GHC User’s Guide Documentation
Release 9.4.8

GHC Team

Apr 03, 2025

CONTENTS

1 Introduction 3
1.1 Obtaining GHC e e e e e e e e e e e e e e e e 3
1.2 Meta-information: Web sites, mailing lists, etc. 3
1.3 Reporting bugsin GHC e e 4
1.4 GHC version numbering policy i i i i i e e e 4
1.5 The Glasgow Haskell Compiler License 5

2 Release notes 7
2.1 Version 9.4.8 L e e e e e e e e e e e e e 7

2.1.1 Significant Changes e 7
2.1.1.1 Compiler. e e 7

2.1.1.2 Runtime system e e e 7

2.1.1.3 Build system and packaging, 7

2.1.1.4 Core libraries e e e 8

2.1.1.5 Included libraries e 8
2.2Version 9.4.7 . .. L e e e e e e e e e e e e e e e e e e 10
2.2.1 Significant Changes. e e e e 10

2.2. 1.1 Compiler. e e e e e 10

2.2.1.2 Build system and packaging 10
2.2.1.3Corelibraries e e e 11

2.2.1.4 Included libraries e 11
2.3Version 9.4.6 e e e e e e e e e e e 13
2.3.1 Significant Changes. e e 13
2.3.1.1 Compiler. e e e e e 13

2.3.1.2 GHCIi and Bytecode Interpreter 14

2.3.1.3 Runtime system 14

2.3.1.4 Build system and packaging 14
2.3.1.5Corelibraries e e 14

2.3.1.6 Included libraries e 15
2.4Version 9.4.5 . . . L e e e e e e e e e e e e e 17
2.4.1 Significant Changes e e 17
2.4.1.1 Compiler. e e e 17

2.4.1.2 Runtime system e e e 18

2.4.1.3 Build system and packaging, 19

2.4.1.4 Corelibraries e e e 19

2.4.1.5 Included libraries e 19
2.5Version 9.4.4 . . . e e e e e e e e e e e e e e e 22
2.5.1 Significant Changes e 22
2.5.1.1 Included libraries e 22

2.6 Version 9.4.3 e e e e e e e e e e e e e e e e 25

2.6.1 Significant Changes. e e e e 25

2.6.1.1 Included libraries e 25
2.7Version 9.4.2 . .. e e e e e e e e e e e e e e e e 28
2.7.1 Significant Changes. e e e e 28
2.7.1.1 Included libraries e 28
2.8Version 9.4.1 . . . e e e e e e e e e e e e e e 31
2.8.1 Breaking Changes i i i i i e e e e 31
2.8.2Language e e e e e e e e e e e e e e e e e e e 32
2.8.3 Compiler e e e e e e e e 33
2.8 4 Packaging e e e e e e e 35
2.8.5 Runtime system e e e e e e e e 35
2.8.6 baselibrary. e e e e 35
2.8.7 ghc-primlibrary. e e e 35
2.8.8ghclibrary e e e e e e 38
2.8.9ghc-heap library. e e 39
2.8.9.1 Included libraries 39

3 Using GHCi 43
3.1 Introduction to GHCi e e e 43
3.2 Loading source files e e e e e e 44
3.2.1 Modules vs. filenames e e e 45
3.2.2 Making changes and recompilation 45

3.3 Loading compiled code 45
3.4 Interactive evaluation at the prompt 47
3.4.11/O actionsattheprompt 48
3.4.2 Using do notation at the prompt 48
3.4.3 Multiline input e e e 50
3.4.4 Type, class and other declarations 51
3.4.5 What's really in scope atthe prompt? 52
3.4.5.1 The effect of :load on whatisinscope 53

3.4.5.2 Controlling what is in scope with import 54

3.4.5.3 Controlling what is in scope with the :module command 54

3.4.5.4 Qualified names e e e e e 54

3.4.5.5 :module and :load 55

3.4.5.6 Shadowing and the Ghcil module name 55

3.4.6 Theitvariable e 56
3.4.7 Type defaulting in GHCi 57
3.4.7.1 Interactive classes e e e 58

3.4.7.2 Extended rules around default declarations. 58

3.4.8 Using a custom interactive printing function 58
3.4.9 Stack Tracesin GHCi i 59

3.5 The GHCiDebugger e e e e e e e e e e 60
3.5.1 Breakpoints and inspecting variables 60
3.5.1.1 Setting breakpoints o o . 63

3.5.1.2 Managing breakpoints o o oL, 64

3.5.2 Single-stepping oo e e e e e e e 65
3.5.3 Nested breakpoints 65
3.5.4The resultwvariable e 66
3.5.5Tracing and history e 66
3.5.6 Debugging exceptions e 68
3.5.7 Example: inspecting functions 69
3.5.8 Limitations e e e e e e 70

3.6 Invoking GHCi e e e e e e e e e 70
3.6.1 Packages i i e e e e e e e e e e e 71

3.6.2 Extra libraries e
3.7GHCicommands i e e e e e e e e
3.8 The :setand :seticommands

3.8. 1 GHCIiOptionS i e e e e e e e e e e e e e

3.8.2 Setting GHC command-line options in GHCi

3.8.3 Setting options for interactive evaluationonly
3.9 The .ghci and .haskelinefiles.,

3.9.1The .ghcifiles e e e e

3.9.2The .haskelinefile.
3.10 Compiling to object code inside GHCi
3.11 Running the interpreter in a separate process
3.12 Running the interpreter on a differenthost
3.13 Building GHCi libraries e e e
3.14 FAQ and Things To Watch OutFor

4 Using runghc
4.1 USAGE . v v o i e e e e e e e e e e e e e e e e e e e
4.2runghcflags o o o e e e e e e e e e e e e e
A3 GHC Flags v i ot e et e e e e e e e e e e e e e

5 Using GHC
5.1 Using GHC e e e e e e e e e e e e e e e
5.1.1 Getting started: compiling programs
5.1.2 Options OVEIVIEW o e e e e e e e e e e e
5.1.2.1 Command-line arguments
5.1.2.2 Command line options in source files
5.1.2.3 Setting options in GHCi.
5.1.3 Dynamic and Mode options e
5.1.4 Meaningful file suffixes
5.1.5 Modes of operation e
5.1.5.1 Using ghc --make
5.1.5.2 Multiple Home Units
5.1.5.3 Expression evaluationmode,
5.1.5.4 Batch compilermode,
1.6 Verbosity options e e
1.7 Platform-specific Flags o i e e e
1.8 Haddock e e e e
1.9 Miscellaneous flags o i i e e e e e e e
5.1.9.1 Other environment variables
5.2 Warnings and sanity-checking
5.3 Optimisation (code improvement),
5.3.1 -0*: convenient “packages” of optimisation flags.
5.3.2 -f*: platform-independent flags,
5.4 Using Concurrent Haskell
5.5 Using SMP parallelism e
5.5.1 Compile-time options for SMP parallelism
5.5.2 RTS options for SMP parallelism
5.5.3 Hints for using SMP parallelism
5.6 Flagreference i i e e e e e
5.6.1 Verbosity options e e
5.6.2 Alternative modes of operation L.
5.6.3 Which phasestorun
5.6.4 Redirecting output
5.6.5 Keeping intermediate files oo,

5.
5.
5.
5.

5.6.6 Temporary files e e e e e 170

5.6.7 Finding imports e e e e e e e e 170
5.6.8 Interface file options e 171
5.6.9 Extended interface fileoptions 171
5.6.10 Recompilation checking 171
5.6.11 Interactive-mode options e 172
5.6.12 Packages e e e e e e e e e e e 173
5.6.13 Language options e e e e e e e e e e e e e e e 175
5.6.14 Warnings o i i i e 175
5.6.15 Optimisation levels 186
5.6.16 Individual optimisations00, 187
5.6.17 Profiling options e e e e e e 194
5.6.18 Program coverage options 196
5.6.19 C pre-processor options i i i it e 197
5.6.20 Code generation options e 197
5.6.21 Linking options e e 198
5.6.22 Plugin options e e e e e e 202
5.6.23 Replacing phases e e e 202
5.6.24 Forcing options to particularphases 204
5.6.25 Platform-specificoptions e 205
5.6.26 Compiler debuggingoptions o . 206
5.6.27 Miscellaneous compileroptions, 218
5.7 Runtime system (RTS) options. i i it it 219
5.7.1 Setting RTS options it et e e e 219
5.7.1.1 Setting RTS options on the command line 219
5.7.1.2 Setting RTS options at compile time 220
5.7.1.3 Setting RTS options with the GHCRTS environment variable 220
5.7.1.4 “Hooks” to change RTS behaviour 221

5.7.2 Miscellaneous RTS options 222
5.7.3 RTS options to control the garbage collector 224
5.7.4 RTS options to produce runtime statistics 232
5.7.5 RTS options for concurrency and parallelism 235
5.7.6 RTS options for profiling 235
5.7.7TraCcing« v v i i e e e e e e e e e e e e e e e e 236
5.7.8 RTS options for hackers, debuggers, and over-interested souls 237
5.7.9 Getting information aboutthe RTS 239
5.8 Filenames and separate compilation 241
5.8.1 Haskell source files e 241
5.8.2 0utputfiles L e e e e e e 241
5.8.3Thesearchpath i .. 242
5.8.4 Redirecting the compilation output(s) 242
5.8.5 Keeping Intermediate Files 245
5.8.6 Redirecting temporary files 246
5.8.7 Other options related to interfacefiles 246
5.8.8 Options related to extended interfacefiles 246
5.8.9 The recompilation checker 247
5.8.9.1 Recompilation for Template Haskell and Plugins 247
5.8.10 How to compile mutually recursive modules 248
5.8.11 Module signatures e e e e e e 251
5.8.12 Using make e e e e e e e e e e 256
5.8.13 Dependency generation 257
5.8.14 Orphan modules and instance declarations 259
5.9Packages. e e e 260

5.9.1 Using Packages i i i i i e e e e e e e 260

5.9.2Themainpackage i i i i e e e 264

5.9.3 Consequences of packages for the Haskell language 264
5.9.4 Thinning and renaming modules 264
5.9.5 Package Databases e 265
5.9.5.1 The GHC PACKAGE PATH environment variable 266

5.9.5.2 Package environments oo 267

5.9.6 Installed package IDs, dependencies, and broken packages 268
5.9.7 Package management (the ghc-pkg command) 269
5.9.8 Building a package from Haskell source 273
5.9.9 InstalledPackageInfo: a package specification 274
5.9.10 Linking against C++ libraries, 278

5.10 GHC Backends i i e e e e e 278
5.10.1 Native Code Generator (-fasm) 278
5.10.2 LLVM Code Generator (-fllvm). i 278
5.10.3 C Code Generator (-fvia-C) it 279
5.10.4 Unregisterised compilation 279

5.11 Options related to a particularphase 279
5.11.1 Replacing the program for one or more phases 279
5.11.2 Forcing options to a particularphase 281
5.11.3 Options affecting the C pre-processor 282
5.11.3.1 Standard CPP macros i i i i i it 283

5.11.3.2 CPP and string gaps « « v v v v i it e e e e e e 284

5.11.4 Options affecting a Haskell pre-processor 285
5.11.5 Options affecting code generation 285
5.11.6 Options affecting linking 287

5.12 Using shared libraries e 293
5.12.1 Building programs that use shared libraries 294
5.12.2 Shared libraries for Haskell packages 294
5.12.3 Shared libraries that exporta CAPI 295
5.12.4 Finding shared libraries at runtime 296
51241 UNIX . . o o v o e e e e e e e e e e e e e e e e e 296

5.12.4.2 Mac OS X i e e e e e e 296

5.13 Debugging the compiler. e 297
5.13.1 Dumping out compiler intermediate structures 297
5.13.1.1 Front-end e e e 298

5.13.1.2 Type-checking and renaming 299

5.13.1.3 Core representation and simplification. 299

5.13.1.4 STGrepresentation 302

5.13.1.5 C-\-representation e 302

5.13.1.6 LLVM code generator« i i i it it 303
5.13.1.7Ccodegenerator i e e e e e e 303

5.13.1.8 Native code generator. it 303

5.13.1.9 Miscellaneous backend dumps 304

5.13.2 Formatting dumps e e 305
5.13.3 Suppressing unwanted information 305
5.13.4 Checking forconsistency e 306
5.13.5 Checking for determinism 307
5.13.6 Other e e e e e e e e e e 308

6 Language extensions 309
6.1 Introduction L e e e e e e e e 309
6.1.1 Controlling extensions e 309
6.1.2 Overview of all language extensions 311
6.1.3 Summary of stolensyntax 314

B.2 SYILAX « « « v v e e e e e e 315

6.2.1 Unicode syntax @ i i e e e e e 315
6.2.2Themagichash e 315
6.2.3 The recursive do-notation 316
6.2.3.1 Recursive binding groups o o oo, 317
6.2.3.2Themdonotation 317

6.2.4 Applicative do-notation 319
6.2.4.1 Strictpatterns 320
6.2.4.2 Things towatchoutfor 321

6.2.5 Qualified do-notation 322
6.2.5.1 Examples e e e e e e 324
6.2.6 Parallel List Comprehensions 325
6.2.7 Generalised (SQL-like) List Comprehensions 326
6.2.8 Monad comprehensions 327
6.2.9 Overloaded lists e e 330
6.2.9.1 The IsListclass i ittt 331
6.2.9.2 Rebindable syntax e 332
6.2.9.3 Defaulting e 332
6.2.9.4 Speculation about the future 332
6.2.10 Rebindable syntax and the implicit Prelude import 333
6.2.10.1 Things unaffected by RebindableSyntax 334
6.2.11 Postfix operators e e e e e e e e 334
6.2.12 Tuple sections i i i i e e e e e e e 335
6.2.13 Lambda-case e e e e e e e 336
6.2.14 Empty case alternatives 336
6.2.15 Multi-way if-expressions e e 337
6.2.16 Local Fixity Declarations, 338
6.2.17 More liberal syntax for function arguments 338
6.2.17.1 Changes tothe grammar 339
6.2.18 Typed Holes e e e e 340
6.2.18.1 Valid Hole Fits i 344
6.2.19 Arrow notation e e e e e e e 348
6.2.19.1 do-notation forcommands 350
6.2.19.2 Conditional commands 351
6.2.19.3 Defining your own control structures. 351
6.2.19.4 Primitive constructs 353
6.2.19.5 Differences withthepaper 354
6.2.19.6 Portability e 354
6.2.20 Lexical negation e e 354
6.3 Import and export e e e e e e e e e e 355
6.3.1 Hiding things the imported module doesn’texport 355
6.3.2 Package-qualified imports 356
6.3.3 Safeimports e e e e e 356
6.3.4 Explicit namespaces in import/export 356
6.3.5 Writing qualified in postpositive position 357
0.4 TYPES . v v v i e 357
6.4.1 Data types with no constructors 357
6.4.2 Data type contexts e e e e e e 358
6.4.3 Infix type constructors, classes, and type variables. 358
6.4.4 Type operators o i i e e e e e e e e e e e e e 359
6.4.5 Liberalised type synonyms i 360
6.4.6 Existentially quantified data constructors 361
6.4.6.1 Why existential?, 362

6.4.6.2 Existentials and type classes, 362

6.4.6.3 Record Constructors ¢ i v i i i i i e 363

6.4.6.4 Restrictions e e 364
6.4.7 Declaring data types with explicit constructor signatures. 365
6.4.7.1 Formal syntax for GADTs i .. 367
6.4.7.2 GADT syntaxoddsandends 369
6.4.8 Generalised Algebraic Data Types (GADTs) 371
6.4.9 Type families e e e e e 375
6.4.9.1 Data families e e e 376
6.4.9.2 Synonym families e 378
6.4.9.3 Wildcards on the LHS of data and type family instances 384
6.4.9.4 Associated data and type families. 384
6.4.9.5 Importand export 389
6.4.9.6 Type families and instance declarations 390
6.4.9.7 Injective type families 391
6.4.10 Datatype promotion e e e e e e e 393
6.4.10.1 Motivation e e e e 393
6.4.10.2 OVEIVIEW . . . o v v v e e e e e e e e e e e e e e e e e e 394
6.4.10.3 Distinguishing between types and constructors 395
6.4.10.4 Type-level literals, 395
6.4.10.5 Promoted list and tupletypes 395
6.4.10.6 Promoting existential data constructors 396
6.4.10.7 Constraintsin kinds 396
6.4.11 Kind polymorphism e 397
6.4.11.1 Overview of kind polymorphism 397
6.4.11.2 Overview of Type-in-Type 397
6.4.11.3 Principles of kind inference 398
6.4.11.4 Kind inference in type signatures 399
6.4.11.5 Explicit kind quantification 399
6.4.11.6 Inferring the order of variables in a type/class declaration 399
6.4.11.7 Complete user-supplied kind signatures and polymorphic recursion400
6.4.11.8 Standalone kind signatures and polymorphic recursion 402
6.4.11.9 Standalone kind signatures and declaration headers 404
6.4.11.10 Kind inference in data type declarations 405
6.4.11.11 Kind inference for data/newtype instance declarations 406
6.4.11.12 Kind inference in class instance declarations 407
6.4.11.13 Kind inference in type synonyms and type family instances ... 407
6.4.11.14 Kind inference in closed type families 409
6.4.11.15 Higher-rank kinds 410
6.4.11.16 The kind Type i i i i e e e e e e 410
6.4.11.17 Inferring dependency in datatype declarations 411
6.4.11.18 Inferring dependency in user-written foralls 411
6.4.11.19 Kind defaulting without PolyKinds 412
6.4.11.20 Pretty-printing in the presence of kind polymorphism 412
6.4.11.21 Datatypereturnkinds 412
6.4.12 Representation polymorphism 413
6.4.12.1 Levity polymorphism 414
6.4.12.2 No representation-polymorphic variables or arguments 414
6.4.12.3 Representation-polymorphic bottoms 415
6.4.12.4 Printing representation-polymorphic types 415
6.4.13 Type-Level Literals i i i i 416
6.4.13.1 Runtime Values for Type-Level Literals 416
6.4.13.2 Computing With Type-Level Naturals 417
6.4.14 Visible type application 418
6.4.14.1 Inferred vs. specified type variables 418

vii

6.4.14.2 Ordering of specified variables 419

6.4.14.3 Manually defining inferred variables 420
6.4.14.4 Type Applicationsin Patterns 421
6.4.15 Arbitrary-rank polymorphism 423
6.4.15.1 Examples. e e e e e 424
6.4.15.2 Subsumption e 425
6.4.15.3 Typeinference i 426
6.4.15.4 Implicit quantification 427
6.4.16 Impredicative polymorphism 428
6.4.17 Linear types i i e e e e e e e e e e e e e 429
6.4.17.1 Datatypes i i e e e e e e e 430
6.4.17.2 Printing multiplicity-polymorphic types 431
6.4.17.3 Limitations e 431
6.4.17.4 Design and furtherreading. 432
6.4.18 Custom compile-time errors e 432
6.4.19 Deferring type errors toruntime 433
6.4.19.1 Enabling deferring of typeerrors 433
6.4.19.2 Deferred type errors in GHCi 434
6.4.19.3 Limitations of deferred type errors 434
6.4.20 Roles o e e e e e e e e 435
6.4.20.1 Nominal, Representational, and Phantom 436
6.4.20.2 Role inference 436
6.4.20.3 Role annotations e 437

