where the curly
braces come immediately after an array type declaration however, there is no ambiguity with
closure definitions, so Groovy 3 and above support that variant of the Java array initialization
expression.

Examples:
def primes = new int[] {2, 3, 5, 7, 11}

assert primes.size() == 5 && primes.sum() == 28
assert primes.class.name == '[I'

def pets = new String[] {'cat', 'dog'}
assert pets.size() == 2 &% pets.sum() == 'catdog'
assert pets.class.name == '[Ljava.lang.String;'

// traditional Groovy alternative still supported
String[] groovyBooks = ['Groovy in Action', 'Making Java Groovy']
assert groovyBooks.every{ it.contains('Groovy') }

Maps

Sometimes called dictionaries or associative arrays in other languages, Groovy features maps. Maps
associate keys to values, separating keys and values with colons, and each key/value pairs with
commas, and the whole keys and values surrounded by square brackets.

def colors = [red: '#FFQ00Q', green: '#0OFFQQ', blue: '#000OFF'] @

assert colors['red'] == '#FF0000' @)

assert colors.green == '#00FF00' ©)
colors['pink'] = "HFFOOFF')
colors.yellow = "#FFFFoQ' ®

27

assert colors.pink == '#FFOOFF'
assert colors['yellow'] == "#FFFF0Q'

assert colors instanceof java.util.LinkedHashMap

@ We define a map of string color names, associated with their hexadecimal-coded html colors
@ We use the subscript notation to check the content associated with the red key

(3 We can also use the property notation to assert the color green’s hexadecimal representation
@ Similarly, we can use the subscript notation to add a new key/value pair

® Or the property notation, to add the yellow color

NOTE When using names for the keys, we actually define string keys in the map.

NOTE Groovy creates maps that are actually instances of java.util.LinkedHashMap.

If you try to access a key which is not present in the map:

assert colors.unknown == null

def emptyMap = [:]
assert emptyMap.anyKey == null

You will retrieve a null result.

In the examples above, we used string keys, but you can also use values of other types as keys:

def numbers = [1: 'one', 2: "two']

assert numbers[1] == 'one'

Here, we used numbers as keys, as numbers can unambiguously be recognized as numbers, so
Groovy will not create a string key like in our previous examples. But consider the case you want to
pass a variable in lieu of the key, to have the value of that variable become the key:

def key = 'name’
def person = [key: 'Guillaume'] @)

assert !person.containsKey('name') @
assert person.containsKey('key') ©)

@ The key associated with the 'Guillaume' name will actually be the "key" string, not the value
associated with the key variable

@ The map doesn’t contain the 'name' key

28

® Instead, the map contains a 'key' key

You can also pass quoted strings as well as keys: ["'name": "Guillaume"]. This is
NOTE mandatory if your key string isn’t a valid identifier, for example if you wanted to
create a string key containing a dash like in: ["street-name": "Main street"].

When you need to pass variable values as keys in your map definitions, you must surround the
variable or expression with parentheses:

person = [(key): 'Guillaume'] ©)

assert person.containsKey('name') @)
assert !person.containsKey('key') ®

@ This time, we surround the key variable with parentheses, to instruct the parser we are passing a
variable rather than defining a string key

@ The map does contain the name key

® But the map doesn’t contain the key key as before

Operators

This chapter covers the operators of the Groovy programming language.

Arithmetic operators

Groovy supports the usual familiar arithmetic operators you find in mathematics and in other
programming languages like Java. All the Java arithmetic operators are supported. Let’s go through
them in the following examples.

Normal arithmetic operators

The following binary arithmetic operators are available in Groovy:

Operator Purpose Remarks

+ addition

- subtraction

* multiplication

/ division Use intdiv() for integer

division, and see the section
about integer division for more
information on the return type
of the division.

o°

remainder

29

Operator Purpose Remarks

o power See the section about the power

operation for more information
on the return type of the
operation.

Here are a few examples of usage of those operators:

+
N
1
1

assert 1
assert 4 -
assert 3 *

assert 3 /2 ==1.5
assert 10 % 3 ==
assert 2 ** 3 ==

Unary operators

The + and - operators are also available as unary operators:

assert +3 ==
assert -4 ==0 - 4

assert -(-1) == ©)

@ Note the usage of parentheses to surround an expression to apply the unary minus to that
surrounded expression.

In terms of unary arithmetics operators, the ++ (increment) and -- (decrement) operators are
available, both in prefix and postfix notation:

2
at+ * 3 ©)

def a
def b

assert a == 3 && b ==

def c
def d

I n
o w
|
*
N
®

assert ¢ == 2 && d ==

def e
def f

1
++e + 3 ®

assert e == 2 &§ f ==

def g =
def h = --g + 1 @

I
~

30

assert g == 3 && h ==

@ The postfix increment will increment a after the expression has been evaluated and assigned
into b

@ The postfix decrement will decrement c after the expression has been evaluated and assigned
into d

® The prefix increment will increment e before the expression is evaluated and assigned into f

@ The prefix decrement will decrement g before the expression is evaluated and assigned into h
For the unary not operator on Booleans, see Conditional operators.

Assignment arithmetic operators

The binary arithmetic operators we have seen above are also available in an assignment form:

o 4=

Let’s see them in action:

def a = 4
a+=3

assert a ==

def b =5
=

assert b ==

def ¢c =5
g ¥ g

assert ¢ == 15

def d = 10
d /=2
assert d ==
def e = 10
e %= 3

31

assert e ==

def f = 3
f %522

assert f ==

Relational operators

Relational operators allow comparisons between objects, to know if two objects are the same or
different, or if one is greater than, less than, or equal to the other.

The following operators are available:

Operator Purpose

== equal

I= different

< less than

<= less than or equal

> greater than

>= greater than or equal

=== identical (Since Groovy 3.0.0)

== not identical (Since Groovy 3.0.0)

Here are some examples of simple number comparisons using these operators:

assert 1 + 2 ==
assert 3 =4

assert -2 < 3
assert 2 <=2

assert 3 <=4

assert 5 > 1
assert 5 >= -2

Both === and !== are supported which are the same as calling the is() method, and negating a call
to the is() method respectively.

import groovy.transform.EqualsAndHashCode

©EqualsAndHashCode
class Creature { String type }

32

def cat = new Creature(type: 'cat')
def copyCat = cat
def lion = new Creature(type: 'cat')

assert cat.equals(lion) // Java logical equality
assert cat == lion // Groovy shorthand operator

assert cat.is(copyCat) // Groovy identity
assert cat === copyCat // operator shorthand
assert cat !== lion // negated operator shorthand

Logical operators
Groovy offers three logical operators for boolean expressions:

» &&: logical "and"
* ||:logical "or"

* I:]ogical "not"

Let’s illustrate them with the following examples:

assert !false ©)
assert true && true @
assert true || false ®

@ "not" false is true
@ true "and" true is true

@ true "or" false is true
Precedence
The logical "not" has a higher priority than the logical "and".
assert (!false && false) == false @
@ Here, the assertion is true (as the expression in parentheses is false), because "not" has a higher

precedence than "and", so it only applies to the first "false" term; otherwise, it would have
applied to the result of the "and", turned it into true, and the assertion would have failed

The logical "and" has a higher priority than the logical "or".

assert true || true && false O)

@ Here, the assertion is true, because "and" has a higher precedence than "or", therefore the "or" is
executed last and returns true, having one true argument; otherwise, the "and" would have

33

executed last and returned false, having one false argument, and the assertion would have
failed

Short-circuiting

The logical || operator supports short-circuiting: if the left operand is true, it knows that the result
will be true in any case, so it won’t evaluate the right operand. The right operand will be evaluated
only if the left operand is false.

Likewise for the logical && operator: if the left operand is false, it knows that the result will be false
in any case, so it won’t evaluate the right operand. The right operand will be evaluated only if the
left operand is true.

boolean checkIfCalled() { @
called = true

}

called = false
true || checkIfCalled()
assert !called @

called = false
false || checkIfCalled()
assert called ®

called = false
false && checkIfCalled()
assert !called)

called = false
true && checkIfCalled()
assert called ®

@ We create a function that sets the called flag to true whenever it’s called

@ In the first case, after resetting the called flag, we confirm that if the left operand to || is true,
the function is not called, as || short-circuits the evaluation of the right operand

® In the second case, the left operand is false and so the function is called, as indicated by the fact
our flag is now true

@ Likewise for &&, we confirm that the function is not called with a false left operand

® But the function is called with a true left operand

Bitwise and bit shift operators

Bitwise operators

Groovy offers four bitwise operators:

e &: bitwise "and"

34

* |: bitwise "or"
e A: bitwise "xor" (exclusive "or")

* ~: bitwise negation

Bitwise operators can be applied on arguments which are of type byte, short, int, long, or
BigInteger. If one of the arguments is a BigInteger, the result will be of type BigInteger; otherwise,
if one of the arguments is a long, the result will be of type long; otherwise, the result will be of type
int:

int a = 0b00101010
assert a == 42

int b = 0b00001000
assert b ==

assert (a & a) == a
assert (a & b) ==
assert (a | a) ==
assert (a | b) == a

int mask = @b11111111

assert ((a M a) & mask) == 0b00000000
assert ((a A b) & mask) == 0b00100010
assert ((~a) & mask) == 0b11010101

@O &V

@ bitwise and

@ bitwise and returns common bits

® bitwise or

@ bitwise or returns all '1' bits

® setting a mask to check only the last 8 bits

® bitwise exclusive or on self returns 0

@ bitwise exclusive or

bitwise negation

It’s worth noting that the internal representation of primitive types follow the Java Language

Specification. In particular, primitive types are signed, meaning that for a bitwise negation, it is
always good to use a mask to retrieve only the necessary bits.