6.5 Records e e e e e e e e e e 438
6.5.1 Traditional record syntax 438
6.5.2 Field selectors and TypeApplications 439
6.5.2.1 Field selectors for Haskell98-style data constructors 439
6.5.2.2 Field selectors for GADT constructors 439
6.5.2.3 Field selectors for pattern synonyms 440

6.5.3 Record field disambiguation 441
6.5.4 Duplicate record fields 442
6.5.4.1 Selector functions e 443
6.5.4.2 Recordupdates. 443
6.5.4.3 Import and export of record fields 444

6.5.5 Field selectors e e 444
6.5.5.1 Import and export of selector functions 445

6.5.6 Record puns i e e e e e e 446
6.5.7 Record wildcards e e e e 447
6.5.8 Record field selector polymorphism 449
6.5.8.1 Solving HasField constraints 449
6.5.8.2 Virtualrecord fields 450

6.5.9 Overloaded record dot 451
6.5.10 Overloaded recordupdate 452
6.6 Deriving mechanism L e e e e e e 453
6.6.1 Deriving instances for empty datatypes 454
6.6.2 Inferred context for deriving clauses 454
6.6.3 Stand-alone deriving declarations 455
6.6.4 Deriving instances of extra classes (Data, etc.) 457
6.6.4.1 Deriving Functorinstances, 457
6.6.4.2 Deriving Foldable instances 460
6.6.4.3 Deriving Traversableinstances 462
6.6.4.4 Deriving Datainstances 464
6.6.4.5 Deriving Typeable instances 464
6.6.4.6 Deriving Liftinstances 464

viii

6.6.5 Generalised derived instances fornewtypes 466

6.6.5.1 Generalising the derivingclause 466
6.6.5.2 A more precise specification 0 L. 468
6.6.5.3 Associated type families 469

6.6.6 Deriving any otherclass e 471
6.6.7 Deriving strategies o i i e e e e e e e e e e 474
6.6.7.1 Default deriving strategy e 475

6.6.8 Deriving via e e e e e e e e e e e e e e 475
0.7 Patterns e e e e e e e e e e e e e e e e e 477
6.7.1 Patternguards e e e e e 477
6.7.2 View patterns e e e e e 477
6.7.3n+kpatterns L e e e e 479
6.7.4 Pattern Synonyms i e e e e e e e e e e e e e e 480
6.7.4.1 Record Pattern Synonyms 482
6.7.4.2 Syntax and scoping of pattern synonyms 483
6.7.4.3 Import and export of pattern synonyms 484
6.7.4.4 Typing of pattern synonyms v i ... 485
6.7.4.5 Matching of pattern synonyms 487
6.7.4.6 Pragmas for pattern synonyms 487

6.8 Class and instances declarations 488
6.8.1 Multi-parameter type classes e 488
6.8.2 Undecidable (or recursive) superclasses 489
6.8.3 Constrained class method types 489
6.8.4 Default method signatures, 490
6.8.5 Detailed requirements for default type signatures 491
6.8.6 Nullary type classes i i i i it et e e 493
6.8.7 Functional dependencies e 494
6.8.7.1 Rules for functional dependencies 494
6.8.7.2 Background on functional dependencies 495

6.8.8 Instance declarations and resolution 498
6.8.8.1 Relaxed rules for the instancehead 499
6.8.8.2 Formal syntax for instance declarationtypes. 500
6.8.8.3 Instance terminationrules 501
6.8.8.4 Overlapping instances 503
6.8.8.5 Instance signatures: type signatures in instance declarations ... 507

G.9 Literals e e e e e e e 508
6.9.1 Negative literals e 508
6.9.2 Binary integerliterals e e 508
6.9.3 Hexadecimal floating point literals. 508
6.9.4 Fractional looking integerliterals 509
6.9.5 Numeric undersCores v v v v v i i e e e e e e e e e e e 509
6.9.6 Overloaded string literals 511
6.9.7 Overloaded labels e 512
6.10 Constraints e e e e e e e e 513
6.10.1 Loosening restrictions on classcontexts 513
6.10.2 Equality constraints and Coercible constraint 514
6.10.2.1 Equality constraints e 514
6.10.2.2 Heterogeneous equality 514
6.10.2.3 Unlifted heterogeneous equality 515
6.10.2.4 The Coercible constraint 515
6.10.3 The Constraintkind 515
6.10.4 Quantified constraints L o 516
6.10.4.1 Motivation e e e 517
6.10.4.2 Syntax changes e e e 518

ix

6.10.4.3 Typing changes 0 i i e e e e 519

6.10.4.4 Superclasses e e e e e e 519
6.10.4.50verlap oL e e e e e e e 519

6.10.4.6 Instance lookup e 520

6.10.4.7 Termination i i i i it e e 520

6.10.4.8 Coherence o i i e e e e e e e 520

6.11 Type signatures i e e e e e e e e e e 521
6.11.1 Explicit universal quantification (forall) 521
6.11.1.1 The forall-or-nothingrule. 522

6.11.2 Ambiguous types and the ambiguity check 523
6.11.3 Explicitly-kinded quantification 525
6.11.4 Lexically scoped type variables 526
6.11.4.1 OVEIVIEW . . . ¢ v v e e e e e e e e e e e e e e e e e e e 527

6.11.4.2 Declaration type signatures 528

6.11.4.3 Expression type signatures o 529

6.11.4.4 Pattern type signatures o 529

6.11.4.5 Class and instance declarations 530

6.11.5 Implicit parameters e e e e 531
6.11.5.1 Implicit-parameter type constraints 532

6.11.5.2 Implicit-parameter bindings 532

6.11.5.3 Implicit parameters and polymorphic recursion 533

6.11.5.4 Implicit parameters and monomorphism 534

6.11.6 Partial Type Signatures e 534
6.11.6.1 Syntax i it e e e e e e e e e 534

6.11.6.2 Where can theyoccur? 538

6.12 Bindings and generalisation o e 539
6.12.1 Switching off the Monomorphism Restriction 539
6.12.2 Let-generalisation e 540

6.13 Template Haskell e 541
6.13.1 Syntax e e e e e e e e e e e 541
6.13.2 Using Template Haskell 547
6.13.3 Viewing Template Haskell generatedcode 548
6.13.4 A Template Haskell Worked Example 548
6.13.5 Template Haskell quotes and Rebindable Syntax 549
6.13.6 Using Template Haskell with Profiling 550
6.13.7 Template Haskell Quasi-quotation 550

6.14 Bang patterns and Strict Haskell 553
6.14.1 Bang patterns i e e e e e e e e e e 553
6.14.1.1 Strict bindings e e e e 554

6.14.2 Strict-by-default datatypes 555
6.14.3 Strict-by-default pattern bindings 556
6.14.4 Modularity e e e e 558
6.14.5 Dynamic semantics of bang patterns 558

6.15 Parallel and Concurrent e e e e e 561
6.15.1 Concurrent and Parallel Haskell 561
6.15.1.1 Concurrent Haskell 561

6.15.1.2 Parallel Haskell 561

6.15.1.3 Annotating pure code for parallelism 561

6.15.2 Software Transactional Memory 562
6.15.3 Static pointers e e 563
6.15.3.1 Using staticpointers. 563

6.15.3.2 Static semantics of static pointers 564

6.16 Unboxed types and primitive operations 565

6.16.1 Unboxed types i i i i e e e e e e e e e e e e 565

6.16.2 Unboxed type kinds e 566

6.16.3 Unboxed tuples e e e 567
6.16.4 Unboxed sums i e e e e e 568
6.16.5 Unlifted Newtypes o v i i i e e e e e e e 569
6.16.6 Unlifted Datatypes. i i i e e e e 570
6.17 Foreign function interface (FFI) ... 572
6.17.1 GHC differences tothe FFI Chapter 572
6.17.1.1 Guaranteed callsafety 572
6.17.1.2 Interactions between safe calls and bound threads 573
6.17.1.3 Varargs not supported by ccall calling convention 573
6.17.2 GHC extensions to the FFI Chapter 573
6.17.2.1 Unlifted FFITypes i i i i e e e e e e e e et e 573
6.17.2.2 Newtype wrapping of the IOmonad 575
6.17.2.3 Explicit “forall”s in foreigntypes 576
6.17.2.4 Primitive imports e 576
6.17.2.5 Interruptible foreigncalls 576
6.17.2.6 The CAPI calling convention 577
6.17.2.7 hs_thread done() i i 578
6.17.2.8 Freeing many stable pointers efficiently 578
6.17.3 Using the FFIwith GHC i 579
6.17.3.1 Using foreign export and foreign import ccall "wrapper"
with GHC e 579
6.17.3.2 Using headerfiles 582
6.17.3.3 Memory Allocation 583
6.17.3.4 Multi-threadingand the FFI 583
6.17.3.5 Floating pointand the FFT 587
6.17.3.6 Pinned Byte Arrays. o i i i e e e e e 587
6.18 Safe Haskell e e e e e e e e e e 588
6.18.1 Uses of Safe Haskell 588
6.18.1.1 Strict type-safety (good style) 588
6.18.1.2 Building secure systems (restricted IO Monads) 589
6.18.2 Safe Language e e e e e e e e 591
6.18.2.1 Safe Overlapping Instances 592
6.18.3 SafeImports e e e e 593
6.18.4 Trust and Safe Haskell Modes 593
6.18.4.1 Trust check (-fpackage-trust disabled) 594
6.18.4.2 Trust check (-fpackage-trustenabled). 594
6.18. 4.3 Example e e e e e 595
6.18.4.4 Trustworthy Requirements 595
6.18.4.5 Package Trust e 596
6.18.5 Safe Haskell Inference, 596
6.18.6 Safe Haskell Flag Summary 596
6.18.7 Safe Compilation 598
6.19 Miscellaneous i e e e e e e e e e e e e e 599
6.19.1 Rewriterules e e e e e e 599
6.19.1.1 Syntax i i e e e e e e e e e 599
6.19.1.2 Semantics e e e 601
6.19.1.3 How rules interact with INLINE/NOINLINE pragmas 602
6.19.1.4 How rules interact with CONLIKE pragmas 603
6.19.1.5 How rules interact with class methods 603
6.19.1.6 Listfusion e e e 604
6.19.1.7 Specialisation e 605
6.19.1.8 Controlling what’s going on in rewriterules 606
6.19.2 Special built-in functions L 606

Xi

6.19.3 Generic programming ¢ v v v v v et e e e e e e e e e e e e e e e 607

6.19.3.1 Deriving representations 607
6.19.3.2 Writing generic functions 609
6.19.3.3 Unlifted representationtypes 610
6.19.3.4 Genericdefaults 610
6.19.3.5 More information. e 611
6.19.4 ASSertions e e e e e e e e e e 611
6.19.5 HasCallStack e e 612
6.19.5.1 Compared with other sources of stack traces 614

6.20 Pragmas i e 614
6.20.1 LANGUAGE pragma v i v it e e e e e e e e e e e e e e e 614
6.20.2 OPTIONS GHC Pragma v v v v e e e e e e e e e e e e e e e e e 615
6.20.3 INCLUDE pragma o v i i e e e e e e e e e e e e e e e e e e 615
6.20.4 WARNING and DEPRECATED pragmas v v v v v v v v e e e e e e 615
6.20.5 MINIMAL Pragma . . . « ¢ v v v v v e e e e e e e e e e e e e e e e e 616
6.20.6 INLINE and NOINLINE pragmas o c v i v v i v it e e e 617
6.20.6.1 INLINE pragma o i v i i et e e e e e e e e e e e 617
6.20.6.2 INLINABLE pragma i it it et e e e e e e e e e 619
6.20.6.3 NOINLINE pragma v v v v vt et e e e e et et e e e e e 620
6.20.6.4 CONLIKE modifier i i i e e 620
6.20.6.5 Phase control 620
6.20.7 OPAQUE pragma v o v i v e e e e e e e e e e e e e e e e e e e 621
6.20.8 LINE pragma v v v v i e e e e e e e e e e e e e e e e e e e 621
6.20.9 COLUMN PTAgM@ + .+ v v v ot i e 622
6.20. 10 RULES pragma o i i it et e e e e e e e e e e e e e e e e 622
6.20.11 SPECTIALIZE Pragma v v v v v e e e e e e e e e e e e e e e e e e 622
6.20.11.1 SPECIALIZE INLINE it 623
6.20.11.2 SPECIALIZE for imported functions 624
6.20.12 SPECIALIZE instance pragma« v v v v v vt et et e e et e e 625
6.20. 13 UNPACK Pragma v v v e 625
6.20.14 NOUNPACK PTAgMa . . . v v v v v e 626
6.20.15 SOURCE Pragma v v v i e e e e e e e e e e e e e e e e e e 626
6.20.16 COMPLETE pragmas v v v v v e e e e e e e e e e e e e e e e e e e 626
6.20.17 OVERLAPPING, OVERLAPPABLE, OVERLAPS, and INCOHERENT pragmas ... 628
7 Extending and using GHC as a Library 629
7.1 Source annotations L e e e e e e e e e e e e e e 629
7.1.1 Annotating values e e e e e 629
7.1.2 Annotating types e e e e e e e e 630
7.1.3 Annotatingmodules e 630
7.2 Using GHC asa Library. e e 630
7.3 Compiler Plugins e e e e e 631
7.3.1 Using compiler plugins 0 i e e e e 631
7.3.2 Writing compiler plugins e 633
7.3.3 Core pluginsinmore detail, 634
7.3.3.1 Manipulating bindings oo . 634
7.3.3.2 Using Annotations i i e e 635

7.3.4 Typechecker plugins i i i it i e e 636
7.3.4.1 Constraint solving with plugins 637
7.3.4.2 Type family rewriting with plugins 638
7.3.5Source plugins e e e e e e 639
7.3.5.1 Parsed representation. 0oL, 639
7.3.5.2 Type checked representation 640
7.3.5.3 Evaluatedcode e 640

xii

7.3.5.4 Interface files e
7.3.5.5 Source plugin example o oo
7.3.6 Hole fit plugins e e e
7.3.6.1 Stateful hole fitplugins
7.3.6.2 Hole fit pluginexample
7.3.7 Defaulting plugins. e e
7.3.8 Controlling Recompilation,
7.3.9 Frontend plugins e e e e
7.3.10 DynFlags plugins i i e e e e e e e e e

8 Profiling

8.1 Cost centres and cost-centrestacks
8.1.1 Inserting cost centresby hand
8.1.2 Rules for attributingcosts L

8.2 Compiler options for profiling
8.2.1 Automatically placing cost-centres,

8.3 Time and allocation profiling,
8.3.1 JSON profile format

8.4 Profiling memory USage v v vt e e e e e e e e e e e e e e e e
8.4.1 RTS options for heap profiling
8.4.2 Retainer Profiling e

8.4.2.1 Hints for using retainer profiling
8.4.3 Biographical Profiling
8.4.4 Actual memory residencyt e e e

8.5 hp2ps - Rendering heap profiles to PostScript
8.5.1 Manipulatingthe hpfile,
8.5.2 Zooming in on regions of your profile oL,
8.5.3 Viewing the heap profile of a running program
8.5.4 Viewing a heap profileinrealtime.