In Groovy, bitwise operators are overloadable, meaning that you can define the behavior of those
operators for any kind of object.

Bit shift operators

Groovy offers three bit shift operators:

o <<:left shift

* >>: right shift

35

http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html
http://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html

* >>>: right shift unsigned

All three operators are applicable where the left argument is of type byte, short, int, or long. The
first two operators can also be applied where the left argument is of type BigInteger. If the left
argument is a BigInteger, the result will be of type BigInteger; otherwise, if the left argument is a
long, the result will be of type long; otherwise, the result will be of type int:

assert 12.equals(3 << 2)
assert 24L.equals(3L << 3)
assert 48G.equals(3G << 4)

©Oe

assert 4095 == -200 >>> 20

assert -1 == -200 >> 20
assert 2G == 5G >> 1
assert -3G == -5G >> 1

@ equals method used instead of == to confirm result type

In Groovy, bit shift operators are overloadable, meaning that you can define the behavior of those
operators for any kind of object.

Conditional operators

Not operator

The "not" operator is represented with an exclamation mark (!) and inverts the result of the
underlying boolean expression. In particular, it is possible to combine the not operator with the
Groovy truth:

assert (!true) == false @)
assert (!'foo') == false @)
assert (1'") == true ®

@ the negation of true is false
@ 'foo' is a non-empty string, evaluating to true, so negation returns false

® " is an empty string, evaluating to false, so negation returns true

Ternary operator

The ternary operator is a shortcut expression that is equivalent to an if/else branch assigning some
value to a variable.

Instead of:
if (string!=null && string.length()>0) {
result = 'Found'

} else {
result = 'Not found'

36

You can write:

result = (string!=null && string.length()>@) ? 'Found' : 'Not found'

The ternary operator is also compatible with the Groovy truth, so you can make it even simpler:

result = string ? 'Found' : 'Not found'

Elvis operator

The "Elvis operator” is a shortening of the ternary operator. One instance of where this is handy is
for returning a 'sensible default' value if an expression resolves to false-ish (as in Groovy truth). A
simple example might look like this:

displayName = user.name ? user.name : 'Anonymous' @
displayName = user.name ?: 'Anonymous' @

@ with the ternary operator, you have to repeat the value you want to assign

@ with the Elvis operator, the value, which is tested, is used if it is not false-ish

Usage of the Elvis operator reduces the verbosity of your code and reduces the risks of errors in
case of refactorings, by removing the need to duplicate the expression which is tested in both the
condition and the positive return value.

Elvis assignment operator

Groovy 3.0.0 introduces the Elvis operator, for example:

import groovy.transform.ToString

@ToString(includePackage = false)
class Element {

String name

int atomicNumber

¥
def he = new Element(name: 'Helium')
he.with {
name = name ?: 'Hydrogen' // existing Elvis operator
atomicNumber 7= 2 // new Elvis assignment shorthand
}

assert he.toString() == 'Element(Helium, 2)'

37

Object operators

Safe navigation operator

The Safe Navigation operator is used to avoid a NullPointerException. Typically when you have a
reference to an object you might need to verify that it is not null before accessing methods or
properties of the object. To avoid this, the safe navigation operator will simply return null instead
of throwing an exception, like so:

def person = Person.find { it.id == 123 } O)
def name = person?.name @
assert name == null ®

@ find will return a null instance
@ use of the null-safe operator prevents from a NullPointerException

@ result is null

Direct field access operator

Normally in Groovy, when you write code like this:

class User {

public final String name @
User(String name) { this.name = name}
String getName() { "Name: $name" } @)
}
def user = new User('Bob")
assert user.name == 'Name: Bob' ®
@ public field name

@ a getter for name that returns a custom string

® calls the getter

The user.name call triggers a call to the property of the same name, that is to say, here, to the getter
for name. If you want to retrieve the field instead of calling the getter, you can use the direct field
access operator:

assert user.@name == 'Bob' ©)
@ use of .@ forces usage of the field instead of the getter

Method pointer operator

The method pointer operator (.&) can be used to store a reference to a method in a variable, in
order to call it later:

38

def str = 'example of method reference'
def fun = str.&toUpperCase

def upper = fun()

assert upper == str.toUpperCase()

®OEO

@ the str variable contains a String

@ we store a reference to the toUpperCase method on the str instance inside a variable named fun
® fun can be called like a regular method

@ we can check that the result is the same as if we had called it directly on str

There are multiple advantages in using method pointers. First of all, the type of such a method

pointer is a groovy.lang.Closure, so it can be used in any place a closure would be used. In
particular, it is suitable to convert an existing method for the needs of the strategy pattern:

def transform(List elements, Closure action) { @
def result = []
elements.each {
result << action(it)

}
result
}
String describe(Person p) { @
"$p.name is $p.age"
}
def action = this.&describe ©)
def list = [
new Person(name: 'Bob', age: 42),
new Person(name: 'Julia', age: 35)] ()

assert transform(list, action) == ['Bob is 42', 'Julia is 35'] ®

@ the transform method takes each element of the list and calls the action closure on them,
returning a new list

@ we define a function that takes a Person and returns a String

® we create a method pointer on that function

@ we create the list of elements we want to collect the descriptors

® the method pointer can be used where a Closure was expected

Method pointers are bound by the receiver and a method name. Arguments are resolved at

runtime, meaning that if you have multiple methods with the same name, the syntax is not
different, only resolution of the appropriate method to be called will be done at runtime:

def doSomething(String str) { str.toUpperCase() }
def doSomething(Integer x) { 2*x }

def reference = this.&doSomething

assert reference('foo') == 'FOO'

®OEOC

39

assert reference(123) == 246 ®

@ define an overloaded doSomething method accepting a String as an argument

@ define an overloaded doSomething method accepting an Integer as an argument

® create a single method pointer on doSomething, without specifying argument types
@ using the method pointer with a String calls the String version of doSomething

® using the method pointer with an Integer calls the Integer version of doSomething

To align with Java 8 method reference expectations, in Groovy 3 and above, you can use new as the
method name to obtain a method pointer to the constructor:

def foo = BigInteger.&new
def fortyTwo = foo('42")
assert fortyTwo == 426G

Also in Groovy 3 and above, you can obtain a method pointer to an instance method of a class. This
method pointer takes an additional parameter being the receiver instance to invoke the method on:

def instanceMethod = String.&toUpperCase
assert instanceMethod('foo') == 'F00'

For backwards compatibility, any static methods that happen to have the correct parameters for the
call will be given precedence over instance methods for this case.

Method reference operator

The Parrot parser in Groovy 3+ supports the Java 8+ method reference operator. The method
reference operator (::) can be used to reference a method or constructor in contexts expecting a
functional interface. This overlaps somewhat with the functionality provided by Groovy’s method
pointer operator. Indeed, for dynamic Groovy, the method reference operator is just an alias for the
method pointer operator. For static Groovy, the operator results in bytecode similar to the bytecode
that Java would produce for the same context.