8.6 Profiling Parallel and Concurrent Programs

8.7 Observing Code COVETage v v v v i i i e e e e e e e e e e e e e e e e e e
8.7.1 A small example: Reciprocation
8.7.2 Options for instrumenting code for coverage
8.7.3The hpctoolkit e

8.7.3.1 hpcreport e e e e
8.7.3.2hpcmarkup e e e e e e
8.7.3.3hpcsum e e e e e e
8.7.3. 4 hpccombine
8.7.3.5hpcmap e e e e e e
8.7.3.6 hpc overlay and hpcdraft
8.7.4 Caveats and Shortcomings of Haskell Program Coverage

8.8 Using “ticky-ticky” profiling (for implementors)
8.8.1 Additional Ticky Flags i i e e
8.8.2 Understanding the Output of Ticky-Ticky profiles.
8.8.3 Information about name-specificcounters
8.8. 4 Examples e e e e e e e e
8.8.5 Notes about ticky profiling

9 Debugging compiled programs

9.1 Tutorial e e e e e e e
9.2 Requesting a stack trace from Haskellcode
9.3 Requesting a stack trace with SIGQUIT
9.4 Implementor’s notes: DWARF annotations

9.4.1 Debugging information entities.o,

9.4.1.1 DW TAG ghc src note
9.5 Further Reading o i e e e e e e
9.6 Direct Mapping i i i e e e e e e e e e e e e e e e e
9.7 Querying the Info Table Map i i it

10 What to do when something goes wrong
10.1 When the compiler “does the wrong thing”
10.2 When your program “does the wrong thing”

11 Hints

11.1 Sooner: producing a program more quickly
11.2 Faster: producing a program that runs quicker
11.3 Smaller: producing a program thatissmaller
11.4 Thriftier: producing a program that gobbles less heapspace
11.5 Controlling inlining via optimisation flags.

11.5.1 Unfolding creation. i e e e

11.5.2 Inlining decisions e e e e

11.5.3 Inlining generics e e e e e e e e
11.6 Understanding how OS memory usage corresponds to livedata

12 Other Haskell utility programs
12.1 “Yacc for Haskell”: happy o i i i e e e e e e e e e e e e
12.2 Writing Haskell interfaces to C code: hsc2hs
12.2.1 command line syntax e e e
12.2.2 Input syntax e e e e e e e e e e e e
12.2.3 Custom constructs e
12.2.4 Cross-compilation e

13 Running GHC on Win32 systems

13.1 Starting GHC on Windows platforms
13.2 Running GHCion Windows i i i it e e e e e e e e
13.3 Interacting with the terminal,
13.4 Differences in library behaviour
13.5 File paths under Windows @ i i i i ittt et
13.6 Using GHC (and other GHC-compiled executables) with Cygwin
13.6.1 Background e e e e e e
13.6.2 The problem e e e e
13.6.3Thingstodo. o i i e e e e e e e e

13.7 Building and using Win32 DLLs o 0 i i i it e e e
13.7.1 Creatinga DLL i e e e e e e e e e e e e e
13.7.2 Making DLLs to be called from other languages
13.7.2.1 Using from VBA e

13.7.2.2 Using from C++ e e e e

14 Known bugs and infelicities

14.1 Haskell standards vs. Glasgow Haskell: language non-compliance
14.1.1 Divergence from Haskell 98 and Haskell 2010
14.1.1.1 Lexical syntax i e e e

14.1.1.2 Context-free syntax

14.1.1.3 Expressions and patterns 0.

14.1.1.4 Failable patterns e

14.1.1.5 Typechecking of recursive binding groups

14.1.1.6 Default Module headers with -main-is

14.1.1.7 Module system and interfacefiles.

14.1.1.8 Numbers, basic types, and built-in classes

xiv

14.1.1.9 In Prelude support. i i i it e

14.1.1.10 The Foreign Function Interface

14.1.2 GHC’s interpretation of undefined behaviour in Haskell 98 and
Haskell 2010 o e e e e e

14.2 Known bugs or infelicities L
14.2.1 Bugsin GHC e e e e e e e e e e e
14.2.2 Bugs in GHCIi (the interactive GHC)

15 Eventlog encodings

15.1 Eventlog format e e
15.2 Runtime system diagnostics e
15.2.1 Capability sets e e e e e
15.2.2 Environment information.o
15.2.3 Thread and schedulingevents
15.2.4 Garbage collectorevents e
15.2.5 Heap events and statistics,
15.2.6 Spark events e e e e e e e e
15.2.7 Capability events e e
15.2.8Taskevents o o i i e e e e e e
15.2.9Tracing events i 0 i i i i i e e e e e e e e

15.3 Heap profiler eventlogoutput,
15.3.1 Metadata event types e e
15.3.1.1 Beginning of sample stream

15.3.1.2 Cost centre definitions

15.3.1.4 Sample event types e

15.3.1.5 Cost-centre break-down

15.3.1.6 String break-down e

15.4 Time profiler event logoutput
15.4.1 Profile beginevent e
15.4.2 Profile sample event.

15.5 Biographical profile sampleevent
15.6 Non-moving GC event output,
15.6.1 Non-moving heap CeNSuUS i i i i i i e e e e e e e
15.6.2 Ticky counters e e e e

16 Care and feeding of your GHC User’s Guide

16.1 BaSICS . . v v v o o e
16.1.1 Headings o v i i e e e e e e e e e e e e e
16.1.2 Formatting code e e e
16.1.2.1 Haskell e e e e

16.1.2.2 Other languages i i i i i it et et e e e e
16.1.3LInks e e e e e e e e e e
16.1.3.1 Within the User's Guide

16.1.3.2 TO GHC TresourCes« v i v i i it e it e et et e e e

16.1.3.3 To external reSOUIrCES o v v v i e e e e e e e e e

16.1.3.4 To core library Haddock documentation
16.1.3.5Math e e e

16.1.4 Index entries e e e e e

16.2 Citations e e e e e e e e
16.3 Admonitions e e e e e e e e e e e
16.4 Documenting command-line options and GHCi commands
16.4.1 Command-line options e
16.4.2 GHCicommands v v v v it et e e e e e e e e e e e e e e e e e

Xv

16.5 Style Conventions e e e
16.6 reST reference materials e

17 Indices and tables
Bibliography

Index

XVi

GHC User’s Guide Documentation, Release 9.4.8

Contents:

CONTENTS 1l

GHC User’s Guide Documentation, Release 9.4.8

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

This is a guide to using the Glasgow Haskell Compiler (GHC): an interactive and batch com-
pilation system for the Haskell 2010 language.

GHC has two main components: an interactive Haskell interpreter (also known as GHCIi),
described in Using GHCi (page 43), and a batch compiler, described throughout Using GHC
(page 93). In fact, GHC consists of a single program which is just run with different options
to provide either the interactive or the batch system.

The batch compiler can be used alongside GHCi: compiled modules can be loaded into an
interactive session and used in the same way as interpreted code, and in fact when using
GHCi most of the library code will be pre-compiled. This means you get the best of both
worlds: fast pre-compiled library code, and fast compile turnaround for the parts of your
program being actively developed.

GHC supports numerous language extensions, including concurrency, a foreign function inter-
face, exceptions, type system extensions such as multi-parameter type classes, local universal
and existential quantification, functional dependencies, scoped type variables and explicit un-
boxed types. These are all described in Language extensions (page 309).

GHC has a comprehensive optimiser, so when you want to Really Go For It (and you’ve got time
to spare) GHC can produce pretty fast code. Alternatively, the default option is to compile as
fast as possible while not making too much effort to optimise the generated code (although
GHC probably isn’t what you’d describe as a fast compiler :-).

GHC'’s profiling system supports “cost centre stacks”: a way of seeing the profile of a Haskell
program in a call-graph like structure. See Profiling (page 655) for more details.

GHC comes with a number of libraries. These are described in separate documentation.

1.1 Obtaining GHC

Go to the GHC home page and follow the “download” link to download GHC for your platform.

Alternatively, if you want to build GHC yourself, head on over to the GHC Building Guide to
find out how to get the sources, and build it on your system. Note that GHC itself is written
in Haskell, so you will still need to install GHC in order to build it.

1.2 Meta-information: Web sites, mailing lists, etc.

On the World-Wide Web, there are several URLs of likely interest:
* GHC home page

* GHC Developers Home (developer documentation, wiki, and bug tracker)

https://www.haskell.org/
https://www.haskell.org/ghc/
https://gitlab.haskell.org/ghc/ghc/wikis/building
https://www.haskell.org/ghc/
https://gitlab.haskell.org/ghc/ghc

GHC User’s Guide Documentation, Release 9.4.8

We run the following mailing lists about GHC. We encourage you to join, as you feel is appro-
priate.

glasgow-haskell-users
This list is for GHC users to chat among themselves. If you have a specific question about
GHC, please check the FAQ first.

Subscribers can post to the list by sending their message to glasgow-haskell-
users@haskell.org. Further information can be found on the Mailman page.

ghc-devs
The GHC developers hang out here. If you are working with the GHC API or have a
question about GHC’s implementation, feel free to chime in.

Subscribers can post to the list by sending their message to ghc-devs@haskell.org. Fur-
ther information can be found on the Mailman page.

There are several other Haskell and GHC-related mailing lists served by www.haskell.org.
Go to https://www.haskell.org/mailman/listinfo/ for the full list.

1.3 Reporting bugs in GHC

Glasgow Haskell is a changing system so there are sure to be bugs in it. If you find one, please
see this wiki page for information on how to report it.

1.4 GHC version numbering policy

As of GHC version 6.8, we have adopted the following policy for numbering GHC versions:

Stable branches are numbered x.y, where {y) is even. Releases on the stable branch
X.y are numbered x.y.z, where (z) (>= 1) is the patchlevel number. Patchlevels
are bug-fix releases only, and never change the programmer interface to any system-
supplied code. However, if you install a new patchlevel over an old one you will need
to recompile any code that was compiled against the old libraries.

The value of = GLASGOW HASKELL (see Options affecting the C pre-processor
(page 282)) for a major release x.y.z is the integer (xyy) (if {(y) is a single digit,
then a leading zero is added, so for example in version 6.8.2 of GHC we would have
_ GLASGOW _HASKELL ==608).

We may make snapshot releases of the current stable branch available for download,
and the latest sources are available from the git repositories.

Stable snapshot releases are named x.y.z.YYYYMMDD. where YYYYMMDD is the date
of the sources from which the snapshot was built, and x.y.z+1 is the next release
to be made on that branch. For example, 6.8.1.20040225 would be a snapshot of
the 6.8 branch during the development of 6.8. 2.

Unstable snapshot releases are named x.y.YYYYMMDD. where YYYYMMDD is the date of
the sources from which the snapshot was built. For example, 6.7.20040225 would
be a snapshot of the HEAD before the creation of the 6.8 branch.

The value of GLASGOW_HASKELL _ for a snapshot release is the integer (xyy). You
should never write any conditional code which tests for this value, however: since
interfaces change on a day-to-day basis, and we don’t have finer granularity in the
values of GLASGOW HASKELL , you should only conditionally compile using pred-
icates which test whether = GLASGOW HASKELL is equal to, later than, or earlier
than a given major release.

4 Chapter 1. Introduction

https://www.haskell.org/haskellwiki/GHC/FAQ
mailto:glasgow-haskell-users@haskell.org
mailto:glasgow-haskell-users@haskell.org
https://www.haskell.org/mailman/listinfo/glasgow-haskell-users
mailto:ghc-devs@haskell.org
https://www.haskell.org/mailman/listinfo/ghc-devs
https://www.haskell.org/mailman/listinfo/
https://gitlab.haskell.org/ghc/ghc/wikis/report-a-bug
https://www.haskell.org/ghc/dist/latest/
https://gitlab.haskell.org/ghc/ghc/wikis/repositories

GHC User’s Guide Documentation, Release 9.4.8

The version number of your copy of GHC can be found by invoking ghc with the --version
flag (see Verbosity options (page 103)).

The compiler version can be tested within compiled code with the
MIN VERSION GLASGOW HASKELL CPP macro (defined only when CPP (page 282) is used).
See Standard CPP macros (page 283) for details.

1.5 The Glasgow Haskell Compiler License

Copyright 2002 - 2007, The University Court of the University of Glasgow. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither name of the University nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permis-
sion.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
GLASGOW AND THE CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.5. The Glasgow Haskell Compiler License 5

GHC User’s Guide Documentation, Release 9.4.8

6 Chapter 1. Introduction

CHAPTER
TWO

RELEASE NOTES

2.1 Version 9.4.8

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 285) of this release is to be used with LLVM 10, 11, 12, 13, or 14.

2.1.1 Significant Changes

Issues fixed in this release include:

2.1.1.1 Compiler

» Fix a recompilation checking bug where GHC may miss changes in transitive dependen-
cies when deciding to relink a program (#23724).

* Fix a compiler panic resulting from incorrect eta-reduction of join points (#23922).

* Fix a code generator bug on AArch64 platforms resulting in invalid conditional jumps
(#23746).

* Improve STG code generation in certain scenarios (#23783).
» Fix a bug where we could silently truncate 64 bit values to 32 bit on 32 bit architectures.

* Fix -split-sections on Windows (#22834).

2.1.1.2 Runtime system
* Remove an assertion prone to race conditions (#22563).
» Fix some crashes and loops with the non-moving GC (#24042, :ghc-ticket: 23003).
* Properly escape characters when writing JSON profiles (-pJ) (#23924).

2.1.1.3 Build system and packaging

* Ensure -split-sections is enabled while building binary distributions for all platforms
where this is supported (#21135).

* Make the configure script use AC_PATH TOOL instead of AC_PATH PROG to detect tools,
making cross-compilation easier (#21601).

» Fix a bug where -DNOSMP wasn’t being passed to the C compiler even if the target doesn’t
support SMP (#24082).

https://gitlab.haskell.org/ghc/ghc/issues/23724
https://gitlab.haskell.org/ghc/ghc/issues/23922
https://gitlab.haskell.org/ghc/ghc/issues/23746
https://gitlab.haskell.org/ghc/ghc/issues/23783
https://gitlab.haskell.org/ghc/ghc/issues/22834
https://gitlab.haskell.org/ghc/ghc/issues/22563
https://gitlab.haskell.org/ghc/ghc/issues/24042, :ghc-ticket:\XeTeXglyph \numexpr \XeTeXcharglyph "0060\relax {}23003
https://gitlab.haskell.org/ghc/ghc/issues/23924
https://gitlab.haskell.org/ghc/ghc/issues/21135
https://gitlab.haskell.org/ghc/ghc/issues/21601
https://gitlab.haskell.org/ghc/ghc/issues/24082

GHC User’s Guide Documentation, Release 9.4.8

2.1.1.4 Core libraries
* Bump baseto 4.17.2.1
* Bump bytestring to 0.11.5.3
* Bump process to 1.6.18.0

2.1.1.5 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change

information.

Package Version Reason for inclusion
ghc 9.4.8

The compiler itself
Cabal-syntax 3.8.1.0

Dependency of ghc-pkg util-

ity
Cabal 3.8.1.0

Dependency of ghc-pkg util-

ity
Win32 2.12.0.1

Dependency of ghc library
array 0.5.4.0

Dependency of ghc library
base 4.17.2.1

Core library
binary 0.8.9.1

Dependency of ghc library
bytestring 0.11.5.3

Dependency of ghc library
containers 0.6.7

Dependency of ghc library
deepseq 1.4.8.0

Dependency of ghc library
directory 1.3.7.1

Dependency of ghc library
exceptions 0.10.5

Dependency of ghc and

haskeline library

continues on next page
8 Chapter 2. Release notes

GHC User’s Guide Documentation, Release 9.4.8

Table 1 - continued from previous page

Package Version Reason for inclusion
filepath 1.4.2.2

Dependency of ghc library
ghc-boot-th 9.4.8

Internal compiler library
ghc-boot 9.4.8

Internal compiler library
ghc-compact 0.1.0.0

Core library
ghc-heap 9.4.8

GHC heap-walking library
ghc-prim 0.9.1

Core library
ghci 9.4.8

The REPL interface
haskeline 0.8.2

Dependency of ghci exe-

cutable
hpc 0.6.1.0

Dependency of hpc exe-

cutable
integer-gmp 1.1

Core library
libiserv 9.4.8

Internal compiler library
mtl 2.2.2

Dependency of Cabal library
parsec 3.1.16.1

Dependency of Cabal library
pretty 1.1.3.6

Dependency of ghc library
process 1.6.18.0

Dependency of ghc library

continues on next page

2.1. Version 9.4.8

GHC User’s Guide Documentation, Release 9.4.8

Table 1 - continued from previous page

Package Version Reason for inclusion
stm 2.5.1.0
Dependency of haskeline li-
brary
template-haskell 2.19.0.0
Core library
terminfo 0.4.1.5
Dependency of haskeline li-
brary
text 2.0.2
Dependency of Cabal library
time 1.12.2
Dependency of ghc library
transformers 0.5.6.2
Dependency of ghc library
unix 2.7.3
Dependency of ghc library
xhtml 3000.2.2.1

Dependency of haddock exe-
cutable

2.2 Version 9.4.7

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 285) of this release is to be used with LLVM 10, 11, 12, 13, or 14.

2.2.1 Significant Changes

Issues fixed in this release include:

2.2.1.1 Compiler

* Fix a number of scoping bugs in the specialiser, prevent simplifier panics (#21391,
#21689, #21828, #23762).

2.2.1.2 Build system and packaging

* Allow building documentation with sphinx versions older than 4.0 along with older ver-
sions of python (#23807, #23818).

* Also build vanilla (non-static) alpine bindists (#23349, #23828).
* Make hadrian buildable with Cabal-3.8.

10 Chapter 2. Release notes

https://gitlab.haskell.org/ghc/ghc/issues/21391
https://gitlab.haskell.org/ghc/ghc/issues/21689
https://gitlab.haskell.org/ghc/ghc/issues/21828
https://gitlab.haskell.org/ghc/ghc/issues/23762
https://gitlab.haskell.org/ghc/ghc/issues/23807
https://gitlab.haskell.org/ghc/ghc/issues/23818
https://gitlab.haskell.org/ghc/ghc/issues/23349
https://gitlab.haskell.org/ghc/ghc/issues/23828

GHC User’s Guide Documentation, Release 9.4.8

2.2.1.3 Core libraries

* Bump bytestring to 0.11.5.2 (#23789), allowing GHC to be bootstrapped on systems

having HAVE_PTHREAD CONDATTR_SETCLOCK

2.2.1.4 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change

information.