Some examples highlighting various supported method reference cases are shown in the following
script:

import groovy.transform.CompileStatic
import static java.util.stream.Collectors.tolist

@CompileStatic
void methodRefs() {

assert 6G == [1G, 2G, 3G].stream().reduce(@0G, BigInteger::add)
®

assert [4G, 5G, 6G] == [1G, 2G, 3G].stream().map(3G::add).collect(toList())
@

40

assert [1G, 2G, 3G] == [1L, 2L, 3L].stream().map(BigInteger::valueOf).collect
(toList()) ®

assert [1G, 2G, 3G] == [1L, 2L, 3L].stream().map(3G::valueOf).collect(toList())
@
}

methodRefs()

@ class instance method reference: add(BigInteger val) is an instance method in BigInteger

@ object instance method reference: add(BigInteger val) is an instance method for object 3G

® class static method reference: valueOf(long val) is a static method for class BigInteger

@ object static method reference: valueOf(long val) is a static method for object 3G (some consider

this bad style in normal circumstances)

Some examples highlighting various supported constructor reference cases are shown in the
following script:

@CompileStatic
void constructorRefs() {

assert [1, 2, 3] ==["1", '2", '3'].stream().map(Integer::valueOf).collect(
toList()) @

def result = [1, 2, 3].stream().toArray(Integer[]::new)

@
assert result instanceof Integer[]
assert result.toString() == "[1, 2, 3]’
}
constructorRefs()

@ class constructor reference

@ array constructor reference

Regular expression operators

Pattern operator

The pattern operator (~) provides a simple way to create a java.util.regex.Pattern instance:

def p = ~/foo/
assert p instanceof Pattern

while in general, you find the pattern operator with an expression in a slashy-string, it can be used
with any kind of String in Groovy:

41

~'foo'

~"f00"

~$/dollar/slashy $ string/$
~"${pattern}"

®OOO

@ using single quote strings
@ using double quotes strings
® the dollar-slashy string lets you use slashes and the dollar sign without having to escape them

@ you can also use a GString!

While you can use most String forms with the Pattern, Find and Match operators,
NOTE we recommend using the slashy string most of the time to save having to remember
the otherwise needed escaping requirements.

Find operator

Alternatively to building a pattern, you can use the find operator =~ to directly create a
java.util.regex.Matcher instance:

def text = "some text to match"
def m = text =~ /match/

assert m instanceof Matcher

if (Im) {

throw new RuntimeException("Oops, text not found!")

CXSXS

@ =~ creates a matcher against the text variable, using the pattern on the right hand side
@ the return type of =~ is a Matcher

® equivalent to calling if (!m.find(0))

Since a Matcher coerces to a boolean by calling its find method, the =~ operator is consistent with the
simple use of Perl’s =~ operator, when it appears as a predicate (in if, 7:, etc.). When the intent is to
iterate over matches of the specified pattern (in while, etc.) call find() directly on the matcher or
use the iterator DGM.

Match operator

The match operator (==~) is a slight variation of the find operator, that does not return a Matcher but
a boolean and requires a strict match of the input string:

m = text ==~ /match/
assert m instanceof Boolean
if (m) {

throw new RuntimeException("Should not reach that point!")

CXSXS

42

@ ==~ matches the subject with the regular expression, but match must be strict
@ the return type of ==~ is therefore a boolean

® equivalent to calling if (text ==~ /match/)

Comparing Find vs Match operators

Typically, the match operator is used when the pattern involves a single exact match, otherwise the
find operator might be more useful.

assert 'two words' ==~ /\S+\s+\S+/
assert 'two words' ==~ /A\S+\s+\S+$/ ©)
assert !(' leading space' ==~ /\S+\s+\S+/) @

def m1 = "two words' =~ /M\S+\s+\S+$/

assert ml.size() == 1

def m2 = "now three words' =~ /M\S+\s+\S+$/
assert m2.size() == 0

def m3 = "now three words' =~ /\S+\s+\S+/
assert m3.size() == 1

assert m3[0] == 'now three'

def m4 = ' leading space' =~ /\S+\s+\S+/
assert md.size() ==

assert m4[@] == 'leading space'

def m5 = 'and with four words' =~ /\S+\s+\S+/
assert m5.size() ==
assert m5[0] == 'and with'

assert m5[1] == 'four words'

© O®O

Q

@ equivalent, but explicit A and $ are discouraged since they aren’t needed
@ no match because of leading space

® one match

@ A and $ indicate exact match required

® zero matches

® one match, greedily starting at first word

@ one match, ignores leading space

two matches

Other operators

Spread operator

The Spread-dot Operator (*.), often abbreviated to just Spread Operator, is used to invoke an action
on all items of an aggregate object. It is equivalent to calling the action on each item and collecting
the result into a list:

43

class Car {
String make
String model
}
def cars = [
new Car(make: 'Peugeot', model: '508'),
new Car(make: 'Renault', model: 'Clio')]
def makes = cars*.make
assert makes == ['Peugeot', 'Renault']

CXSXS

® build a list of Car items. The list is an aggregate of objects.

@ call the spread operator on the list, accessing the make property of each item

® returns a list of strings corresponding to the collection of make items

The expression cars*.make is equivalent to cars.collect{ it.make }. Groovy’s GPath notation allows
a short-cut when the referenced property isn’t a property of the containing list, in that case it is

automatically spread. In the previously mentioned case, the expression cars.make can be used,
though retaining the explicit spread-dot operator is often recommended.

The spread operator is null-safe, meaning that if an element of the collection is null, it will return
null instead of throwing a NullPointerException:

cars = [
new Car(make: 'Peugeot', model: '508'),
null, ©)
new Car(make: 'Renault', model: 'Clio')]
assert cars*.make == ['Peugeot', null, 'Renault'] ®
assert null*.make == null ®

@ build a list for which one of the elements is null
@ using the spread operator will not throw a NullPointerException

® the receiver might also be null, in which case the return value is null

The spread operator can be used on any class which implements the Iterable interface:

class Component {
Integer id
String name
}
class CompositeObject implements Iterable<Component> {
def components = [
new Component(id: 1, name: 'Foo'),
new Component(id: 2, name: 'Bar')]

@Override

Iterator<Component> iterator() {
components.iterator()

44

}
}
def composite = new CompositeObject()
assert composite*.id == [1,2]
assert composite*.name == ['Foo', 'Bar']

Use multiple invocations of the spread-dot operator (here cars*.models*.name) when working with
aggregates of data structures which themselves contain aggregates:

class Make {
String name
List<Model> models

}

@Canonical
class Model {
String name

}

def cars = [
new Make(name: 'Peugeot’,
models: [new Model('408'), new Model('508')]),
new Make(name: 'Renault’,
models: [new Model('Clio'), new Model('Captur')])
]

def makes = cars*.name
assert makes == ['Peugeot', 'Renault']

def models = cars*.models*.name

assert models == [['408', '508'], ['Clio', 'Captur']]

assert models.sum() == ['408"', '508', 'Clio', 'Captur'] // flatten one level

assert models.flatten() == ['408', '508"', 'Clio', 'Captur'] // flatten all levels (one
in this case)

Consider using the collectNested DGM method instead of the spread-dot operator for collections of
collections:

class Car {
String make
String model
¥
def cars = [
[
new Car(make: 'Peugeot', model: '408'),
new Car(make: 'Peugeot', model: '508")
1, [

new Car(make: 'Renault', model: 'Clio'),

45

new Car(make: 'Renault', model: 'Captur')
]

]
def models = cars.collectNested{ it.model }

assert models == [['408', '508'], ['Clio', 'Captur']]

Spreading method arguments

There may be situations when the arguments of a method call can be found in a list that you need
to adapt to the method arguments. In such situations, you can use the spread operator to call the
method. For example, imagine you have the following method signature:

int function(int x, int y, int z) {
x*y+z

}

then if you have the following list:

def args = [4,5,6]

you can call the method without having to define intermediate variables:

assert function(*args) == 26

It is even possible to mix normal arguments with spread ones:

args = [4]
assert function(*args,5,6) == 26

Spread list elements

When used inside a list literal, the spread operator acts as if the spread element contents were
inlined into the list:

def items = [4,5]
def list = [1,2,3,*items,6]
assert list == [1,2,3,4,5,6]

CXSXS)

@ items is a list
@ we want to insert the contents of the items list directly into 1ist without having to call addA11

® the contents of items has been inlined into 1ist

46

Spread map elements

The spread map operator works in a similar manner as the spread list operator, but for maps. It
allows you to inline the contents of a map into another map literal, like in the following example:

def m1 = [c:3, d:4] @
def map = [a:1, b:2, *:m1] ®)
assert map == [a:1, b:2, c:3, d:4] ®
@ m1 is the map that we want to inline
@ we use the *:m1 notation to spread the contents of m1 into map

® map contains all the elements of m1

The position of the spread map operator is relevant, like illustrated in the following example:

def m1 = [c:3, d:4] ©)
def map = [a:1, b:2, *:m1, d: 8] @)
assert map == [a:1, b:2, c:3, d:8] ®

@ m1 is the map that we want to inline

@ we use the *:m1 notation to spread the contents of m1 into map, but redefine the key d after
spreading

3 map contains all the expected keys, but d was redefined

Range operator

Groovy supports the concept of ranges and provides a notation (. .) to create ranges of objects:

def range = 0..5

assert (0..5).collect() == [0, 1, 2, 3, 4, 5]
assert (0..<5).collect() == [0, 1, 2, 3, 4]
assert (0<..5).collect() == [1, 2, 3, 4, 5]
assert (0<..<5).collect() == [1, 2, 3, 4]
assert (0..5) instanceof List

assert (0..5).size() ==

QOO®OEO

@ a simple range of integers, stored into a local variable
@ an IntRange, with inclusive bounds