Package Version Reason for inclusion
ghc 9.4.8

The compiler itself
Cabal-syntax 3.8.1.0

Dependency of ghc-pkg util-

ity
Cabal 3.8.1.0

Dependency of ghc-pkg util-

ity
Win32 2.12.0.1

Dependency of ghc library
array 0.5.4.0

Dependency of ghc library
base 4.17.2.1

Core library
binary 0.8.9.1

Dependency of ghc library
bytestring 0.11.5.3

Dependency of ghc library
containers 0.6.7

Dependency of ghc library
deepseq 1.4.8.0

Dependency of ghc library
directory 1.3.7.1

Dependency of ghc library
exceptions 0.10.5

Dependency of ghc and
haskeline library

continues on next page

2.2. Version 9.4.7

11

https://gitlab.haskell.org/ghc/ghc/issues/23789

GHC User’s Guide Documentation, Release 9.4.8

Table 2 - continued from previous page

Package Version Reason for inclusion
filepath 1.4.2.2
Dependency of ghc library
ghc-boot-th 9.4.8
Internal compiler library
ghc-boot 9.4.8
Internal compiler library
ghc-compact 0.1.0.0
Core library
ghc-heap 9.4.8
GHC heap-walking library
ghc-prim 0.9.1
Core library
ghci 9.4.8
The REPL interface
haskeline 0.8.2
Dependency of ghci exe-
cutable
hpc 0.6.1.0
Dependency of hpc exe-
cutable
integer-gmp 1.1
Core library
libiserv 9.4.8
Internal compiler library
mtl 2.2.2
Dependency of Cabal library
parsec 3.1.16.1
Dependency of Cabal library
pretty 1.1.3.6
Dependency of ghc library
process 1.6.18.0
Dependency of ghc library
continues on next page
12 Chapter 2. Release notes

GHC User’s Guide Documentation, Release 9.4.8

Table 2 - continued from previous page

Package Version Reason for inclusion
stm 2.5.1.0
Dependency of haskeline li-
brary
template-haskell 2.19.0.0
Core library
terminfo 0.4.1.5
Dependency of haskeline li-
brary
text 2.0.2
Dependency of Cabal library
time 1.12.2
Dependency of ghc library
transformers 0.5.6.2
Dependency of ghc library
unix 2.7.3
Dependency of ghc library
xhtml 3000.2.2.1

Dependency of haddock exe-
cutable

2.3 Version 9.4.6

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 285) of this release is to be used with LLVM 10, 11, 12, 13, or 14.

2.3.1 Significant Changes

Issues fixed in this release include:

2.3.1.1 Compiler

» Fix a bug where certain dictionaries for undecidable instances could end up looping at

runtime (#22549).

» Fix a compiler panic involving newtype family instances (:ghc-ticket: 23329).

* Fix a bug preventing using the command line to compile . cmm files to assembly (#23610).

» Fix compiler panics with certain RULE pragmas (#23208, #22761).

» Fix a loop in the simplifier due to a bug in the representation of certain fields in interface

files (#22272).

* Make type equality (~) checks in the presence of quantified contrains more robust to
argument ordering (#23333).

2.3. Version 9.4.6

13

https://gitlab.haskell.org/ghc/ghc/issues/22549
https://gitlab.haskell.org/ghc/ghc/issues/23610
https://gitlab.haskell.org/ghc/ghc/issues/23208
https://gitlab.haskell.org/ghc/ghc/issues/22761
https://gitlab.haskell.org/ghc/ghc/issues/22272
https://gitlab.haskell.org/ghc/ghc/issues/23333

GHC User’s Guide Documentation, Release 9.4.8

Fix some segfaults when using UnliftedDataTypes (#23231, #23146).

Improve bounds checking with - fcheck-prim-bounds (#21054).

Fix a bug in the simplifier leading to core lint errors (#23012).

Ensure array read operations have proper memory barries (#23541).

Fix a spurious -dcore-1lint failure with certain kinds of type family instances (#22547).

Fix a bug with .hie files containing spurious references to generated functions in files
with partial field selectors (#23492).

With the aarch64 backend, fix a bug arising from lack of zero-extension for 8/16 bit
add/sub with immediate (#23749).

Fix a number of bugs having to do with default representation polymorphic type variables
(#23153, #23154, #23176).

2.3.1.2 GHCi and Bytecode Interpreter

Add support for top-level Addr# literals (#22376)
Fix some tag inference bugs when using the bytecode interpreter (#22840).

Support the foreign import prim calling convention in the bytecode interpreter
(#22051).

Support sized literals in the bytecode interpreter (#21945).
Fix a bug with the handling of unboxed tuples in the bytecode interpreter (#23068).

Make the bytecode interpreter more robust when run on optimised code (#22958)

2.3.1.3 Runtime system

Accurately account for mutator allocations when using the non-moving GC (#23312).
Prevent some segfaults by ensuring that pinned allocations respect block size (#23400).
Fix warnings with clang 14.0.3 (#23561).

On Windows, ensure reliability of IO manager shutdown (#23691).

Fix a bug with the GHC linker on windows (#22941).

2.3.1.4 Build system and packaging

Allow building documentation with sphinx 6.0.0 (#22690).

Fix a bug with the install scripts that prevented reinstallation of binary distributions
(#23373).

Fix some dependency tracking bugs with hadrian (#23554).

2.3.1.5 Core libraries

Bump base to 4.17.2.0

base: Restore’ 'mingwex" "~ dependency on Windows (#23309).
Bump process to 1.6.17.0

Bump bytestring to 0.11.5.1

14

Chapter 2. Release notes

https://gitlab.haskell.org/ghc/ghc/issues/23231
https://gitlab.haskell.org/ghc/ghc/issues/23146
https://gitlab.haskell.org/ghc/ghc/issues/21054
https://gitlab.haskell.org/ghc/ghc/issues/23012
https://gitlab.haskell.org/ghc/ghc/issues/23541
https://gitlab.haskell.org/ghc/ghc/issues/22547
https://gitlab.haskell.org/ghc/ghc/issues/23492
https://gitlab.haskell.org/ghc/ghc/issues/23749
https://gitlab.haskell.org/ghc/ghc/issues/23153
https://gitlab.haskell.org/ghc/ghc/issues/23154
https://gitlab.haskell.org/ghc/ghc/issues/23176
https://gitlab.haskell.org/ghc/ghc/issues/22376
https://gitlab.haskell.org/ghc/ghc/issues/22840
https://gitlab.haskell.org/ghc/ghc/issues/22051
https://gitlab.haskell.org/ghc/ghc/issues/21945
https://gitlab.haskell.org/ghc/ghc/issues/23068
https://gitlab.haskell.org/ghc/ghc/issues/22958
https://gitlab.haskell.org/ghc/ghc/issues/23312
https://gitlab.haskell.org/ghc/ghc/issues/23400
https://gitlab.haskell.org/ghc/ghc/issues/23561
https://gitlab.haskell.org/ghc/ghc/issues/23691
https://gitlab.haskell.org/ghc/ghc/issues/22941
https://gitlab.haskell.org/ghc/ghc/issues/22690
https://gitlab.haskell.org/ghc/ghc/issues/23373
https://gitlab.haskell.org/ghc/ghc/issues/23554
https://gitlab.haskell.org/ghc/ghc/issues/23309

GHC User’s Guide Documentation, Release 9.4.8

2.3.1.6 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change

information.

Package Version Reason for inclusion
ghc 9.4.8

The compiler itself
Cabal-syntax 3.8.1.0

Dependency of ghc-pkg util-

ity
Cabal 3.8.1.0

Dependency of ghc-pkg util-

ity
Win32 2.12.0.1

Dependency of ghc library
array 0.5.4.0

Dependency of ghc library
base 4.17.2.1

Core library
binary 0.8.9.1

Dependency of ghc library
bytestring 0.11.5.3

Dependency of ghc library
containers 0.6.7

Dependency of ghc library
deepseq 1.4.8.0

Dependency of ghc library
directory 1.3.7.1

Dependency of ghc library
exceptions 0.10.5

Dependency of ghc and

haskeline library
filepath 1.4.2.2

Dependency of ghc library
ghc-boot-th 9.4.8

Internal compiler library

continues on next page

2.3. Version 9.4.6

15

GHC User’s Guide Documentation, Release 9.4.8

Table 3 - continued from previous page

Package Version Reason for inclusion
ghc-boot 9.4.8

Internal compiler library
ghc-compact 0.1.0.0

Core library
ghc-heap 9.4.8

GHC heap-walking library
ghc-prim 0.9.1

Core library
ghci 9.4.8

The REPL interface
haskeline 0.8.2

Dependency of ghci exe-

cutable
hpc 0.6.1.0

Dependency of hpc exe-

cutable
integer-gmp 1.1

Core library
libiserv 9.4.8

Internal compiler library
mtl 2.2.2

Dependency of Cabal library
parsec 3.1.16.1

Dependency of Cabal library
pretty 1.1.3.6

Dependency of ghc library
process 1.6.18.0

Dependency of ghc library
stm 2.5.1.0

Dependency of haskeline li-

brary
template-haskell 2.19.0.0

Core library

continues on next page

16

Chapter 2. Release notes

GHC User’s Guide Documentation, Release 9.4.8

Table 3 - continued from previous page

Package Version Reason for inclusion
terminfo 0.4.1.5

Dependency of haskeline li-

brary
text 2.0.2

Dependency of Cabal library
time 1.12.2

Dependency of ghc library
transformers 0.5.6.2

Dependency of ghc library
unix 2.7.3

Dependency of ghc library
xhtml 3000.2.2.1

Dependency of haddock exe-
cutable

2.4 Version 9.4.5

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 285) of this release is to be used with LLVM 10, 11, 12, 13, or 14.

2.4.1 Significant Changes

Issues fixed in this release include:

2.4.1.1 Compiler

Fix a compiler bug where programs using Template Haskell involving Constant Applica-
tive forms could be garbage collected too early (#22417).

Fix a shadowing related bug in the occurence analysis phase of the simplifier (#22623).

Fix a regression in the typechecker where certain typeclass instances involving type and
data familes would fail to resolve (#22647, #23134).

Fix a regression in the constrain solver which resulted in a loop when trying to expand
superclasses (#22516).

Fix the linker warning about chained fixups on Darwin platforms for programs compiled
with GHC (#22429).

Fix a compiler panic in the demand analyser due to a bug involving shadowing (#22718).

Fix a driver bug where certain non-fatal Safe Haskell related warnings were being
marked as fatal (#22728).

Fix a bug to do with missing parenthesis while printing splices with -ddump-splices
(#22784).

2.4,

Version 9.4.5 17

https://gitlab.haskell.org/ghc/ghc/issues/22417
https://gitlab.haskell.org/ghc/ghc/issues/22623
https://gitlab.haskell.org/ghc/ghc/issues/22647
https://gitlab.haskell.org/ghc/ghc/issues/23134
https://gitlab.haskell.org/ghc/ghc/issues/22516
https://gitlab.haskell.org/ghc/ghc/issues/22429
https://gitlab.haskell.org/ghc/ghc/issues/22718
https://gitlab.haskell.org/ghc/ghc/issues/22728
https://gitlab.haskell.org/ghc/ghc/issues/22784

GHC User’s Guide Documentation, Release 9.4.8

Fix a bug with the graph-colouring register allocater leading to compiler panics when
compiling with - fregs-graph (#22798,

#23002).

Fix a bug to do with code emitted on Darwin platforms using relocations not supported
on the platform (#21972).

Improve performance for code generated by the native code generator on x86 for pro-
grams involving atomic counters (#22764).

Fix core lint errors arising from incorrect scoping of type variables within SPECIALISE
pragmas occuring in instance definitions (#22913).

Fix core lint errors arising from an incorrect type given to the decodeDouble Int64 rule
(#23019).

Improve code generation for bitmasks on AArch64 with the native code generator
(#23030).

Many improvements to recompilation checking with multiple home units (#22675,
#22677, #22669, #22678,

#22679, #22680).
Fix a spurious warning with -Wmissing-home-modules (#22676).

Fix a typechecker panic on certain programs involving representation polymorphism
(#22743).

Fix bugs to do with GHCi and compiler loops pariticularly when using -dppr-debug
(#22695).

Fix memory leak in the compiler and in GHCi, including a bug where old environments
would persist on reloading (#22530, #22833).

Fix a miscompilation due to a simplifier bug (#23184).
Fix a miscompilation to do with unlifted bindings due to a bug in the specialiser (#22998).

Fix a compiler panic during the “Float In” optimsation pass due to improper handling of
shadowing (#22662).

Fix a compiler panic when compiling certain programs involving representation polymo-
prhism with optimisation (:ghc-ticet: 227257).

2.4.1.2 Runtime system

Fix a GC bug where a race condition in the parallel GC could cause it to garbage collect
live sparks (#22528).

Truncate eventlog events with a large payload (#20221).

Fix a bug with the alignment of RTS data structures that could result in segfaults when
compiled with high optimisation settings on certain platforms (#22975, #22965).

Take section alignment into account in the RTS linker (#23066).

Fix a bug causing segfaults where certain sections of the RTS would assume that the
number of capabilites was equal to the number passed via the command line, even though
the number of capabilites can be dynamically changed (#23088).

Fix a race with the nonmoving GC (#23170).

18

Chapter 2. Release notes

https://gitlab.haskell.org/ghc/ghc/issues/22798
https://gitlab.haskell.org/ghc/ghc/issues/23002
https://gitlab.haskell.org/ghc/ghc/issues/21972
https://gitlab.haskell.org/ghc/ghc/issues/22764
https://gitlab.haskell.org/ghc/ghc/issues/22913
https://gitlab.haskell.org/ghc/ghc/issues/23019
https://gitlab.haskell.org/ghc/ghc/issues/23030
https://gitlab.haskell.org/ghc/ghc/issues/22675
https://gitlab.haskell.org/ghc/ghc/issues/22677
https://gitlab.haskell.org/ghc/ghc/issues/22669
https://gitlab.haskell.org/ghc/ghc/issues/22678
https://gitlab.haskell.org/ghc/ghc/issues/22679
https://gitlab.haskell.org/ghc/ghc/issues/22680
https://gitlab.haskell.org/ghc/ghc/issues/22676
https://gitlab.haskell.org/ghc/ghc/issues/22743
https://gitlab.haskell.org/ghc/ghc/issues/22695
https://gitlab.haskell.org/ghc/ghc/issues/22530
https://gitlab.haskell.org/ghc/ghc/issues/22833
https://gitlab.haskell.org/ghc/ghc/issues/23184
https://gitlab.haskell.org/ghc/ghc/issues/22998
https://gitlab.haskell.org/ghc/ghc/issues/22662
https://gitlab.haskell.org/ghc/ghc/issues/22528
https://gitlab.haskell.org/ghc/ghc/issues/20221
https://gitlab.haskell.org/ghc/ghc/issues/22975
https://gitlab.haskell.org/ghc/ghc/issues/22965
https://gitlab.haskell.org/ghc/ghc/issues/23066
https://gitlab.haskell.org/ghc/ghc/issues/23088
https://gitlab.haskell.org/ghc/ghc/issues/23170

GHC User’s Guide Documentation, Release 9.4.8

A bug in the nonmoving garbage collector regarding the treatment of zero-length
SmallArray#s has been fixed (#22264).

A number of bugs regarding the non-moving garbage collector’s treatment of Weak#
pointers have been fixed (#22327).

A few race conditions between the non-moving collector and setNumCapabilities which
could result in undefined behavior have been fixed (#22926, #22927).

The non-moving collector is now able to better schedule marking work during the post-
mark synchronization phase of collection, significantly reducing pause times in some
workloads (#22929).

Various bugs in the non-moving collector’s implementation of the selector optimisation
have been fixed (#22930).

Accounting for live bytes is now performed accurately when using the non-moving GC
(#17574).

Allow performing memory inventory with the non-moving GC (#21840).

2.4.1.3 Build system and packaging

Bump gmp-tarballs to a version which doesn’t use the reserved x18 register on
AArch64/Darwin systems, and also has fixes for CVE-2021-43618 (#22497, #22789).

Remove quarantine attribute when installing binary distribution on MacOS (#21506,
#23009).

Fail in the binary distribution configure script if find is not available (#22691).
Install manpages with the binary distribution (#22371).

Fix a bug to do with merging of archives causing GHC to fail to bootstrap on Windows
(#21990).

Hadrian bug fixes to do with building a Windows cross compiler (#20697, #22805).
Fix escaping of $tooldir in the configure script (#22561).
Allow LLVM 14 and use it for the Windows toolchain (#21964).