® an IntRange, with exclusive upper bound

@ an IntRange, with exclusive lower bound

® an IntRange, with exclusive lower and upper bounds
® a groovy.lang.Range implements the List interface

@ meaning that you can call the size method on it

47

Ranges implementation is lightweight, meaning that only the lower and upper bounds are stored.
You can create a range from any Comparable object that has next() and previous() methods to
determine the next / previous item in the range. For example, you can create a range of characters
this way:

assert ('a'..'d').collect() == ['a",'b","'c","'d"]

Spaceship operator

The spaceship operator (<=>) delegates to the compareTo method:

assert (1 <=> 1) ==
assert (1 <=> 2) == -1
assert (2 <=> 1) ==
assert ('a' <=> 'z') == -1

Subscript operator

The subscript operator is a shorthand notation for getAt or putAt, depending on whether you find it
on the left hand side or the right hand side of an assignment:

def list = [0,1,2,3,4]
assert list[2] == 2

list[2] = 4

assert 1list[0..2] == [0,1,4]
list[0..2] = [6,6,6]

assert list == [6,6,6,3,4]

O®OOO

@ [2] can be used instead of getAt(2)

@ if on left hand side of an assignment, will call putAt
® getAt also supports ranges

@ so does putAt

® the list is mutated

The subscript operator, in combination with a custom implementation of getAt/putAt is a
convenient way for destructuring objects:

class User {
Long 1id
String name
def getAt(int i) { ©)
switch (i) {
case 0: return id
case 1: return name

48

throw new IllegalArgumentException("No such element $i")

}
void putAt(int i, def value) { @
switch (i) {
case @0: id = value; return
case 1: name = value; return
}
throw new IllegalArgumentException("No such element $i")
}

}

def user = new User(id: 1, name: 'Alex') ®
assert user[0] == @
assert user[1] == 'Alex' ®
user[1] = 'Bob' ®
assert user.name == 'Bob’ @)

@ the User class defines a custom getAt implementation

@ the User class defines a custom putAt implementation

® create a sample user

@ using the subscript operator with index 0 allows retrieving the user id

® using the subscript operator with index 1 allows retrieving the user name

® we can use the subscript operator to write to a property thanks to the delegation to putAt

@ and check that it’s really the property name which was changed

Safe index operator

Groovy 3.0.0 introduces safe indexing operator, i.e. ?[], which is similar to ?.. For example:

String[] array = ['a', 'b"]

assert 'b' == array?[1] // get using normal array index
array?[1] = 'c' // set using normal array index
assert 'c' == array?[1]

array = null

assert null == array?[1] // return null for all index values
array?[1] = 'c' // quietly ignore attempt to set value
assert null == array?[1]

def personInfo = [name: 'Daniel.Sun', location: 'Shanghai']

assert 'Daniel.Sun' == personInfo?['name'] // get using normal map index
personInfo?['name'] = 'sunlan' // set using normal map index

assert 'sunlan' == personInfo?['name']

personInfo = null

assert null == personInfo?['name'] // return null for all map values
personInfo?['name'] = 'sunlan’ // quietly ignore attempt to set value

assert null == personInfo?['name']

49

Membership operator

The membership operator (in) is equivalent to calling the isCase method. In the context of a List, it
is equivalent to calling contains, like in the following example:

def list = ['Grace', 'Rob"', "Emmy"']
assert ('Emmy' in list) ©)
assert ('Alex' !in list) @
® equivalent to calling list.contains('Emmy") or list.isCase('Emmy")

@ membership negation equivalent to calling !list.contains('Emmy"') or !list.isCase('Emmy")

Identity operator

In Groovy, using == to test equality is different from using the same operator in Java. In Groovy, it is
calling equals. If you want to compare reference equality, you should use is like in the following
example:

def 1list1 = ["Groovy 1.8",'Groovy 2.0', "Groovy 2.3"]
def list2 = ['Groovy 1.8"',"Groovy 2.0","'Groovy 2.3"]
assert list1 == Tlist2

assert !list1.is(list2)

assert 1list1 !== 1list2

GXCKCXOXS)

@ Create a list of strings

@ Create another list of strings containing the same elements

® using ==, we test object equality, equivalent to list1.equals(list2) in Java

@ using is, we can check that references are distinct, equivalent to 1ist1 == 1ist2 in Java

® using === or !== (supported and recommended since Groovy 3.0.0), we can also check whether
references are distinct or not, equivalent to 1ist1 == list2 and list1 != list2in Java

Coercion operator

The coercion operator (as) is a variant of casting. Coercion converts object from one type to another
without them being compatible for assignment. Let’s take an example:

String input = '42'
Integer num = (Integer) input ©)

@ String is not assignable to an Integer, so it will produce a ClassCastException at runtime

This can be fixed by using coercion instead:

String input = '42'
Integer num = input as Integer @®

50

@ String is not assignable to an Integer, but use of as will coerce it to an Integer

When an object is coerced into another, unless the target type is the same as the source type,
coercion will return a new object. The rules of coercion differ depending on the source and target
types, and coercion may fail if no conversion rules are found. Custom conversion rules may be
implemented thanks to the asType method:

class Identifiable {
String name

}
class User {
Long 1id
String name
def asType(Class target) { @
if (target == Identifiable) {
return new Identifiable(name: name)
}
throw new ClassCastException("User cannot be coerced into $target")
}
}
def u = new User(name: 'Xavier')
def p = u as Identifiable

assert p instanceof Identifiable
assert !(p instanceof User)

O®OE

@ the User class defines a custom conversion rule from User to Identifiable
@ we create an instance of User

® we coerce the User instance into an Identifiable

@ the target is an instance of Identifiable

® the target is not an instance of User anymore

Diamond operator

The diamond operator (<>) is a syntactic sugar only operator added to support compatibility with
the operator of the same name in Java 7. It is used to indicate that generic types should be inferred
from the declaration:

List<String> strings = new LinkedList<>()

In dynamic Groovy, this is totally unused. In statically type checked Groovy, it is also optional since
the Groovy type checker performs type inference whether this operator is present or not.

Call operator

The call operator () is used to call a method named call implicitly. For any object which defines a
call method, you can omit the .call part and use the call operator instead:

31

class MyCallable {

int call(int x) { ©)
2*x
}
}
def mc = new MyCallable()
assert mc.call(2) ==)
assert me(2) == 4 ®

@ MyCallable defines a method named call. Note that it doesn’t need to implement
java.util.concurrent.Callable

@ we can call the method using the classic method call syntax

® or we can omit .call thanks to the call operator

Operator precedence

The table below lists all groovy operators in order of precedence.

Level Operator(s) Name(s)
1 new () object creation, explicit
parentheses
O {3 [method call, closure, literal
list/map
& .0 member access, method

closure, field/attribute access

P safe dereferencing, spread,
spread-dot, spread-map

~ 1 (type) bitwise negate/pattern, not,
typecast
[1 ?2[] ++ -- list/map/array (safe) index, post
inc/decrement
2 o power
3 +' {nbsp} ‘--' {nbsp} * - pre inc/decrement, unary plus,

unary minus

4 * /% multiply, div, remainder
5 + - addition, subtraction
6 << >> >>>< <..< <. left/right (unsigned) shift,

inclusive/exclusive ranges

7 < <= > >= 1in !in instanceof less/greater than/or equal, in,
linstanceof as not in, instanceof, not
instanceof, type coercion

32

Level Operator(s) Name(s)

8 == |z <=> === == equals, not equals, compare to,
identical to, not identical to

=~ ==~ regex find, regex match
9 & binary/bitwise and
10 A binary/bitwise xor
11 | binary/bitwise or
12 && logical and
13 | logical or
14 [ternary conditional
7 elvis operator
15 = *F= F= [z %= 4= -= various assignments
K= >>= >>>= §= M= = 7=

Operator overloading
Groovy allows you to overload the various operators so that they can be used with your own
classes. Consider this simple class:
class Bucket {
int size

Bucket(int size) { this.size = size }

Bucket plus(Bucket other) { ©)
return new Bucket(this.size + other.size)

}

@ Bucket implements a special method called plus()

Just by implementing the plus() method, the Bucket class can now be used with the + operator like
so:

def b1 = new Bucket(4)
def b2 = new Bucket(11)
assert (b1 + b2).size == 15 ©)

@ The two Bucket objects can be added together with the + operator

All (non-comparator) Groovy operators have a corresponding method that you can implement in
your own classes. The only requirements are that your method is public, has the correct name, and
has the correct number of arguments. The argument types depend on what types you want to
support on the right hand side of the operator. For example, you could support the statement

33

assert (b1 + 11).size == 15

by implementing the plus() method with this signature:

Bucket plus(int capacity) {
return new Bucket(this.size + capacity)

}

Here is a complete list of the operators and their corresponding methods:

Operator Method Operator Method

+ a.plus(b) a[b] a.getAt(b)

- a.minus(b) alb] = ¢ a.putAt(b, c)

* a.multiply(b) ainb b.isCase(a)

/ a.div(b) << a.leftShift(b)

% a.mod(b) >> a.rightShift(b)

o a.power(b) >>> a.rightShiftUnsigned(b)
| a.or(b) ++ anext()

& a.and(b) o a.previous()

n a.xor(b) +3 a.positive()

as a.asType(b) -4 a.negative()

a() a.call() ~3 a.bitwiseNegate()

Program structure

This chapter covers the program structure of the Groovy programming language.

Package names

Package names play exactly the same role as in Java. They allow us to separate the code base
without any conflicts. Groovy classes must specify their package before the class definition, else the
default package is assumed.

Defining a package is very similar to Java:

// defining a package named com.yoursite
package com.yoursite

To refer to some class Foo in the com.yoursite.com package you will need to use the fully qualified
name com.yoursite.com.Foo, or else you can use an import statement as we’ll see below.

54

Imports

In order to refer to any class you need a qualified reference to its package. Groovy follows Java’s
notion of allowing import statement to resolve class references.

For example, Groovy provides several builder classes, such as MarkupBuilder. MarkupBuilder is inside
the package groovy.xml so in order to use this class, you need to import it as shown:

// importing the class MarkupBuilder
import groovy.xml.MarkupBuilder

// using the imported class to create an object
def xml = new MarkupBuilder()

assert xml != null

Default imports

Default imports are the imports that Groovy language provides by default. For example look at the
following code:

new Date()

The same code in Java needs an import statement to Date class like this: import java.util.Date.
Groovy by default imports these classes for you.

The below imports are added by groovy for you:

import java.lang.*

import java.util.*

import java.io.*

import java.net.*

import groovy.lang.*

import groovy.util.*

import java.math.BigInteger
import java.math.BigDecimal

This is done because the classes from these packages are most commonly used. By importing these
boilerplate code is reduced.

Simple import

A simple import is an import statement where you fully define the class name along with the
package. For example the import statement import groovy.xml.MarkupBuilder in the code below is
a simple import which directly refers to a class inside a package.

// importing the class MarkupBuilder

55

import groovy.xml.MarkupBuilder

// using the imported class to create an object
def xml = new MarkupBuilder()

assert xml != null

Star import

Groovy, like Java, provides a special way to import all classes from a package using *, the so-called
star import. MarkupBuilder is a class which is in package groovy.xml, alongside another class called
StreamingMarkupBuilder. In case you need to use both classes, you can do:

import groovy.xml.MarkupBuilder
import groovy.xml.StreamingMarkupBuilder

def markupBuilder = new MarkupBuilder()
assert markupBuilder != null

assert new StreamingMarkupBuilder() != null

That’s perfectly valid code. But with a * import, we can achieve the same effect with just one line.
The star imports all the classes under package groovy.xml:

import groovy.xml.*
def markupBuilder = new MarkupBuilder()
assert markupBuilder != null

assert new StreamingMarkupBuilder() != null

One problem with * imports is that they can clutter your local namespace. But with the kinds of
aliasing provided by Groovy, this can be solved easily.

Static import

Groovy’s static import capability allows you to reference imported classes as if they were static
methods in your own class:

import static Boolean.FALSE

assert !FALSE //use directly, without Boolean prefix!

This is similar to Java’s static import capability but is a more dynamic than Java in that it allows

36

you to define methods with the same name as an imported method as long as you have different
types:

import static java.lang.String.format @
class SomeClass {

String format(Integer i) { @
i.toString()
}

static void main(String[] args) {
assert format('String') == 'String' @
assert new SomeClass().format(Integer.valueOf(1)) == '1'

@ static import of method

@ declaration of method with same name as method statically imported above, but with a
different parameter type

® compile error in java, but is valid groovy code

If you have the same types, the imported class takes precedence.

Static import aliasing

Static imports with the as keyword provide an elegant solution to namespace problems. Suppose
you want to get a Calendar instance, using its getInstance() method. It’s a static method, so we can
use a static import. But instead of calling getInstance() every time, which can be misleading when
separated from its class name, we can import it with an alias, to increase code readability:

import static Calendar.getInstance as now

assert now().class == Calendar.getInstance().class

Now, that’s clean!

Static star import

A static star import is very similar to the regular star import. It will import all the static methods
from the given class.

For example, lets say we need to calculate sines and cosines for our application. The class
java.lang.Math has static methods named sin and cos which fit our need. With the help of a static
star import, we can do:

import static java.lang.Math.*

57

assert sin(@) == 0.0
assert cos(0) == 1.0

As you can see, we were able to access the methods sin and cos directly, without the Math. prefix.

Import aliasing

With type aliasing, we can refer to a fully qualified class name using a name of our choice. This can
be done with the as keyword, as before.

For example we can import java.sql.Date as SQLDate and use it in the same file as java.util.Date

without having to use the fully qualified name of either class:

import java.util.Date
import java.sql.Date as SQLDate

Date utilDate = new Date(1000L)
SQLDate sqlDate = new SQLDate(1000L)

assert utilDate instanceof java.util.Date
assert sqlDate instanceof java.sql.Date

Scripts versus classes

public static void main vs script
Groovy supports both scripts and classes. Take the following code for example:

Main.groovy

class Main {
static void main(String... args) {
println "Groovy world!'

CXSXS)

}

@ define a Main class, the name is arbitrary
@ the public static void main(String[]) method is usable as the main method of the class

® the main body of the method

This is typical code that you would find coming from Java, where code has to be embedded into a
class to be executable. Groovy makes it easier, the following code is equivalent:

Main.groovy

println 'Groovy world!'

38

A script can be considered as a class without needing to declare it, with some differences.

Script class

A groovylang.Script is always compiled into a class. The Groovy compiler will compile the class for
you, with the body of the script copied into a run method. The previous example is therefore
compiled as if it was the following:

Main.groovy

import org.codehaus.groovy.runtime.InvokerHelper
class Main extends Script {
def run() {
println "Groovy world!'
}
static void main(String[] args) {
InvokerHelper.runScript(Main, args)

©® 006

}

@ The Main class extends the groovy.lang.Script class

@ groovy.lang.Script requires a run method returning a value

® the script body goes into the run method

@ the main method is automatically generated

® and delegates the execution of the script on the run method

If the script is in a file, then the base name of the file is used to determine the name of the

generated script class. In this example, if the name of the file is Main.groovy, then the script class is
going to be Main.

Methods

It is possible to define methods into a script, as illustrated here:

int fib(int n) {

n<27?1: fib(n-1) + fib(n-2)
}
assert fib(10)==89

You can also mix methods and code. The generated script class will carry all methods into the script
class, and assemble all script bodies into the run method:

println 'Hello'

int power(int n) { 2**n }

39

https://docs.groovy-lang.org/4.0.28/html/gapi/index.html?groovy/lang/Script.html

println

"276==${power (6)}" ©)

@ script begins

@ a method is defined within the script body

® and script continues

This code is internally converted into:

import org.codehaus.groovy.runtime.InvokerHelper
class Main extends Script {

int
def

}

power(int n) { 2** n}
run() {

println 'Hello'

println "276==${power(6)}"

CXS)

static void main(String[] args) {

}

InvokerHelper.runScript(Main, args)

@ the power method is copied as is into the generated script class

@ first statement is copied into the run method

® second statement is copied into the run method

Variables

TIP

Even if Groovy creates a class from your script, it is totally transparent for the user. In
particular, scripts are compiled to bytecode, and line numbers are preserved. This
implies that if an exception is thrown in a script, the stack trace will show line
numbers corresponding to the original script, not the generated code that we have
shown.

Variables in a script do not require a type definition. This means that this script:

int x =1
inty=2
assert x+y ==

will behave the same as:

x =1
y =2
assert x+y ==

However, there is a semantic difference between the two:

60

« if the variable is declared as in the first example, it is a local variable. It will be declared in the
run method that the compiler will generate and will not be visible outside of the script main
body. In particular, such a variable will not be visible in other methods of the script

« if the variable is undeclared, it goes into the groovy.lang.Script#getBinding(). The binding is
visible from the methods, and is especially important if you use a script to interact with an
application and need to share data between the script and the application. Readers might refer
to the integration guide for more information.