2.4.1.4 Core libraries

Bump base to 4.17.1.0

base: Remove mingwex dependency on Windows (#22166).

base: Fix inconsistency with decoding terminal input on Windows (#21488).
Bump bytestring to 0.11.4.0

Bump "parsec to 3.1.16.1

Bump text to 2.0.2

Bump containers to 0.6.7

2.4.1.5 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

2.4,

Version 9.4.5 19

https://gitlab.haskell.org/ghc/ghc/issues/22264
https://gitlab.haskell.org/ghc/ghc/issues/22327
https://gitlab.haskell.org/ghc/ghc/issues/22926
https://gitlab.haskell.org/ghc/ghc/issues/22927
https://gitlab.haskell.org/ghc/ghc/issues/22929
https://gitlab.haskell.org/ghc/ghc/issues/22930
https://gitlab.haskell.org/ghc/ghc/issues/17574
https://gitlab.haskell.org/ghc/ghc/issues/21840
https://gitlab.haskell.org/ghc/ghc/issues/22497
https://gitlab.haskell.org/ghc/ghc/issues/22789
https://gitlab.haskell.org/ghc/ghc/issues/21506
https://gitlab.haskell.org/ghc/ghc/issues/23009
https://gitlab.haskell.org/ghc/ghc/issues/22691
https://gitlab.haskell.org/ghc/ghc/issues/22371
https://gitlab.haskell.org/ghc/ghc/issues/21990
https://gitlab.haskell.org/ghc/ghc/issues/20697
https://gitlab.haskell.org/ghc/ghc/issues/22805
https://gitlab.haskell.org/ghc/ghc/issues/22561
https://gitlab.haskell.org/ghc/ghc/issues/21964
https://gitlab.haskell.org/ghc/ghc/issues/22166
https://gitlab.haskell.org/ghc/ghc/issues/21488

GHC User’s Guide Documentation, Release 9.4.8

Package Version Reason for inclusion
ghc 9.4.8

The compiler itself
Cabal-syntax 3.8.1.0

Dependency of ghc-pkg util-

ity
Cabal 3.8.1.0

Dependency of ghc-pkg util-

ity
Win32 2.12.0.1

Dependency of ghc library
array 0.5.4.0

Dependency of ghc library
base 4.17.2.1

Core library
binary 0.8.9.1

Dependency of ghc library
bytestring 0.11.5.3

Dependency of ghc library
containers 0.6.7

Dependency of ghc library
deepseq 1.4.8.0

Dependency of ghc library
directory 1.3.7.1

Dependency of ghc library
exceptions 0.10.5

Dependency of ghc and

haskeline library
filepath 1.4.2.2

Dependency of ghc library
ghc-boot-th 9.4.8

Internal compiler library
ghc-boot 9.4.8

Internal compiler library
ghc-compact 0.1.0.0

Core library

continues on next page

20

Chapter 2. Release notes

GHC User’s Guide Documentation, Release 9.4.8

Table 4 - continued from previous page

Package Version Reason for inclusion
ghc-heap 9.4.8
GHC heap-walking library
ghc-prim 0.9.1
Core library
ghci 9.4.8
The REPL interface
haskeline 0.8.2
Dependency of ghci exe-
cutable
hpc 0.6.1.0
Dependency of hpc exe-
cutable
integer-gmp 1.1
Core library
libiserv 9.4.8
Internal compiler library
mtl 2.2.2
Dependency of Cabal library
parsec 3.1.16.1
Dependency of Cabal library
pretty 1.1.3.6
Dependency of ghc library
process 1.6.18.0
Dependency of ghc library
stm 2.5.1.0
Dependency of haskeline li-
brary
template-haskell 2.19.0.0
Core library
terminfo 0.4.1.5
Dependency of haskeline li-
brary
text 2.0.2

Dependency of Cabal library

continues on next page

2.4. Version 9.4.5

21

GHC User’s Guide Documentation, Release 9.4.8

Table 4 - continued from previous page

Package Version Reason for inclusion
time 1.12.2

Dependency of ghc library
transformers 0.5.6.2

Dependency of ghc library
unix 2.7.3

Dependency of ghc library
xhtml 3000.2.2.1

Dependency of haddock exe-
cutable

2.5 Version 9.4.4

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 285) of this release is to be used with LLVM 10, 11, 12, or 13.

2.5.1 Significant Changes
Issues fixed in this release include:

* Anissue where the wrong labels were used in the eventlog for events emitted when using
info table profiling which was broken in 9.4.3. (#22452)

* Fix a long standing bug where invalid eventlogs would be produced with long command
lines. (#20221)

» Fix another mistake in eta-expansion which resulted in serious performance regressions
in 9.4.3. (#22424)

* Fix the - fdefer-diagnostics (page 107). (#22391)
* Fixes to several subtle compiler panics. (#22491, #22416, #22549, #22475, #22039)
* Add correct write barries to IORef operations. (#22468)
* The toolchain provided with Windows binary distributions now searches for its own head-
ers and libraries before those of the host system’s msys2 installation (#22561)
2.5.1.1 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

Package Version Reason for inclusion
ghc 9.4.8

The compiler itself

continues on next page

22 Chapter 2. Release notes

https://gitlab.haskell.org/ghc/ghc/issues/22452
https://gitlab.haskell.org/ghc/ghc/issues/20221
https://gitlab.haskell.org/ghc/ghc/issues/22424
https://gitlab.haskell.org/ghc/ghc/issues/22391
https://gitlab.haskell.org/ghc/ghc/issues/22491
https://gitlab.haskell.org/ghc/ghc/issues/22416
https://gitlab.haskell.org/ghc/ghc/issues/22549
https://gitlab.haskell.org/ghc/ghc/issues/22475
https://gitlab.haskell.org/ghc/ghc/issues/22039
https://gitlab.haskell.org/ghc/ghc/issues/22468
https://gitlab.haskell.org/ghc/ghc/issues/22561

GHC User’s Guide Documentation, Release 9.4.8

Table 5 - continued from previous page

Package Version Reason for inclusion
Cabal-syntax 3.8.1.0

Dependency of ghc-pkg util-

ity
Cabal 3.8.1.0

Dependency of ghc-pkg util-

ity
Win32 2.12.0.1

Dependency of ghc library
array 0.5.4.0

Dependency of ghc library
base 4.17.2.1

Core library
binary 0.8.9.1

Dependency of ghc library
bytestring 0.11.5.3

Dependency of ghc library
containers 0.6.7

Dependency of ghc library
deepseq 1.4.8.0

Dependency of ghc library
directory 1.3.7.1

Dependency of ghc library
exceptions 0.10.5

Dependency of ghc and

haskeline library
filepath 1.4.2.2

Dependency of ghc library
ghc-boot-th 9.4.8

Internal compiler library
ghc-boot 9.4.8

Internal compiler library
ghc-compact 0.1.0.0

Core library

continues on next page

2.5. Version 9.4.4

23

GHC User’s Guide Documentation, Release 9.4.8

Table 5 - continued from previous page

Package Version Reason for inclusion
ghc-heap 9.4.8
GHC heap-walking library
ghc-prim 0.9.1
Core library
ghci 9.4.8
The REPL interface
haskeline 0.8.2
Dependency of ghci exe-
cutable
hpc 0.6.1.0
Dependency of hpc exe-
cutable
integer-gmp 1.1
Core library
libiserv 9.4.8
Internal compiler library
mtl 2.2.2
Dependency of Cabal library
parsec 3.1.16.1
Dependency of Cabal library
pretty 1.1.3.6
Dependency of ghc library
process 1.6.18.0
Dependency of ghc library
stm 2.5.1.0
Dependency of haskeline li-
brary
template-haskell 2.19.0.0
Core library
terminfo 0.4.1.5
Dependency of haskeline li-
brary
text 2.0.2
Dependency of Cabal library
continues on next page
24 Chapter 2. Release notes

GHC User’s Guide Documentation, Release 9.4.8

Table 5 - continued from previous page

Package Version Reason for inclusion
time 1.12.2

Dependency of ghc library
transformers 0.5.6.2

Dependency of ghc library
unix 2.7.3

Dependency of ghc library
xhtml 3000.2.2.1

Dependency of haddock exe-
cutable

2.6 Version 9.4.3

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 285) of this release is to be used with LLVM 10, 11, 12, or 13.

2.6.1 Significant Changes
Issues fixed in this release include:
* A crash on Darwin in executables built with IPE support (#22080)
* A runtime crash triggered by constructor specialization (#21448)
¢ A runtime correctness issue on AArch64 (#22282)
* A compile-time failure on Windows caused by the UCRT macro being undefined (#22159)

2.6.1.1 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

Package Version Reason for inclusion
ghc 9.4.8
The compiler itself
Cabal-syntax 3.8.1.0
Dependency of ghc-pkg util-
ity
Cabal 3.8.1.0

Dependency of ghc-pkg util-
ity

continues on next page

2.6. Version 9.4.3 25

https://gitlab.haskell.org/ghc/ghc/issues/22080
https://gitlab.haskell.org/ghc/ghc/issues/21448
https://gitlab.haskell.org/ghc/ghc/issues/22282
https://gitlab.haskell.org/ghc/ghc/issues/22159

GHC User’s Guide Documentation, Release 9.4.8

Table 6 - continued from previous page

Package Version Reason for inclusion
Win32 2.12.0.1

Dependency of ghc library
array 0.5.4.0

Dependency of ghc library
base 4.17.2.1

Core library
binary 0.8.9.1

Dependency of ghc library
bytestring 0.11.5.3

Dependency of ghc library
containers 0.6.7

Dependency of ghc library
deepseq 1.4.8.0

Dependency of ghc library
directory 1.3.7.1

Dependency of ghc library
exceptions 0.10.5

Dependency of ghc and

haskeline library
filepath 1.4.2.2

Dependency of ghc library
ghc-boot-th 9.4.8

Internal compiler library
ghc-boot 9.4.8

Internal compiler library
ghc-compact 0.1.0.0

Core library
ghc-heap 9.4.8

GHC heap-walking library
ghc-prim 0.9.1

Core library
ghci 9.4.8

The REPL interface

continues on next page
26 Chapter 2. Release notes

GHC User’s Guide Documentation, Release 9.4.8

Table 6 - continued from previous page

Package Version Reason for inclusion
haskeline 0.8.2
Dependency of ghci exe-
cutable
hpc 0.6.1.0
Dependency of hpc exe-
cutable
integer-gmp 1.1
Core library
libiserv 9.4.8
Internal compiler library
mtl 2.2.2
Dependency of Cabal library
parsec 3.1.16.1
Dependency of Cabal library
pretty 1.1.3.6
Dependency of ghc library
process 1.6.18.0
Dependency of ghc library
stm 2.5.1.0
Dependency of haskeline li-
brary
template-haskell 2.19.0.0
Core library
terminfo 0.4.1.5
Dependency of haskeline li-
brary
text 2.0.2
Dependency of Cabal library
time 1.12.2
Dependency of ghc library
transformers 0.5.6.2
Dependency of ghc library
unix 2.7.3

Dependency of ghc library

continues on next page

2.6. Version 9.4.3

27

GHC User’s Guide Documentation, Release 9.4.8

Table 6 - continued from previous page
Package Version Reason for inclusion
xhtml 3000.2.2.1

Dependency of haddock exe-
cutable

2.7 Version 9.4.2

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 285) of this release is to be used with LLVM 10, 11, 12, or 13.

2.7.1 Significant Changes

This is primarily a bug-fix release addressing packaging issues found in 9.4.1. These issues
include:

* Building with the make build system should now work reliably with GHC 9.0 (#21897,
#22047)

* Make-built binary distributions should no longer complain about incorrect GHC versions
during installation (:ghc-ticket:)

* Generated Haddock package index pages uploaded to Hackage lacked quick-jump sup-
port (#21984)

* Cross-package identifier referenced are now linked correctly in Haddock documentation
(#20001)

* Hadrian-built binary distributions no longer attempt to install documentation if docu-
mentation was not built (#21976)

» Package registration files installed by Hadrian-built binary distributions now have the
correct permissions

In addition, a few non-packaging issues have been resolved:
* the -no- link (page 287) flag no longer attempts to link (#21866)
¢ a soundness issue in GHCi has been resolved (#22042, #21083)

* a subtle race condition in the IO manager triggered by changing the capability count
was fixed (#21651)

* GHC no longer attempts to use the platform-reserved x18 register on AArch64/Darwin
(#21964)

* GHC'’s internal linker is now able to resolve symbols provided by FreeBSD’s built-in
iconv implementation (#20354)

* GHC is now able to correctly locate libc++ on FreeBSD systems

2.7.1.1 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

28 Chapter 2. Release notes

https://gitlab.haskell.org/ghc/ghc/issues/21897
https://gitlab.haskell.org/ghc/ghc/issues/22047
https://gitlab.haskell.org/ghc/ghc/issues/21984
https://gitlab.haskell.org/ghc/ghc/issues/20001
https://gitlab.haskell.org/ghc/ghc/issues/21976
https://gitlab.haskell.org/ghc/ghc/issues/21866
https://gitlab.haskell.org/ghc/ghc/issues/22042
https://gitlab.haskell.org/ghc/ghc/issues/21083
https://gitlab.haskell.org/ghc/ghc/issues/21651
https://gitlab.haskell.org/ghc/ghc/issues/21964
https://gitlab.haskell.org/ghc/ghc/issues/20354

GHC User’s Guide Documentation, Release 9.4.8

Package Version Reason for inclusion
ghc 9.4.8

The compiler itself
Cabal-syntax 3.8.1.0

Dependency of ghc-pkg util-

ity
Cabal 3.8.1.0

Dependency of ghc-pkg util-

ity
Win32 2.12.0.1

Dependency of ghc library
array 0.5.4.0

Dependency of ghc library
base 4.17.2.1

Core library
binary 0.8.9.1

Dependency of ghc library
bytestring 0.11.5.3

Dependency of ghc library
containers 0.6.7

Dependency of ghc library
deepseq 1.4.8.0

Dependency of ghc library
directory 1.3.7.1

Dependency of ghc library
exceptions 0.10.5

Dependency of ghc and

haskeline library
filepath 1.4.2.2

Dependency of ghc library
ghc-boot-th 9.4.8

Internal compiler library
ghc-boot 9.4.8

Internal compiler library
ghc-compact 0.1.0.0

Core library

continues on next page

2.7. Version 9.4.2

29

GHC User’s Guide Documentation, Release 9.4.8

Table 7 - continued from previous page

Package Version Reason for inclusion
ghc-heap 9.4.8
GHC heap-walking library
ghc-prim 0.9.1
Core library
ghci 9.4.8
The REPL interface
haskeline 0.8.2
Dependency of ghci exe-
cutable
hpc 0.6.1.0
Dependency of hpc exe-
cutable
integer-gmp 1.1
Core library
libiserv 9.4.8
Internal compiler library
mtl 2.2.2
Dependency of Cabal library
parsec 3.1.16.1
Dependency of Cabal library
pretty 1.1.3.6
Dependency of ghc library
process 1.6.18.0
Dependency of ghc library
stm 2.5.1.0
Dependency of haskeline li-
brary
template-haskell 2.19.0.0
Core library
terminfo 0.4.1.5
Dependency of haskeline li-
brary
text 2.0.2
Dependency of Cabal library
continues on next page
30 Chapter 2. Release notes

GHC User’s Guide Documentation, Release 9.4.8

Table 7 - continued from previous page

Package Version Reason for inclusion
time 1.12.2

Dependency of ghc library
transformers 0.5.6.2

Dependency of ghc library
unix 2.7.3

Dependency of ghc library
xhtml 3000.2.2.1

Dependency of haddock exe-
cutable

2.8 Version 9.4.1

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 285) of this release is to be used with LLVM 10, 11, 12, or 13.

2.8.1 Breaking Changes

In this section we list changes that may require changes in user programs while upgrading
to GHC 9.4:

There were previously cases around functional dependencies and injective type families
where the result of type inference would depend on the order of constraints, as written
in a source file. These cases are fundamentally ambiguous. While GHC previously made
an arbitrary decision, it now notices the ambiguity and rejects the program. This means
that some previously accepted programs are now rejected. The solution is to add a type
annotation or type application to resolve the ambiguity.

This is the fix for #18851.
Unboxed sums now require the UnboxedSums (page 568) extension to be enabled.

ArrayArray# and its operations are no longer exported from GHC.Prim and are depre-
cated, having been superceded by the now levity-polymorphic Array# type.

The type equality operator, (~), is now considered to be a type operator (exported from
Prelude) and therefore requires the enabling of the TypeOperators (page 359) extension
rather than GADTs (page 371) or TypeFamilies (page 375) as was sufficient previously.

GHC is now a bit better at detecting redundant hs-boot files and may report warnings
where it previously did not. In such cases the correct solution is generally to remove the
hs-boot file in question.

The boxed Word64 and Int64 types are now internally represented by the unboxed
Word64+# and Int64+# primitive types, in contrast previous releases where they were rep-
resented by Word# and Int# on 64-bit platforms.

Due to various changes in the typechecker’s constraint solver, some programs may need
additional constraints to be explicitly provided. See the Migration guide for details.

2.8.

Version 9.4.1 31

https://gitlab.haskell.org/ghc/ghc/issues/18851
https://gitlab.haskell.org/ghc/ghc/-/wikis/migration/9.4#inference-for-simplifiable-constraints

GHC User’s Guide Documentation, Release 9.4.8

* When LambdaCase (page 336) is enabled, GHC will now parse the sequence \ cases as
the herald of a multi-pattern lambda-case expression. Consequently, programs of the
form \ cases -> ... will not parse; the solution is likely to rename the cases binder.

2.8.2 Language

* GHC Proposal #511 has been implemented, introducing a new language extension,
DeepSubsumption (page 426). This extension allows the user to opt-in to the deep type
subsumption-checking behavior implemented by GHC 8.10 and earlier.

* A small change has been made to the way GHC infers types for definitions with no type
signature: GHC will no longer generalize a function over a type variable determined by
a functional dependency. For example:

class Ca b | a -> b where
op :: a->b -> ()
f x = op True x

Previously, GHC inferred f :: C Bool b => b -> (). However, the functional depen-
dency says that only one type could ever be used for b: this function is hardly valid “for
all” bs. With the change, GHC will reject, looking for the (non-existent) instance for C
Bool b.

If you want to retain the old behavior, add a (backward-compatible) type signature, ex-
plicitly requesting this unusual quantification.