Another approach to making a variable visible to all methods, is to use the @Field
annotation. A variable annotated this way will become a field of the generated script

TIP class and, as for local variables, access won’t involve the script Binding. While not
recommended, if you have a local variable or script field with the same name as a
binding variable, you can use binding.varName to access the binding variable.

Object orientation

This chapter covers the object-oriented aspects of the Groovy programming language.

Types
Primitive types
Groovy supports the same primitive types as defined by the Java Language Specification:

* integral types: byte (8 bit), short (16 bit), int (32 bit) and long (64 bit)
« floating-point types: float (32 bit) and double (64 bit)

the boolean type (one of true or false)

* the char type (16 bit, usable as a numeric type, representing a UTF-16 code)

Also like Java, Groovy uses the respective wrapper classes when objects corresponding to any of the
primitive types are required:

Table 4. primitive wrappers

Primitive type Wrapper class
boolean Boolean

char Character
short Short

int Integer

long Long

float Float

double Double

Automatic boxing and unboxing occur when, for instance, calling a method requiring the wrapper

61

https://docs.groovy-lang.org/4.0.28/html/gapi/index.html?groovy/lang/Script.html#getBinding()
https://docs.oracle.com/javase/specs/jls/se14/html/

class and passing it a primitive variable as the parameter, or vice-versa. This is similar to Java but
Groovy takes the idea further.

In most scenarios, you can treat a primitive just like it was the full object wrapper equivalent. For
instance, you can call .toString() or .equals(other) on a primitive. Groovy autowraps and unwraps
between references and primitives as needed.

Here’s an example using int which is declared as a static field in a class (discussed shortly):

class Foo {
static int i

assert Foo.class.getDeclaredField('i').type == int.class ©)
assert Foo.i.class != int.class && Foo.i.class == Integer.class @

@ Primitive type is respected in the bytecode

@ Looking at the field at runtime shows it has been autowrapped

Now you may be concerned that this means every time you use a mathematical operator on a
reference to a primitive that you’ll incur the cost of unboxing and reboxing the primitive. But this is
not the case, as Groovy will compile your operators into their method equivalents and uses those
instead. Additionally, Groovy will automatically unbox to a primitive when calling a Java method
that takes a primitive parameter and automatically box primitive method return values from Java.
However, be aware there are some differences from Java’s method resolution.

Reference Types

Apart from primitives, everything else is an object and has an associated class defining its type.
We’ll discuss classes, and class-related or class-like things like interfaces, traits and records shortly.

We might declare two variables, of type String and List, as follows:

String movie = 'The Matrix'
List actors = ['Keanu Reeves', 'Hugo Weaving']

Generics

Groovy carries across the same concepts with regard to generics as Java. When defining classes and
methods, it is possible to use a type parameter and create a generic class, interface, method or
constructor.

Usage of generic classes and methods, regardless of whether they are defined in Java or Groovy,
may involve supplying a type argument.

We might declare a variable, of type "list of string”, as follows:

62

core-operators.html#_operator-overloading
core-differences-java.html#_primitives_and_wrappers

List<String> roles = ['Trinity", 'Morpheus']

Java employs type erasure for backwards compatibility with earlier versions of Java. Dynamic
Groovy can be thought of as more aggressively applying type erasure. In general, less generics type
information will be checked at compile time. Groovy’s static nature employs similar checks to Java
with regard to generics information.

Classes

Groovy classes are very similar to Java classes, and are compatible with Java ones at JVM level.
They may have methods, fields and properties (think JavaBeans properties but with less
boilerplate). Classes and class members can have the same modifiers (public, protected, private,
static, etc.) as in Java with some minor differences at the source level which are explained shortly.

The key differences between Groovy classes and their Java counterparts are:
* Classes or methods with no visibility modifier are automatically public (a special annotation can

be used to achieve package private visibility).

* Fields with no visibility modifier are turned into properties automatically, which results in less
verbose code, since explicit getter and setter methods aren’t needed. More on this aspect will be
covered in the fields and properties section.

* Classes do not need to have the same base name as their source file definitions but it is highly
recommended in most scenarios (see also the next point about scripts).

* One source file may contain one or more classes (but if a file contains any code not in a class, it
is considered a script). Scripts are just classes with some special conventions and will have the
same name as their source file (so don’t include a class definition within a script having the
same name as the script source file).

The following code presents an example class.

class Person {

String name @
Integer age

def increaseAge(Integer years) { ®
this.age += years

@ class beginning, with the name Person
@ string field and property named name

® method definition

63

Normal class

Normal classes refer to classes which are top level and concrete. This means they can be
instantiated without restrictions from any other classes or scripts. This way, they can only be public
(even though the public keyword may be suppressed). Classes are instantiated by calling their
constructors, using the new keyword, as in the following snippet.

def p = new Person()

Inner class

Inner classes are defined within another classes. The enclosing class can use the inner class as
usual. On the other side, an inner class can access members of its enclosing class, even if they are
private. Classes other than the enclosing class are not allowed to access inner classes. Here is an
example:

class Outer {
private String privateStr

def callInnerMethod() {

new Inner().methodA() @
}
class Inner { @
def methodA() {
println "${privateStr}." @
}
}

@ the inner class is instantiated and its method gets called
@ inner class definition, inside its enclosing class

® even being private, a field of the enclosing class is accessed by the inner class
There are some reasons for using inner classes:

* They increase encapsulation by hiding the inner class from other classes, which do not need to
know about it. This also leads to cleaner packages and workspaces.
» They provide a good organization, by grouping classes that are used by only one class.
* They lead to more maintainable codes, since inner classes are near the classes that use them.
It is common for an inner class to be an implementation of some interface whose method(s) are

needed by the outer class. The code below illustrates this typical usage pattern, here being used
with threads.

class Outer?2 {

64

private String privateStr = "some string’

def startThread() {
new Thread(new Inner2()).start()
}

class Inner2 implements Runnable {
void run() {
println "${privateStr}."
}

Note that the class Inner? is defined only to provide an implementation of the method run to class
Outer2. Anonymous inner classes help to eliminate verbosity in this case. That topic is covered
shortly.

Groovy 3+ also supports Java syntax for non-static inner class instantiation, for example:

class Computer {
class Cpu {
int coreNumber

Cpu(int coreNumber) {
this.coreNumber = coreNumber

}
}

assert 4 == new Computer().new Cpu(4).coreNumber

Anonymous inner class

The earlier example of an inner class (Inner2) can be simplified with an anonymous inner class. The
same functionality can be achieved with the following code:

class Outer3 {
private String privateStr = 'some string'

def startThread() {
new Thread(new Runnable() { ©)
void run() {
println "${privateStr}."
}
}).start() @

65

@ comparing with the last example of previous section, the new Inner2() was replaced by new
Runnable() along with all its implementation

@ the method start is invoked normally

Thus, there was no need to define a new class to be used just once.

Abstract class

Abstract classes represent generic concepts, thus, they cannot be instantiated, being created to be
subclassed. Their members include fields/properties and abstract or concrete methods. Abstract
methods do not have implementation, and must be implemented by concrete subclasses.

abstract class Abstract { O)
String name

abstract def abstractMethod() @

def concreteMethod() {
println 'concrete’

@ abstract classes must be declared with abstract keyword

@ abstract methods must also be declared with abstract keyword

Abstract classes are commonly compared to interfaces. There are at least two important differences
of choosing one or another. First, while abstract classes may contain fields/properties and concrete

methods, interfaces may contain only abstract methods (method signatures). Moreover, one class
can implement several interfaces, whereas it can extend just one class, abstract or not.

Inheritance

Inheritance in Groovy resembles inheritance in Java. It provides a mechanism for a child class (or
subclass) to reuse code or properties from a parent (or super class). Classes related through
inheritance form an inheritance hierarchy. Common behavior and members are pushed up the
hierarchy to reduce duplication. Specializations occur in child classes.

Different forms of inheritance are supported:

* implementation inheritance where code (methods, fields or properties) from a superclass or
from one or more traits is reused by a child class

» contract inheritance where a class promises to provide particular abstract methods defined in a
superclass, or defined in one or more traits or interfaces.

Superclasses

Parent classes share visible fields, properties or methods with child classes. A child class may have
at most one parent class. The extends keyword is used immediately prior to giving the superclass

type.

66

Interfaces
An interface defines a contract that a class needs to conform to. An interface only defines a list of

methods that need to be implemented, but does not define the method’s implementation.

interface Greeter { O)
void greet(String name) @

@ an interface needs to be declared using the interface keyword
@ an interface only defines method signatures
Methods of an interface are always public. It is an error to use protected or private methods in

interfaces:

interface Greeter {
protected void greet(String name) @

@ Using protected is a compile-time error

A class implements an interface if it defines the interface in its implements list or if any of its
superclasses does:

class SystemGreeter implements Greeter { @
void greet(String name) { @
println "Hello $name"
}
}
def greeter = new SystemGreeter()
assert greeter instanceof Greeter ®

@ The SystemGreeter declares the Greeter interface using the implements keyword
@ Then implements the required greet method

® Any instance of SystemGreeter is also an instance of the Greeter interface

An interface can extend another interface:

interface ExtendedGreeter extends Greeter { O
void sayBye(String name)

@ the ExtendedGreeter interface extends the Greeter interface using the extends keyword

It is worth noting that for a class to be an instance of an interface, it has to be explicit. For example,
the following class defines the greet method as it is declared in the Greeter interface, but does not

67

declare Greeter in its interfaces:

class DefaultGreeter {
void greet(String name) { println "Hello" }

greeter = new DefaultGreeter()
assert !(greeter instanceof Greeter)

In other words, Groovy does not define structural typing. It is however possible to make an instance
of an object implement an interface at runtime, using the as coercion operator:

greeter = new DefaultGreeter()
coerced = greeter as Greeter
assert coerced instanceof Greeter

CXSES)

@ create an instance of DefaultGreeter that does not implement the interface
@ coerce the instance into a Greeter at runtime

® the coerced instance implements the Greeter interface

You can see that there are two distinct objects: one is the source object, a DefaultGreeter instance,
which does not implement the interface. The other is an instance of Greeter that delegates to the
coerced object.

Groovy interfaces do not support default implementation like Java 8 interfaces. If you
are looking for something similar (but not equal), traits are close to interfaces, but

TIP
allow default implementation as well as other important features described in this

manual.

Class members

Constructors

Constructors are special methods used to initialize an object with a specific state. As with normal
methods, it is possible for a class to declare more than one constructor, so long as each constructor
has a unique type signature. If an object doesn’t require any parameters during construction, it
may use a no-arg constructor. If no constructors are supplied, an empty no-arg constructor will be
provided by the Groovy compiler.

Groovy supports two invocation styles:

* positional parameters are used in a similar to how you would use Java constructors

* named parameters allow you to specify parameter names when invoking the constructor.

Positional parameters

To create an object by using positional parameters, the respective class needs to declare one or

68

more constructors. In the case of multiple constructors, each must have a unique type signature.
The constructors can also be added to the class using the groovy.transform.TupleConstructor
annotation.

Typically, once at least one constructor is declared, the class can only be instantiated by having one
of its constructors called. It is worth noting that, in this case, you can’t normally create the class
with named parameters. Groovy does support named parameters so long as the class contains a no-
arg constructor or provides a constructor which takes a Map argument as the first (and potentially
only) argument - see the next section for details.

There are three forms of using a declared constructor. The first one is the normal Java way, with
the new keyword. The others rely on coercion of lists into the desired types. In this case, it is possible
to coerce with the as keyword and by statically typing the variable.

class PersonConstructor {
String name
Integer age

PersonConstructor(name, age) { ®
this.name = name
this.age = age

def personl = new PersonConstructor('Marie', 1) @
def person2 = ['Marie', 2] as PersonConstructor ®
PersonConstructor person3 = ['Marie’, 3])

@ Constructor declaration
@ Constructor invocation, classic Java way
® Constructor usage, using coercion with as keyword

@ Constructor usage, using coercion in assignment

Named parameters

If no (or a no-arg) constructor is declared, it is possible to create objects by passing parameters in
the form of a map (property/value pairs). This can be in handy in cases where one wants to allow
several combinations of parameters. Otherwise, by using traditional positional parameters it would
be necessary to declare all possible constructors. Having a constructor where the first (and perhaps
only) argument is a Map argument is also supported - such a constructor may also be added using
the groovy.transform.MapConstructor annotation.

class PersonWOConstructor { ©)
String name
Integer age

def person4 = new PersonWOConstructor() @

69

https://docs.groovy-lang.org/4.0.28/html/gapi/index.html?groovy/transform/TupleConstructor.html
https://docs.groovy-lang.org/4.0.28/html/gapi/index.html?groovy/transform/MapConstructor.html

def person5 = new PersonWOConstructor(name: 'Marie') ®
def persont = new PersonWOConstructor(age: 1) @
def person7 = new PersonWOConstructor(name: 'Marie’, age: 2) ®

@ No constructor declared

@ No parameters given in the instantiation

® name parameter given in the instantiation

@ age parameter given in the instantiation

® name and age parameters given in the instantiation

It is important to highlight, however, that this approach gives more power to the constructor caller,
while imposing an increased responsibility on the caller to get the names and value types correct.

Thus, if greater control is desired, declaring constructors using positional parameters might be
preferred.

Notes:

* While the example above supplied no constructor, you can also supply a no-arg constructor or a
constructor where the first argument is a Map, most typically it’s the only argument.

* When no (or a no-arg) constructor is declared, Groovy replaces the named constructor call by a
call to the no-arg constructor followed by calls to the setter for each supplied named property.

* When the first argument is a Map, Groovy combines all named parameters into a Map
(regardless of ordering) and supplies the map as the first parameter. This can be a good
approach if your properties are declared as final (since they will be set in the constructor
rather than after the fact with setters).

* You can support both named and positional construction by supply both positional constructors
as well as a no-arg or Map constructor.

* You can support hybrid construction by having a constructor where the first argument is a Map
but there are also additional positional parameters. Use this style with caution.

Methods

Groovy methods are quite similar to other languages. Some peculiarities will be shown in the next
subsections.

Method definition

A method is defined with a return type or with the def keyword, to make the return type untyped. A
method can also receive any number of arguments, which may not have their types explicitly
declared. Java modifiers can be used normally, and if no visibility modifier is provided, the method
is public.

Methods in Groovy always return some value. If no return statement is provided, the value
evaluated in the last line executed will be returned. For instance, note that none of the following
methods uses the return keyword.

70

def someMethod() { 'method called' } ©)
String anotherMethod() { 'another method called' } @
def thirdMethod(param1) { "$paraml passed" } ®
static String fourthMethod(String param1) { "$paraml passed" } @

® Method with no return type declared and no parameter
@ Method with explicit return type and no parameter
® Method with a parameter with no type defined

@ Static method with a String parameter

Named parameters

Like constructors, normal methods can also be called with named parameters. To support this
notation, a convention is used where the first argument to the method is a Map. In the method body,
the parameter values can be accessed as in normal maps (map.key). If the method has just a single
Map argument, all supplied parameters must be named.

def foo(Map args) { "${args.name}: ${args.age}" }
foo(name: 'Marie', age: 1)

Mixing named and positional parameters

Named parameters can be mixed with positional parameters. The same convention applies, in this
case, in addition to the Map argument as the first argument, the method in question will have
additional positional arguments as needed. Supplied positional parameters when calling the
method must be in order. The named parameters can be in any position. They are grouped into the
map and supplied as the first parameter automatically.

def foo(Map args, Integer number) { "${args.name}: ${args.age}, and the number is
${number}" }

foo(name: 'Marie', age: 1, 23) @

foo(23, name: 'Marie', age: 1) @

® Method call with additional number argument of Integer type

@ Method call with changed order of arguments

If we don’t have the Map as the first argument, then a Map must be supplied for that argument
instead of named parameters. Failure to do so will lead to groovy.lang.MissingMethodException:

def foo(Integer number, Map args) { "${args.name}: ${args.age}, and the number is
${number}" }
foo(name: 'Marie', age: 1, 23) @

® Method call throws groovy.lang.MissingMethodException: No signature of method: foo() is
applicable for argument types: (LinkedHashMap, Integer) values: [[name:Marie, age:1], 23],

71

because the named argument Map parameter is not defined as the first argument

Above exception can be avoided if we replace named arguments with an explicit Map argument:

def foo(Integer number, Map args) { "${args.name}: ${args.age}, and the number is
${number}" }
foo(23, [name: 'Marie', age: 1]) @

@ Explicit Map argument in place of named arguments makes invocation valid

Although Groovy allows you to mix named and positional parameters, it can lead to

TIP
unnecessary confusion. Mix named and positional arguments with caution.

Default arguments

Default arguments make parameters optional. If the argument is not supplied, the method assumes
a default value.

def foo(String par1, Integer par2 = 1) { [name: par1, age: par2] }
assert foo('Marie').age ==

Parameters are dropped from the right, however mandatory parameters are never dropped.

def baz(a = 'a', int b, ¢ = '¢', boolean d, e = 'e') { "$a $b $c $d fe" }

assert baz(42, true) == 'a 42 c true e'

assert baz('A', 42, true) == 'A 42 c true e'

assert baz('A', 42, 'C', true) == 'A 42 C true e'
assert baz('A', 42, 'C', true, 'E') == 'A 42 C true E'

The same rule applies to constructors as well as methods. If using @TupleConstructor, additional
configuration options apply.