* GHC Proposal #371 has been implemented. This means:
- The use of equality constraints no longer requires -XGADTs or -XTypeFamilies.

- The use of equality constraint syntax a ~ b requires -XTypeOperators, otherwise
results in a warning (-Wtype-equality-requires-operators (page 138)).

- (~) is now a legal name for a user-defined type operator:

class a ~ b where

This used to be rejected with “Illegal binding of built-in syntax”.

- The built-in type equality is now exported from Data.Type.Equality and re-
exported from Prelude. When (~) is not in scope, its use results in a warning
(-Wtype-equality-out-of-scope (page 138)).

* GHC Proposal #302 has been implemented. This means under -XLambdaCase, a new
expression heralded by \cases is available, which works like \case but can match on
multiple patterns. This means constructor patterns with arguments have to be paren-
thesized here, just like in lambda expressions.

* The parsing of implicit parameters is slightly more permissive, as GHC now allows

[foo i: (?ip :: forall a. a -> a) J

without requiring parentheses around forall a. a -> a. Note thatimplicit parameters
with such kinds are unlikely to be very useful, due to #18759.

* Changes to the treatment of UnboxedSums (page 568):

- GHC can now parse unboxed sum type constructors (# | #), (# | | #), (# | | |
#), etc. Partial applications need to be written in prefix form, e.g. (# | #) Int#.

32 Chapter 2. Release notes

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0511-deep-subsumption.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0371-non-magical-eq.md
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0302-cases.rst
https://gitlab.haskell.org/ghc/ghc/issues/18759

GHC User’s Guide Documentation, Release 9.4.8

- Unboxed sums now require the UnboxedSums (page 568) extension to be enabled.

- The UnboxedTuples (page 567) extension now implies UnboxedSums (page 568). This
means that code using unboxed sums that enabled the UnboxedTuples (page 567)
extension but didn’t explicitly enable UnboxedSums (page 568) will continue to work
without changes.

2.8.3 Compiler

The compiler now accepts arguments via GNU-style response files (#16476).

New -Wredundant-strictness-flags (page 134) that checks for strictness flags (!) ap-
plied to unlifted types, which are always strict.

New -Wforall-identifier (page 137) (enabled by default) that warns against using the
name forall as an identifer on the term level.

New - fprof-late (page 661) that adds automatic CCS annotations to all top level func-
tions after core optimisation have been run.

New - fprof-manual (page 662) which allows surpression of profiling cost centre annota-
tions. It can be disabled as well which can be useful to surpress cost centres originating
in library code.

Typechecking plugins now support type-family rewriting. The TcPlugin datatype
now contains an extra field, tcPluginRewrite, which allows typechecking plugin au-
thors to specify which type families should be rewritten by the plugin, returning for
each type family application a TcPluginRewriteResult. In addition, typechecking
plugins now have the ability to emit new constraints at the same time as contra-
dictions. To account for these changes, the TcPluginResult datatype has been re-
named to TcPluginSolveResult, which bundles pattern synonyms TcPluginOk and
TcPluginContradiction to recover the old interface. Typechecking plugins now have
access to irreducible Given constraints, e.g., to enable the plugins to reduce the con-
straints.

A new type of plugin: defaulting plugins. These plugins can propose defaults for ambigu-
ous variables that would otherwise cause errors just like the built-in defaulting mecha-
nism.

GHC.Plugins.parsedResultAction now takes and returns a value of type ParsedResult,
containing the HsParsedModule as well as PsMessages, which contains warnings and
errors encountered by the parser before they’'re shown to the user, as long as none of
the errors prevented the AST from being built. This means plugins can remove, modify,
or add any of these, or simply pass them through unchanged.

The way GHC checks for representation polymorphism has been overhauled: all the
checks are now done during typechecking. The error messages now contain more de-
tailed information about the specific check that was performed.

A new pragma, OPAQUE (page 621), that ensures that every call of a named function
annotated with an OPAQUE (page 621) pragma remains a call of that named function, not
some name-mangled variant. This implements GHC Proposal #415.

Constructed Product Result analysis (c.f. - fcpr-anal (page 142)) has been overhauled
and will now unbox nestedly, if termination properties of the function permit. This allows
unboxing of constructed results returned by I0 actions. E.g.:

sumIO :: [Int] -> IO Int
sumIO [] = return 0
(continues on next page)

2.8.

Version 9.4.1 33

https://gitlab.haskell.org/ghc/ghc/issues/16476
https://github.com/ghc-proposals/ghc-proposals/pull/415

GHC User’s Guide Documentation, Release 9.4.8

(continued from previous page)
sumI0 (x:xs) = do
r <- sumIO xs
return $! x + r

Note the use of $!: Without it, GHC would be unable to see that evaluation of r and x
terminates (and rapidly, at that). An alternative would be to evaluate both with a bang
pattern or a seq, but the return $! <res> idiom should work more reliably and needs
less thinking.

* Demand analysis (cf. -fstrictness (page 153)) now integrates a Boxity Analysis
that tracks whether a function needs a parameter boxed. If that is the case, the
worker/wrapper transformation (cf. - fworker-wrapper (page 158)) will not unbox that
parameter, leading to less reboxing in many cases.

For reasons of backwards-compatible performance, you may find that the new mecha-
nism is too aggressive in a few cases (e.g., still unboxing a parameter that is used boxed
in a hot path). Do post a bug report with your example! Then wrap the uses of the
parameter in GHC.Exts. lazy for a short-term fix.

» Tag inference has been implemented.

It’s a new backend optimization pass aimed at avoiding redundant evaluatedness checks.
The basic pass is always enabled and not optional. When using - fworker-wrapper-cbv
(page 158) it additionally will generate workers for functions with strict arguments, push-
ing the evaluation+tagging of the arguments into the wrapper and allowing the worker
to simply assume all arguments are fully evaluated and properly tagged. Usually the
wrapper will then inline, and if the argument is known to be properly tagged at the call
site the wrapper will become a no-op. Giving us a more efficient worker without adding
any overhead. If the argument isn’t known to be evaluated we perform the same amount
of work, but do it at call sites instead of inside the called function.

In general - fworker-wrapper-cbv (page 158) is very beneficial and can be safely en-
abled. However sadly there are two exceptions. It can break rules for code which
made assumptions about which functions get a W/W split which now no longer hold.
See #20364 for the details. For this reason it isn’t enabled by default. For code which
has the proper INLINABLE (INLINABLE pragma (page 619)) and INLINE (/NLINE pragma
(page 617)) or that doesn’t define any rule-relevant functions this shouldn’t happen. The
longterm fix here is to apply the proper pragmas. There is also a known issue where a
function taking multiple unlifted arguments can cause excessive spilling (#20334). This
seems to be an edge case. But if you think you are hitting this case please comment on
the ticket so that we can prioritize it accordingly.

e Support for Sun SPARC architecture has been dropped (#16883).

* A fix for GHC’s handling of the XDG Base Directory Specification (#6077, #20684,
#20669, #20660):

- For the package database previously in ~/.ghc/<arch-ver>, we will continue to use
the old path if it exists. For example, if the ~/.ghc/x86 64-1inux-9.4.1 directory
exists, GHC will use that for its user package database. If this directory does not
exist, we will use $XDG_DATA HOME/ghc/x86 64-1inux-9.4.1. This is in order to
give tooling like cabal time to migrate

- For GHCi configuration files previously located in ~/.ghc/ like ghci.conf and
ghci history, we will first check if they exist in ~/.ghc and use those if they
do. However, we will create new files like ghci history only in $XDG_DATA HOME/
ghc. So if you don’t have a previous GHC installation which created ~/.ghc/

34 Chapter 2. Release notes

https://gitlab.haskell.org/ghc/ghc/issues/20364
https://gitlab.haskell.org/ghc/ghc/issues/20334
https://gitlab.haskell.org/ghc/ghc/issues/16883
https://gitlab.haskell.org/ghc/ghc/issues/6077
https://gitlab.haskell.org/ghc/ghc/issues/20684
https://gitlab.haskell.org/ghc/ghc/issues/20669
https://gitlab.haskell.org/ghc/ghc/issues/20660

GHC User’s Guide Documentation, Release 9.4.8

ghci history, the history file will be written to $XDG_DATA HOME/ghc. If you already
have an older GHC installation which wrote ~/.ghc/ghci history, then GHC will
continue to write the history to that file.

* The -Wunticked-promoted-constructors (page 130) warning is no longer enabled with
-Wall (page 112) (#20531), as a part of long-term push towards Dependent Haskell.

* In GHC,j, the : type (page 83) command no longer instantiates quantified type variables
when given a polymorphic type. (It used to instantiate inferred type variables.)

2.8.4 Packaging

* GHC’s package database now comes with a virtual system-cxx-std-lib package
(page 278) which captures the compiler configuration necessary to link aginst the C++
standard library.

2.8.5 Runtime system

* Support for GHC’s eventlog is now enabled in all runtime system configurations, elimi-
nating the need to pass the -eventlog (page 290) flag to use the eventlog. This flag has
been deprecated (#18948).

* Summary statistics, i.e. the output of -s [(file)] (page 232), now correctly accounts
for bytes copied during sequential collections.

2.8.6 base library

* GHC.Generics now provides a set of newtypes, Generically and Genericallyl, for de-
riving generic instances via DerivingVia (page 475). Generically instances include
Semigroup and Monoid.

* There’s a new special function withDict in GHC.Exts:

withDict :: forall {rr :: RuntimeRep} cls meth (r :: TYPE rr). WithDict
—~cls meth => meth -> (cls == r) ->r

where cls must be a class containing exactly one method, whose type must be meth.
This requirement is enforced by the constraint WithDict cls meth.

This function converts meth to a type class dictionary. It removes the need for
unsafeCoerce in implementation of reflection libraries. It should be used with care,
because it can introduce incoherent instances.

* See the base library’s changelog.md for a full accounting.

2.8.7 ghc-prim library

* Primitive types and functions which handle boxed values are now levity-polymorphic,
meaning that they now also work with unlifted boxed values (i.e. values whose type has
kind TYPE (BoxedRep Unlifted)).

The following type constructors are now levity-polymorphic:

- Array# - SmallMutableArray#
- SmallArray# - MutVar#

- Weak# - TVar#

- StablePtr# - MVar#

- StableName# - IOPort#

- MutableArray#

2.8. Version 9.4.1 35

https://gitlab.haskell.org/ghc/ghc/issues/20531
https://gitlab.haskell.org/ghc/ghc/issues/18948

GHC User’s Guide Documentation, Release 9.4.8

For example, Array# used to have kind:

[Type -> UnliftedType J

but it now has kind:

[forall {l :: Levity}. TYPE (BoxedRep 1) -> UnliftedType]

Similarly, MutVar# used to have kind:

{Type -> Type -> UnliftedType]

but it now has kind:

[forall {1l :: Levity}. Type -> TYPE (BoxedRep 1) -> UnliftedType J

This means that in Array# a, MutableArray# s a, MutVar# s a, ..., the element type a,
must always be boxed, but it can now either be lifted or unlifted. In particular, arrays
and mutable variables can now be used to store other arrays and mutable variables.

All functions which use these updated primitive types are also levity-polymorphic:

- all array operations (reading/writing/copying/...), for both arrays and small arrays,
mutable and immutable:

* newArray#, readArray#, writeArray#, sizeofArray#, sizeofMutableArray#,
indexArray#, unsafeFreezeArray#, unsafeThawArray#, copyArray#,
copyMutableArray#, cloneArray#, cloneMutableArray#, freezeArray#,
thawArray#, casArray#,

* newSmallArray#, shrinkSmallMutableArray#, readSmallArray#,
writeSmallArray#, sizeofSmallArray#, getSizeofSmallMutableArray#,
indexSmallArray#, unsafeFreezeSmallArray#, unsafeThawSmallArray#,

copySmallArray#, copySmallMutableArray#, cloneSmallArray#,
cloneSmallMutableArray#, freezeSmallArray#, thawSmallArray#,
casSmallArray#,

- newMutVar#, readMutVar#, writeMutVar#, casMutVar#,
- operations on MVar# and TVar#:
* newTVar#, readTVar#, readTVarIO#, writeTVar#,

* newMVar#, takeMVar#, tryTakeMVar#, putMVar#, tryPutMVar#, readMVar#,
tryReadMVar#,

- STM operations atomically#, retry#, catchRetry# and catchSTM#.
- newIOPort#, readIOPort#, writeIOPort#,

- mkWeak#, mkWeakNoFinalizer#, addCFinalizerToWeak#, deRefWeak#,
finalizeWeak#,

- makeStablePtr#, deRefStablePtr#, eqStablePtr#, makeStableName#,
stableNameToInt#,

For example, the full type of newMutVar# is now:

newMutVar#
:: forall {1 :: Levity} s (a :: TYPE (BoxedRep 1)).
a -> State# s -> (# State# s, MVar# s a #)

36 Chapter 2. Release notes

GHC User’s Guide Documentation, Release 9.4.8

and the full type of writeSmallArray# is:

writeSmallArray#
:: forall {1l :: Levity} s (a :: TYPE (BoxedRep 1)).
SmallMutableArray# s a -> Int# -> a -> State# s -> State# s

e ArrayArray# and MutableArrayArray# have been moved from GHC.Prim to GHC.Exts
They are deprecated, because their functionality is now subsumed by Array# and
MutableArray#.

* mkWeak#, mkWeakNoFinalizer#, touch# and keepAlive# are now levity-polymorphic in-
stead of representation-polymorphic. For instance:

mkWeakNoFinalizer#
:: forall {1l :: Levity} {k :: Levity}
(a :: TYPE (BoxedRep 1))
(b :: TYPE (BoxedRep k)).
a -> b -> State# RealWorld -> (# State# RealWorld, Weak# b #)

That is, the type signature now quantifies over the GHC.Exts.Levity of a instead of its
GHC.Exts.RuntimeRep. In addition, this variable is now inferred, instead of specified,
meaning that it is no longer eligible for visible type application. Note that b is now also
levity-polymorphic, due to the change outlined in the previous point.

* Primitive functions for throwing and catching exceptions are now more polymorphic than
before. For example, catch# now has type:

catch#
:: forall {r :: RuntimeRep} {1l :: Levity}
(a :: TYPE r)
(b :: TYPE (BoxedRep 1)).
(State# RealWorld -> (# State# RealWorld, a #))
-=> (b -> State# RealWorld -> (# State# RealWorld, a #))
-> State# RealWorld -> (# State# RealWorld, a #)

The following functions have been generalised in this way:
- catch#,
- raise#, raiseIO#,
- maskAsyncExceptions#, maskUninterruptible#, unmaskAsyncExceptions#.

Note in particular that raise# is now both representation-polymorphic (with an inferred
RuntimeRep argument) and levity-polymorphic, with type:

raise# :: forall {l :: Levity} {r :: RuntimeRep}
(a :: TYPE (BoxedRep 1))
(b :: TYPE r).
a->b

» fork# and forkOn# are now representation-polymorphic. For example, fork# now has
type:

fork# :: forall {r :: RuntimeRep} (a :: TYPE r).
(State# RealWorld -> (# State# RealWorld, a #))
-> (State# RealWorld -> (# State# RealWorld, a #))

2.8. Version 9.4.1 37

GHC User’s Guide Documentation, Release 9.4.8

GHC.Exts.reallyUnsafePtrEquality# has been made more general, as it is now both
levity-polymorphic and heterogeneous:

reallyUnsafePtrEquality#
:: forall {1l :: Levity} {k :: Levity}
(a :: TYPE (BoxedRep 1))
(b :: TYPE (BoxedRep k))
. a ->b -> Int#

This means that GHC.Exts.reallyUnsafePtrEquality# can be used on primitive arrays
such as GHC.Exts.Array# and GHC.Exts.ByteArray#. It can also be used on values of
different types, without needing to call GHC.Exts.unsafeCoerce#.

Added GHC.Exts.reallyUnsafePtrEquality which recovers the previous behaviour of
GHC.Exts.reallyUnsafePtrEquality#:

EreallyUnsafePtrEquality :: forall (a :: Type). a -> a -> Int# J

Added GHC.Exts.sameArray#, GHC.Exts.sameSmallArray#, GHC.Exts.sameByteArray#
and GHC.Exts.sameArrayArray#:

sameArray# :: Array# a -> Array# a -> Int#
sameSmallArray# :: SmallArray# a -> SmallArray# a -> Int#
sameByteArray# :: ByteArray# -> ByteArray# -> Int#
sameArrayArray# :: ArrayArray# -> ArrayArray# -> Int#

2.8.8 ghc library

The load function no longer automatically caches interface files in memory between calls.
If you want to use a cache then you can supply one explicitly using the loadWithCache
function, with your own implementation or a simple cache created by newIfaceCache.

A new GHC.Hs.Syn.Type module has been introduced which defines functions for com-
puting the Type of an HsExpr GhcTc in a pure fashion. The hsLitType and hsPatType
functions that previously lived in GHC.Tc.Utils.Zonk have been moved to this module.

A Typeable constraint has been added to fromStaticPtr in the class GHC.StaticPtr.
IsStatic. GHC automatically wraps each use of the static keyword with
fromStaticPtr. Because static requires its argument to be an instance of Typeable,
fromStaticPtr can safely carry this constraint as well.

The newWanted function exported by GHC.Tc.Plugin now passes on the full CtLoc in-
stead of reconstituting it from the type-checking environment. This makes newWanted
consistent with newGiven. For authors of type-checking plugins, this means you don’t
need to wrap a call to newWanted in setCtLocM to create a new Wanted constraint with
the provided CtLoc.

GHC no longer carries Derived constraints. Accordingly, several functions in the plu-
gin architecture that previously passed or received three sets of constraints (givens,
deriveds, and wanteds) now work with two such sets.

A new argument has been added to the HsOpTy constructor of the HsType datatype, to
track the presence of a promotion tick. Plugins which manipulate the Haskell AST will
need to take this change into account.

Removed lookupOrigIO in favor of lLookupNameCache.
Added a new thNameToGhcNameIO function that plugins can use outside the CoreM monad.

38

Chapter 2. Release notes

GHC User’s Guide Documentation, Release 9.4.8

2.8.9 ghc-heap library

* The link field of GHC.Exts.Heap.WeakClosure has been replaced with a weakLink field
which is Nothing if and only if 1ink would have been NULL.

2.8.9.1 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change

information.

Package Version Reason for inclusion
ghc 9.4.8

The compiler itself
Cabal-syntax 3.8.1.0

Dependency of ghc-pkg util-

ity
Cabal 3.8.1.0

Dependency of ghc-pkg util-

ity
Win32 2.12.0.1

Dependency of ghc library
array 0.5.4.0

Dependency of ghc library
base 4.17.2.1

Core library
binary 0.8.9.1

Dependency of ghc library
bytestring 0.11.5.3

Dependency of ghc library
containers 0.6.7

Dependency of ghc library
deepseq 1.4.8.0

Dependency of ghc library
directory 1.3.7.1

Dependency of ghc library
exceptions 0.10.5

Dependency of ghc and
haskeline library

continues on next page

2.8. Version 9.4.1

39

GHC User’s Guide Documentation, Release 9.4.8

Table 8 - continued from previous page

Package Version Reason for inclusion
filepath 1.4.2.2
Dependency of ghc library
ghc-boot-th 9.4.8
Internal compiler library
ghc-boot 9.4.8
Internal compiler library
ghc-compact 0.1.0.0
Core library
ghc-heap 9.4.8
GHC heap-walking library
ghc-prim 0.9.1
Core library
ghci 9.4.8
The REPL interface
haskeline 0.8.2
Dependency of ghci exe-
cutable
hpc 0.6.1.0
Dependency of hpc exe-
cutable
integer-gmp 1.1
Core library
libiserv 9.4.8
Internal compiler library
mtl 2.2.2
Dependency of Cabal library
parsec 3.1.16.1
Dependency of Cabal library
pretty 1.1.3.6
Dependency of ghc library
process 1.6.18.0
Dependency of ghc library
continues on next page
40 Chapter 2. Release notes

GHC User’s Guide Documentation, Release 9.4.8

Table 8 - continued from previous page

Package Version Reason for inclusion
stm 2.5.1.0
Dependency of haskeline li-
brary
template-haskell 2.19.0.0
Core library
terminfo 0.4.1.5
Dependency of haskeline li-
brary
text 2.0.2
Dependency of Cabal library
time 1.12.2
Dependency of ghc library
transformers 0.5.6.2
Dependency of ghc library
unix 2.7.3
Dependency of ghc library
xhtml 3000.2.2.1

Dependency of haddock exe-
cutable

2.8. Version 9.4.1

41

GHC User’s Guide Documentation, Release 9.4.8

42

Chapter 2. Release notes

CHAPTER
THREE

USING GHCI

GHCi' is GHC'’s interactive environment that includes an interactive debugger (see The GHCi
Debugger (page 60)).

GHCIi can
* interactively evaluate Haskell expressions
* interpret Haskell programs
* load GHC-compiled modules.

At the moment GHCi supports most of GHC’s language extensions.

3.1 Introduction to GHCi

Let’s start with an example GHCi session. You can fire up GHCi with the command ghci:

$ ghci
GHCi, version 8.y.z: https://www.haskell.org/ghc/ :? for help
ghci>

There may be a short pause while GHCi loads the prelude and standard libraries, after which
the promptis shown. As the banner says, you can type : 7 (page 76) to see the list of commands
available, and a halfline description of each of them. We’ll explain most of these commands as
we go along, and there is complete documentation for all the commands in GHCi commands
(page 72).

Haskell expressions can be typed at the prompt:

ghci> 1+2

3

ghci> let x = 42 in x / 9
4.666666666666667

ghci>

GHC i interprets the whole line as an expression to evaluate. The expression may not span
several lines - as soon as you press enter, GHCi will attempt to evaluate it.

In Haskell, a let expression is followed by in. However, in GHCIi, since the expression can
also be interpreted in the I0 monad, a let binding with no accompanying in statement can
be signalled by an empty line, as in the above example.

Since GHC 8.0.1, you can bind values and functions to names without let statement:

1 The “i” stands for “Interactive”

43

GHC User’s Guide Documentation, Release 9.4.8

ghci> x = 42
ghci> x

42

ghci>

3.2 Loading source files

Suppose we have the following Haskell source code, which we place in a file Main.hs:

main = print (fac 20)

fac 0

1
fac n n

* fac (n-1)

You can save Main.hs anywhere you like, but if you save it somewhere other than the current
directory® then we will need to change to the right directory in GHCi:

[ghci> ccd dir]

where (dir) is the directory (or folder) in which you saved Main.hs.

To load a Haskell source file into GHCIi, use the : load (page 78) command:

ghci> :load Main

Compiling Main (Main.hs, interpreted)
0Ok, modules loaded: Main.

*ghci>

GHCi has loaded the Main module, and the prompt has changed to *ghci> to indicate that the
current context for expressions typed at the prompt is the Main module we just loaded (we’ll
explain what the * means later in What’s really in scope at the prompt? (page 52)). So we
can now type expressions involving the functions from Main.hs:

*ghci> fac 17
355687428096000

Loading a multi-module program is just as straightforward; just give the name of the “topmost”
module to the :load (page 78) command (hint: :load (page 78) can be abbreviated to :1).
The topmost module will normally be Main, but it doesn’t have to be. GHCi will discover
which modules are required, directly or indirectly, by the topmost module, and load them all
in dependency order.

-fshow-loaded-modules

Default
off

Since
8.2.2

Typically GHCi will show only the number of modules that it loaded after a :load
(page 78) command. With this flag, GHC will also list the loaded modules’ names. This
was the default behavior prior to GHC 8.2.1 and can be useful for some tooling users.

3 If you started up GHCi from the command line then GHCi’s current directory is the same as the current directory
of the shell from which it was started. If you started GHCi from the “Start” menu in Windows, then the current
directory is probably something like C:\Documents and Settings\user name.

a4 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

3.2.1 Modules vs. filenames

Question: How does GHC find the filename which contains module (M)? Answer: it looks for
the file M. hs, or M. lhs. This means that for most modules, the module name must match the
filename. If it doesn’t, GHCi won't be able to find it.

There is one exception to this general rule: when you load a program with : load (page 78),
or specify it when you invoke ghci, you can give a filename rather than a module name. This
filename is loaded if it exists, and it may contain any module you like. This is particularly
convenient if you have several Main modules in the same directory and you can’t call them all
Main.hs.

The search path for finding source files is specified with the -1 (page 242) option on the GHCi
command line, like so:

[ghci -idirl:...:dirn]

or it can be set using the :set (page 80) command from within GHCi (see Setting GHC
command-line options in GHCi (page 85))*

One consequence of the way that GHCi follows dependencies to find modules to load is that
every module must have a source file. The only exception to the rule is modules that come
from a package, including the Prelude and standard libraries such as I0 and Complex. If you
attempt to load a module for which GHCi can’t find a source file, even if there are object and
interface files for the module, you’ll get an error message.

3.2.2 Making changes and recompilation

If you make some changes to the source code and want GHCi to recompile the program, give
the :reload (page 80) command. The program will be recompiled as necessary, with GHCi
doing its best to avoid actually recompiling modules if their external dependencies haven’t
changed. This is the same mechanism we use to avoid re-compiling modules in the batch
compilation setting (see The recompilation checker (page 247)).

3.3 Loading compiled code

When you load a Haskell source module into GHCI], it is normally converted to byte-code and
run using the interpreter. However, interpreted code can also run alongside compiled code
in GHCj; indeed, normally when GHCIi starts, it loads up a compiled copy of the base package,
which contains the Prelude.

Why should we want to run compiled code? Well, compiled code is roughly 10x faster than
interpreted code, but takes about 2x longer to produce (perhaps longer if optimisation is on).
So it pays to compile the parts of a program that aren’t changing very often, and use the
interpreter for the code being actively developed.

When loading up source modules with : load (page 78), GHCi normally looks for any corre-
sponding compiled object files, and will use one in preference to interpreting the source if
possible. For example, suppose we have a 4-module program consisting of modules A, B, C,
and D. Modules B and C both import D only, and A imports both B and C:

A
/ \

(continues on next page)

4 Note that in GHCi, and - -make (page 96) mode, the -i (page 242) option is used to specify the search path for
source files, whereas in standard batch-compilation mode the -1 (page 242) option is used to specify the search path
for interface files, see The search path (page 242).

3.3. Loading compiled code 45

GHC User’s Guide Documentation, Release 9.4.8

(continued from previous page)
B C

\ /
D

We can compile D, then load the whole program, like this:

ghci> :! ghc -c -dynamic D.hs
ghci> :load A

Compiling B (B.hs, interpreted)
Compiling C (C.hs, interpreted)
Compiling A (A.hs, interpreted)
Ok, modules loaded: A, B, C, D (D.o).

*ghci>

In the messages from the compiler, we see that there is no line for D. This is because it isn’t
necessary to compile D, because the source and everything it depends on is unchanged since
the last compilation.

Note the -dynamic (page 288) flag to GHC: GHCi uses dynamically-linked object code (if you
are on a platform that supports it), and so in order to use compiled code with GHCi it must
be compiled for dynamic linking.

At any time you can use the command : show modules (page 82) to get a list of the modules
currently loaded into GHCi:

*ghci> :show modules

D (D.hs, D.o)

C (C.hs, interpreted)
B (B.hs, interpreted)
A (A.hs, interpreted)
*ghci>

If we now modify the source of D (or pretend to: using the Unix command touch on the source
file is handy for this), the compiler will no longer be able to use the object file, because it might
be out of date:

*ghci> :! touch D.hs
*ghci> :reload

Compiling D (D.hs, interpreted)
0Ok, modules loaded: A, B, C, D.
*ghci>

Note that module D was compiled, but in this instance because its source hadn’t really
changed, its interface remained the same, and the recompilation checker determined that
A, B and C didn’t need to be recompiled.

So let’s try compiling one of the other modules:

*ghci> :! ghc -c C.hs
*ghci> :load A

Compiling D (D.hs, interpreted)
Compiling B (B.hs, interpreted)
Compiling C (C.hs, interpreted)
Compiling A (A.hs, interpreted)
0Ok, modules loaded: A, B, C, D.

46 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

We didn’t get the compiled version of C! What happened? Well, in GHCi a compiled module
may only depend on other compiled modules, and in this case C depends on D, which doesn’t
have an object file, so GHCi also rejected C's object file. Ok, so let’s also compile D:

*ghci> :! ghc -c D.hs
*ghci> :reload
Ok, modules loaded: A, B, C, D.

Nothing happened! Here’s another lesson: newly compiled modules aren’t picked up by
:reload (page 80), only : load (page 78):

*ghci> :load A

Compiling B (B.hs, interpreted)
Compiling A (A.hs, interpreted)
Ok, modules loaded: A, B, C (C.o), D (D.o).

The automatic loading of object files can sometimes lead to confusion, because non-exported
top-level definitions of a module are only available for use in expressions at the prompt when
the module is interpreted (see What’s really in scope at the prompt? (page 52)). For this
reason, you might sometimes want to force GHCIi to load a module using the interpreter. This
can be done by prefixing a * to the module name or filename when using : load (page 78), for
example

ghci> :load *A
Compiling A (A.hs, interpreted)
*ghci>

When the * is used, GHCi ignores any pre-compiled object code and interprets the module. If
you have already loaded a number of modules as object code and decide that you wanted to
interpret one of them, instead of re-loading the whole set you can use :add *M to specify that
you want M to be interpreted (note that this might cause other modules to be interpreted too,
because compiled modules cannot depend on interpreted ones).

To always compile everything to object code and never use the interpreter, use the
-fobject-code (page 286) option (see Compiling to object code inside GHCi (page 88)).

Hint

Since GHCi will only use a compiled object file if it can be sure that the compiled version
is up-to-date, a good technique when working on a large program is to occasionally run
ghc --make to compile the whole project (say before you go for lunch :-), then continue
working in the interpreter. As you modify code, the changed modules will be interpreted,
but the rest of the project will remain compiled.

3.4 Interactive evaluation at the prompt

When you type an expression at the prompt, GHCi immediately evaluates and prints the result:

ghci> reverse "hello"
"olleh"

ghci> 545

10

3.4. Interactive evaluation at the prompt a7

GHC User’s Guide Documentation, Release 9.4.8

3.4.1 1/0 actions at the prompt

GHCIi does more than simple expression evaluation at the prompt. If you enter an expression
of type I0 a for some a, then GHCi executes it as an I0-computation.

ghci> "hello"

"hello"

ghci> putStrLn "hello"
hello

This works even if the type of the expression is more general, provided it can be instantiated
to I0 a. For example

ghci> return True
True

Furthermore, GHCi will print the result of the I/O action if (and only if):
* The result type is an instance of Show.

* The result type is not ().

For example, remembering that putStrLn :: String -> I0 ():
ghci> putStrLn "hello"

hello

ghci> do { putStrLn "hello"; return "yes" }

hello

Ilyesll

3.4.2 Using do notation at the prompt

GHCi actually accepts statements rather than just expressions at the prompt. This means you
can bind values and functions to names, and use them in future expressions or statements.

The syntax of a statement accepted at the GHCi prompt is exactly the same as the syntax
of a statement in a Haskell do expression. However, there’s no monad overloading here:
statements typed at the prompt must be in the I0 monad.

ghci> x <- return 42
ghci> print x

42

ghci>

The statement x <- return 42 means “execute return 42 in the I0 monad, and bind the
result to x”. We can then use x in future statements, for example to print it as we did above.

-fprint-bind-result

If -fprint-bind-result (page 48) is set then GHCi will print the result of a statement
if and only if:

* The statement is not a binding, or it is a monadic binding (p <- e) that binds exactly
one variable.

* The variable’s type is not polymorphic, is not (), and is an instance of Show.

Of course, you can also bind normal non-IO expressions using the let-statement:

48 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

ghci> let x = 42
ghci> x

42

ghci>

Another important difference between the two types of binding is that the monadic bind (p
<- e) is strict (it evaluates e), whereas with the let form, the expression isn’t evaluated
immediately:

ghci> let x = error "help!"
ghci> print x

*** Exception: help!

ghci>

Note that let bindings do not automatically print the value bound, unlike monadic bindings.

You can also define functions at the prompt:

ghci> add a b =a + b
ghci> add 1 2

3

ghci>

However, this quickly gets tedious when defining functions with multiple clauses, or groups
of mutually recursive functions, because the complete definition has to be given on a single
line, using explicit semicolons instead of layout:

ghci> f opn [1 =n; fopn (h:it) =h "op” fopnt
ghci> f (+) 0 [1..3]

6

ghci>

H{
i}
Begin or end a multi-line GHCi command block.

To alleviate this issue, GHCi commands can be split over multiple lines, by wrapping them in
:{ and :} (each on a single line of its own):

ghci> :{

ghci| g opn [] =n

ghci| g op n (h:t) =h "op" gopnt
ghci| :}

ghci> g (*) 1 [1..3]

6

Such multiline commands can be used with any GHCi command, and note that the layout rule
is in effect. The main purpose of multiline commands is not to replace module loading but
to make definitions in .ghci-files (see The .ghci and .haskeline files (page 86)) more readable
and maintainable.

Any exceptions raised during the evaluation or execution of the statement are caught and
printed by the GHCi command line interface (for more information on exceptions, see the
module Control.Exception in the libraries documentation.)

3.4. Interactive evaluation at the prompt 49

./../libraries/base-4.17.2.1/Control-Exception.html

GHC User’s Guide Documentation, Release 9.4.8

Every new binding shadows any existing bindings of the same name, including entities that
are in scope in the current module context.

Warning

Temporary bindings introduced at the prompt only last until the next : load (page 78) or
:reload (page 80) command, at which time they will be simply lost. However, they do
survive a change of context with :module (page 79): the temporary bindings just move to
the new location.

Hint

To get a list of the bindings currently in scope, use the :show bindings (page 82) com-
mand:

ghci> :show bindings
X :: Int
ghci>

Hint

If you turn on the +t option, GHCi will show the type of each variable bound by a statement.
For example:

ghci> :set +t

ghci> let (x:xs) = [1..]
X :: Integer

xs :: [Integer]

3.4.3 Multiline input

Apart from the :{ ... :} syntax for multi-line input mentioned above, GHCi also has a mul-
tiline mode, enabled by :set +m, :set +m in which GHCi detects automatically when the
current statement is unfinished and allows further lines to be added. A multi-line input is
terminated with an empty line. For example:

ghci> :set +m
ghci> let x = 42
ghci|

Further bindings can be added to this let statement, so GHCi indicates that the next line
continues the previous one by changing the prompt. Note that layout is in effect, so to add
more bindings to this let we have to line them up:

ghci> :set +m
ghci> let x = 42
ghci| y =3
ghci|

ghci>

Explicit braces and semicolons can be used instead of layout:

50 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

ghci> do {

ghci| putStrLn "hello"
ghci| ;putStrLn "world"
ghci| }

hello

world

ghci>

Note that after the closing brace, GHCi knows that the current statement is finished, so no
empty line is required.