Varargs

Groovy supports methods with a variable number of arguments. They are defined like this: def
foo(p1, -+, pn, T+ args). Here foo supports n arguments by default, but also an unspecified
number of further arguments exceeding n.

def foo(Object... args) { args.length }
assert foo() ==

assert foo(1) ==

assert foo(1, 2) ==

This example defines a method foo, that can take any number of arguments, including no
arguments at all. args.length will return the number of arguments given. Groovy allows T[] as an

72

alternative notation to T---. That means any method with an array as last parameter is seen by
Groovy as a method that can take a variable number of arguments.

def foo(Object[] args) { args.length }
assert foo() ==

assert foo(1) ==

assert foo(1, 2) ==

If a method with varargs is called with null as the vararg parameter, then the argument will be null
and not an array of length one with null as the only element.

def foo(Object... args) { args }
assert foo(null) == null

If a varargs method is called with an array as an argument, then the argument will be that array
instead of an array of length one containing the given array as the only element.

def foo(Object... args) { args }
Integer[] ints = [1, 2]
assert foo(ints) == [1, 2]

Another important point are varargs in combination with method overloading. In case of method
overloading Groovy will select the most specific method. For example if a method foo takes a
varargs argument of type T and another method foo also takes one argument of type T, the second
method is preferred.

def foo(Object... args) { 1}
def foo(Object x) { 2 }
assert foo() ==

assert foo(1) ==

assert foo(1, 2) ==

Method selection algorithm

Dynamic Groovy supports multiple dispatch (aka multimethods). When calling a method, the actual
method invoked is determined dynamically based on the run-time type of methods arguments. First
the method name and number of arguments will be considered (including allowance for varargs),
and then the type of each argument. Consider the following method definitions:

def method(Object o1, Object 02) { 'o/0' }
def method(Integer i, String s) { 'i/s' }
def method(String s, Integer i) { 's/i' }

Perhaps as expected, calling method with String and Integer parameters, invokes our third method

73

https://en.wikipedia.org/wiki/Multiple_dispatch

definition.

assert method('foo', 42) == 's/i'

Of more interest here is when the types are not known at compile time. Perhaps the arguments are
declared to be of type Object (a list of such objects in our case). Java would determine that the
method(Object, Object) variant would be selected in all cases (unless casts were used) but as can be
seen in the following example, Groovy uses the runtime type and will invoke each of our methods
once (and normally, no casting is needed):

List<List<Object>> pairs = [['foo', 1], [2, 'bar'], [3, 4]]
assert pairs.collect { a, b -> method(a, b) } == ['s/i', "i/s"', 'o/0']

For each of the first two of our three method invocations an exact match of argument types was
found. For the third invocation, an exact match of method(Integer, Integer) wasn’t found but
method(Object, Object) is still valid and will be selected.

Method selection then is about finding the closest fit from valid method candidates which have
compatible parameter types. So, method(Object, Object) is also valid for the first two invocations
but is not as close a match as the variants where types exactly match. To determine the closest fit,
the runtime has a notion of the distance an actual argument type is away from the declared
parameter type and tries to minimise the total distance across all parameters.

The following table illustrates some factors which affect the distance calculation.

Aspect Example

Directly implemented interfaces match more Given these interface and method definitions:
closely than ones from further up the

inheritance hierarchy. g 1 4

interface I2 extends I1 {}
interface I3 {}
class Clazz implements I3, I2 {}

def method(I1 i1) { 'I1' }
def method(I3 i3) { 'I3' }

The directly implemented interface will match:

assert method(new Clazz()) == 'I3'

An Object array is preferred over an Object.
def method(Object[] arg) { 'array' }

def method(Object arg) { 'object' }

assert method([] as Object[]) == 'array’

74

Aspect

Non-vararg variants are favored over vararg
variants.

If two vararg variants are applicable, the one
which uses the minimum number of vararg
arguments is preferred.

Interfaces are preferred over super classes.

For a primitive argument type, a declared
parameter type which is the same or slightly
larger is preferred.

Example

def method(String s, Object... vargs) {
'vararg' }
def method(String s) { 'non-vararg' }

assert method('foo') == 'non-vararg'

def method(String s, Object... vargs) {
"two vargs' }

def method(String s, Integer 1,
Object... vargs) { 'one varg' }

assert method('foo', 35, new Date()) ==
"one varg'

interface I {}
class Base {}
class Child extends Base implements I {}

def method(Base b) { 'superclass' }
def method(I i) { 'interface' }

assert method(new Child()) ==
"interface’

def method(Long 1) { 'Long' }

def method(Short s) { 'Short' }

def method(BigInteger bi) { 'BigInteger’
}

assert method(35) == 'Long'

In the case where two variants have exactly the same distance, this is deemed ambiguous and will

cause a runtime exception:

def method(Date d, Object o) { 'd/o' }

def method(Object o, String s) { 'o/s' }

def ex = shouldFail {
println method(new Date(), 'baz')

}

assert ex.message.contains('Ambiguous method overloading')

Casting can be used to select the desired method:

75

assert method(new Date(), (Object)'baz') == 'd/o'
assert method((Object)new Date(), 'baz') == 'o/s'

Exception declaration

Groovy automatically allows you to treat checked exceptions like unchecked exceptions. This
means that you don’t need to declare any checked exceptions that a method may throw as shown in
the following example which can throw a FileNotFoundException if the file isn’t found:

def badRead() {
new File('doesNotExist.txt').text
}

shouldFail(FileNotFoundException) {
badRead()
}

Nor will you be required to surround the call to the badRead method in the previous example within
a try/catch block - though you are free to do so if you wish.

If you wish to declare any exceptions that your code might throw (checked or otherwise) you are
free to do so. Adding exceptions won’t change how the code is used from any other Groovy code but
can be seen as documentation for the human reader of your code. The exceptions will become part
of the method declaration in the bytecode, so if your code might be called from Java, it might be
useful to include them. Using an explicit checked exception declaration is illustrated in the
following example:

def badRead() throws FileNotFoundException {
new File('doesNotExist.txt').text

}

shouldFail(FileNotFoundException) {
badRead()
+

Fields and Properties

Fields

A field is a member of a class, interface or trait which stores data. A field defined in a Groovy
source file has:

* a mandatory access modifier (public, protected, or private)

* one or more optional modifiers (static, final, synchronized)

* an optional type

* a mandatory name

76

class Data {
private int id
protected String description
public static final boolean DEBUG = false

CXSXS

® a private field named id, of type int
@ a protected field named description, of type String
® apublic static final field named DEBUG of type boolean

A field may be initialized directly at declaration:

class Data {
private String id = IDGenerator.next() @
/] ...

@ the private field id is initialized with IDGenerator.next()

It is possible to omit the type declaration of a field. This is however considered a bad practice and in
general it is a good idea to use strong typing for fields:

class BadPractice {

private mapping @
}
class GoodPractice {

private Map<String,String> mapping @)
}

@ the field mapping doesn’t declare a type
@ the field mapping has a strong type
The difference between the two is important if you want to use optional type checking later. It is

also important as a way to document the class design. However, in some cases like scripting or if
you want to rely on duck typing it may be useful to omit the type.

Properties

A property is an externally visible feature of a class. Rather than just using a public field to
represent such features (which provides a more limited abstraction and would restrict refactoring
possibilities), the typical approach in Java is to follow the conventions outlined in the JavaBeans
Specification, i.e. represent the property using a combination of a private backing field and
getters/setters. Groovy follows these same conventions but provides a simpler way to define the
property. You can define a property with:

* an absent access modifier (no public, protected or private)

* one or more optional modifiers (static, final, synchronized)

77

https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/
https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/

* an optional type

* a mandatory name

Groovy will then generate the getters/setters appropriately. For example:

class Person {
String name ©)
int age @

@ creates a backing private String name field, a getName and a setName method

@ creates a backing private int age field, a getAge and a setAge method

If a property is declared final, no setter is generated:

class Person {
final String name
final int age
Person(String name, int age) {
this.name = name
this.age = age

®O@ ©O6

@ defines a read-only property of type String
@ defines a read-only property of type int

® assigns the name parameter to the name field
@ assigns the age parameter to the age field

Properties are accessed by name and will call the getter or setter transparently, unless the code is in
the class which defines the property:

class Person {
String name
void name(String name) {

this.name = "Wonder $name" ©)
}
String title() {

this.name @)
}

}

def p = new Person()

p.name = 'Diana’ ©)
assert p.name == 'Diana’ @
p.name('Woman') ®
assert p.title() == 'Wonder Woman' ®

78

@ this.name will directly access the field because the property is a