Multiline mode is useful when entering monadic do statements:

ghci> flip evalStateT 0 $ do
ghci| i <- get

ghci| lift $ do

ghci | putStrLn "Hello World!"

ghci | print i
ghci|

"Hello World!"
0

ghci>

During a multiline interaction, the user can interrupt and return to the top-level prompt.

ghci> do

ghci| putStrLn "Hello, World!"
ghci| ~C

ghci>

3.4.4 Type, class and other declarations

At the GHCi prompt you can also enter any top-level Haskell declaration, including data, type,
newtype, class, instance, deriving, and foreign declarations. For example:

ghci> data T = A | B | C deriving (Eq, Ord, Show, Enum)

ghci> [A ..]

[A,B,C]

ghci> :i T

data T=A | B | C -- Defined at <interactive>:2:6
instance Enum T -- Defined at <interactive>:2:45
instance Eq T -- Defined at <interactive>:2:30

instance Ord T -- Defined at <interactive>:2:34
instance Show T -- Defined at <interactive>:2:39

As with ordinary variable bindings, later definitions shadow earlier ones, so you can re-enter
a declaration to fix a problem with it or extend it. But there’s a gotcha: when a new type
declaration shadows an older one, there might be other declarations that refer to the old
type. The thing to remember is that the old type still exists, and these other declarations still
refer to the old type. However, while the old and the new type have the same name, GHCi
will treat them as distinct. For example:

ghci> data T=A | B
ghci> let f A = True; f B = False

(continues on next page)

3.4. Interactive evaluation at the prompt 51

GHC User’s Guide Documentation, Release 9.4.8

(continued from previous page)
ghci> data T=A | B | C
ghci> f A

<interactive>:2:3:
Couldn't match expected type "main::Interactive.T'
with actual type "T'
In the first argument of “f', namely "A'
In the expression: f A
In an equation for “it': it = f A
ghci>

The old, shadowed, version of T is displayed as main: :Interactive.T by GHCi in an attempt
to distinguish it from the new T, which is displayed as simply T.

Class and type-family instance declarations are simply added to the list of available instances,
with one exception. Since you might want to re-define one, a class instance replaces any
earlier instance with an identical head. You aren’t allowed to re-define a type family instance,
since it might not be type safe to do so. Instead, re-define the whole type-family. (See Type
families (page 375).) For example:

ghci> type family T a b
ghci> type instance T a b = a
ghci> let uc :: a -> T a b; uc = id

ghci> type instance T a b = b

<interactive>:3:15: error:
Conflicting family instance declarations:
Tab a -- Defined at <interactive>:3:15
Tab b -- Defined at <interactive>:5:15

-- Darn! We have to re-declare T.

ghci> type family T a b

-- This is a brand-new T, unrelated to the old one
ghci> type instance T a b = b

ghci> uc 'a' :: Int

<interactive>:8:1: error:
e Couldn't match type ‘Char’ with ‘Int’
Expected type: Int
Actual type: Ghcil.T Char b0
e In the expression: uc 'a' :: Int
In an equation for ‘it’: it = uc 'a' :: Int

3.4.5 What's really in scope at the prompt?

When you type an expression at the prompt, what identifiers and types are in scope? GHCi
provides a flexible way to control exactly how the context for an expression is constructed:

* The :load (page 78), :add (page 72), and : reload (page 80) commands (The effect of
:load on what is in scope (page 53)).

* The import declaration (Controlling what is in scope with import (page 54)).

52 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

* The :module (page 79) command (Controlling what is in scope with the :module com-
mand (page 54)).

The command :show imports (page 82) will show a summary of which modules contribute
to the top-level scope.

Hint

GHCi will tab-complete names that are in scope; for example, if you run GHCi and type
J<tab> then GHCi will expand it to Just.

3.4.5.1 The effect of :load on what is in scope

The : load (page 78), :add (page 72), and : reload (page 80) commands (Loading source files
(page 44) and Loading compiled code (page 45)) affect the top-level scope. Let’s start with
the simple cases; when you start GHCi the prompt looks like this:

[ghci> J

By default, this means that everything from the module Prelude is currently in scope. Should
the prompt be set to %s> in the .ghci configuration file, we would be seeing Prelude> dis-
played. However, it is not the default mechanism due to the large space the prompt can take
if more imports are done.

The syntax in the prompt *module indicates that it is the full top-level scope of {module) that is
contributing to the scope for expressions typed at the prompt. Without the *, just the exports
of the module are visible.

Note

For technical reasons, GHCi can only support the *-form for modules that are interpreted.
Compiled modules and package modules can only contribute their exports to the current
scope. To ensure that GHCi loads the interpreted version of a module, add the * when
loading the module, e.g. : load *M.

In general, after a : load (page 78) command, an automatic import is added to the scope for
the most recently loaded “target” module, in a *-form if possible. For example, if you say
:load foo.hs bar.hs and bar.hs contains module Bar, then the scope will be set to *Bar if
Bar is interpreted, or if Bar is compiled it will be set to Prelude and Bar (GHCi automatically
adds Prelude if it isn’t present and there aren’t any *-form modules). These automatically-
added imports can be seen with :show imports (page 82):

ghci> :load hello.hs

[1 of 1] Compiling Main (hello.hs, interpreted)
Ok, modules loaded: Main.

*ghci> :show imports

:module +*Main -- added automatically

*ghci>

and the automatically-added import is replaced the next time you use : load (page 78), :add
(page 72), or : reload (page 80). It can also be removed by :module (page 79) as with normal
imports.

3.4. Interactive evaluation at the prompt 53

GHC User’s Guide Documentation, Release 9.4.8

3.4.5.2 Controlling what is in scope with import

We are not limited to a single module: GHCi can combine scopes from multiple modules, in
any mixture of * and non-* forms. GHCi combines the scopes from all of these modules to
form the scope that is in effect at the prompt.

To add modules to the scope, use ordinary Haskell import syntax:

ghci> import System.IO
ghci> hPutStrLn stdout "hello\n"
hello

The full Haskell import syntax is supported, including hiding and as clauses. The prompt
shows the modules that are currently imported, but it omits details about hiding, as, and so
on. To see the full story, use :show imports (page 82):

ghci> import System.IO

ghci> import Data.Map as Map
ghci Map> :show imports
import Prelude -- implicit
import System.IO

import Data.Map as Map

Note that the Prelude import is marked as implicit. It can be overridden with an explicit
Prelude import, just like in a Haskell module.

With multiple modules in scope, especially multiple *-form modules, it is likely that name
clashes will occur. Haskell specifies that name clashes are only reported when an ambiguous
identifier is used, and GHCi behaves in the same way for expressions typed at the prompt.

3.4.5.3 Controlling what is in scope with the :module command

Another way to manipulate the scope is to use the :module (page 79) command, whose syntax
is this:

[:module +|- *modl ... *modn

Using the + form of the module commands adds modules to the current scope, and - removes
them. Without either + or -, the current scope is replaced by the set of modules specified.
Note that if you use this form and leave out Prelude, an implicit Prelude import will be added
automatically.

The :module (page 79) command provides a way to do two things that cannot be done with
ordinary import declarations:

* :module (page 79) supports the * modifier on modules, which opens the full top-level
scope of a module, rather than just its exports.

* Imports can be removed from the context, using the syntax :module -M. The import
syntax is cumulative (as in a Haskell module), so this is the only way to subtract from
the scope.

3.4.5.4 Qualified names
-fimplicit-import-qualified

Default
on

54 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

To make life slightly easier, the GHCi prompt also behaves as if there is an implicit import
qualified declaration for every module in every package, and every module currently loaded
into GHCi. This behaviour can be disabled with the -fno-implicit-import-qualified flag.

3.4.5.5 :module and :load

It might seem that :module (page 79)/import and :load (page 78)/:add (page 72)/: reload
(page 80) do similar things: you can use both to bring a module into scope. However, there
is a very important difference. GHCi is concerned with two sets of modules:

* The set of modules that are currently loaded. This set is modified by : load (page 78),
:add (page 72) and : reload (page 80), and can be shown with : show modules (page 82).

* The set of modules that are currently in scope at the prompt. This set is modified by
import and :module (page 79), and it is also modified automatically after : load (page 78),
radd (page 72), and : reload (page 80), as described above. The set of modules in scope
can be shown with :show imports (page 82).

You can add a module to the scope (via :module (page 79) or import) only if either (a) it is
loaded, or (b) it is a module from a package that GHCi knows about. Using :module (page 79)
or import to try bring into scope a non-loaded module may result in the message module M
is not loaded.

3.4.5.6 Shadowing and the Ghcil module name

Bindings on the prompt can shadow earlier bindings:

ghci> let foo = True
ghci> let foo = False
ghci> :show bindings
foo :: Bool = False

But the shadowed thing still exists, and may show up again later, for example in a type signa-
ture:

ghci> data T = A | B deriving Eq
ghci> let a = A

ghci> data T = ANewType

ghci> :t a

a :: Ghcil.T

Now the type of a is printed using the fully qualified name of T, using the module name Ghcil
(and Ghci?2 for the next set of bindings, and so on). You can use these qualified names as well:

ghci> a == Ghcil.A

True

ghci> let a = False -- shadowing a
ghci> Ghci2.a == Ghcil.A

True

The command :show bindings only shows bindings that are not shadowed. Bindings that
define multiple names, such as a type constructor and its data constructors, are shown if any
defined name is still available without the need for qualification.

3.4. Interactive evaluation at the prompt 55

GHC User’s Guide Documentation, Release 9.4.8

3.4.6 The it variable

Whenever an expression (or a non-binding statement, to be precise) is typed at the prompt,
GHCi implicitly binds its value to the variable it. For example:

ghci> 142

3

ghci> it * 2
6

What actually happens is that GHCi typechecks the expression, and if it doesn’t have an I0
type, then it transforms it as follows: an expression e turns into

let it = e;
print it

which is then run as an IO-action.

Hence, the original expression must have a type which is an instance of the Show class, or
GHCi will complain:

ghci> id

<interactive>:1:0:
No instance for (Show (a -> a))
arising from use of “print' at <interactive>:1:0-1
Possible fix: add an instance declaration for (Show (a -> a))
In the expression: print it
In a 'do' expression: print it

The error message contains some clues as to the transformation happening internally.

If the expression was instead of type I0 a for some a, then it will be bound to the result of
the I0 computation, which is of type a. eg.:

ghci> Data.Time.getZonedTime
2017-04-10 12:34:56.93213581 UTC
ghci> print it

2017-04-10 12:34:56.93213581 UTC

The corresponding translation for an I0-typed e is

[it <- e]

Note that it is shadowed by the new value each time you evaluate a new expression, and the
old value of it is lost.

In order to stop the value it being bound on each command, the flag - fno-1it (page 56) can
be set. The it variable can be the source of space leaks due to how shadowed declarations
are handled by GHCi (see Type, class and other declarations (page 51)).

-fno-it

When this flag is set, the variable it will no longer be set to the result of the previously
evaluated expression.

56 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

3.4.7 Type defaulting in GHCi
ExtendedDefaultRules

Since
6.8.1

Allow defaulting to take place for more than just numeric classes.

Consider this GHCi session:

[ghci> reverse []]

What should GHCi do? Strictly speaking, the program is ambiguous. show (reverse [])
(which is what GHCi computes here) has type Show a => String and how that displays de-
pends on the type a. For example:

ghci> reverse ([] :: String)

ghci> reverse ([] :: [Int])

[

However, it is tiresome for the user to have to specify the type, so GHCi extends Haskell’s
type-defaulting rules (Section 4.3.4 of the Haskell 2010 Report) as follows. The standard
rules take each group of constraints (C1 a, C2 a, ..., Cn a) for each type variable a, and
defaults the type variable if

1. The type variable a appears in no other constraints
2. All the classes Ci are standard.
3. At least one of the classes Ci is numeric.

At the GHCi prompt, or with GHC if the ExtendedDefaultRules (page 57) flag is given, the
types are instead resolved with the following method:

Find all the unsolved constraints. Then:

* Find those that are of form (C a) where a is a type variable, and partition those con-
straints into groups that share a common type variable a.

» Keep only the groups in which at least one of the classes is an interactive class (defined
below).

* Now, for each remaining group G, try each type ty from the default-type list in turn; if
setting a = ty would allow the constraints in G to be completely solved. If so, default a
to ty.

* The unit type () and the list type [] are added to the start of the standard list of types
which are tried when doing type defaulting.

Note that any multi-parameter constraints (D a b) or (D [a] Int) do not participate in the
process (either to help or to hinder); but they must of course be soluble once the defaulting
process is complete.

The last point means that, for example, this program:

main :: I0 ()
main = print def

instance Num ()
(continues on next page)

3.4. Interactive evaluation at the prompt 57

GHC User’s Guide Documentation, Release 9.4.8

(continued from previous page)

def :: (Num a, Enum a) => a
def = toEnum 0

prints () rather than 0 as the type is defaulted to () rather than Integer.

The motivation for the change is that it means I0 a actions default to I0 (), which in turn
means that ghci won’t try to print a result when running them. This is particularly impor-
tant for printf, which has an instance that returns I0 a. However, it is only able to return
undefined (the reason for the instance having this type is so that printf doesn’t require ex-
tensions to the class system), so if the type defaults to Integer then ghci gives an error when
running a printf.

See also I/O actions at the prompt (page 48) for how the monad of a computational expression
defaults to I0 if possible.

3.4.7.1 Interactive classes

The interactive classes (only relevant when ExtendedDefaultRules (page 57) is in effect) are:
any numeric class, Show, Eq, Ord, Foldable or Traversable.

As long as a type variable is constrained by one of these classes, defaulting will occur, as
outlined above.

3.4.7.2 Extended rules around default declarations

Since the rules for defaulting are relaxed under ExtendedDefaultRules (page 57), the rules
for default declarations are also relaxed. According to Section 4.3.4 of the Haskell 2010
Report, a default declaration looks like default (tl, ..., tn) where, for each ti, Num ti
must hold. This is relaxed to say that for each ti, there must exist an interactive class C such
that C ti holds. This means that type constructors can be allowed in these lists. For example,
the following works if you wish your Foldable constraints to default to Maybe but your Num
constraints to still default to Integer or Double:

[default (Maybe, Integer, Double)]

3.4.8 Using a custom interactive printing function

Since GHC 7.6.1, GHCi prints the result of expressions typed at the prompt using the function
System.IO.print. Its type signature is Show a => a -> I0 (), and it works by converting
the value to String using show.

This is not ideal in certain cases, like when the output is long, or contains strings with non-
ascii characters.

The -interactive-print (name) (page 58) flag allows to specify any function of type C a =>
a -> I0 (), for some constraint C, as the function for printing evaluated expressions. The
function can reside in any loaded module or any registered package, but only when it resides
in a registered package will it survive a :cd (page 73), :add (page 72), :load (page 78),
:reload (page 80) or, :set (page 80).

-interactive-print (name)
Set the function used by GHCi to print evaluation results. Given name must be of type C
a=>a ->1I0 ().

As an example, suppose we have following special printing module:

58 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

module SpecPrinter where
import System.IO

sprint a = putStrLn $ show a ++ "!"

The sprint function adds an exclamation mark at the end of any printed value. Running GHCi
with the command:

[ghci -interactive-print=SpecPrinter.sprint SpecPrinter]

will start an interactive session where values with be printed using sprint:

*SpecPrinter> [1,2,3]
[1,2,3]!
*SpecPrinter> 42

42!

A custom pretty printing function can be used, for example, to format tree-like and nested
structures in a more readable way.

The -interactive-print (name) (page 58) flag can also be used when running GHC in -e
mode:

3.4.9 Stack Traces in GHCi

[This is an experimental feature enabled by the new - fexternal-interpreter flag that was
introduced in GHC 8.0.1. It is currently not supported on Windows.]

GHCi can use the profiling system to collect stack trace information when running interpreted
code. To gain access to stack traces, start GHCi like this:

[ghci -fexternal-interpreter -prof]

This runs the interpreted code in a separate process (see Running the interpreter in a sepa-
rate process (page 88)) and runs it in profiling mode to collect call stack information. Note
that because we’re running the interpreted code in profiling mode, all packages that you
use must be compiled for profiling. The -prof flag to GHCi only works in conjunction with
-fexternal-interpreter.

There are three ways to get access to the current call stack.

* error and undefined automatically attach the current stack to the error message. This
often complements the HasCallStack stack (see HasCallStack (page 612)), so both call
stacks are shown.

* Debug.Trace.traceStackis aversion of Debug.Trace.trace that also prints the current
call stack.

* Functions in the module GHC.Stack can be used to get the current stack and render it.

You don’t need to use -fprof-auto for interpreted modules, annotations are automatically
added at a granularity fine enough to distinguish individual call sites. However, you won’t
see any call stack information for compiled code unless it was compiled with -fprof-auto or
has explicit SCC annotations (see Inserting cost centres by hand (page 658)).

3.4. Interactive evaluation at the prompt 59

GHC User’s Guide Documentation, Release 9.4.8

3.5 The GHCi Debugger

GHCi contains a simple imperative-style debugger in which you can stop a running computa-
tion in order to examine the values of variables. The debugger is integrated into GHCi, and
is turned on by default: no flags are required to enable the debugging facilities. There is one
major restriction: breakpoints and single-stepping are only available in interpreted modules;
compiled code is invisible to the debugger®.

The debugger provides the following:

* The ability to set a breakpoint on a function definition or expression in the program.
When the function is called, or the expression evaluated, GHCi suspends execution and
returns to the prompt, where you can inspect the values of local variables before contin-
uing with the execution.

* Execution can be single-stepped: the evaluator will suspend execution approximately
after every reduction, allowing local variables to be inspected. This is equivalent to
setting a breakpoint at every point in the program.

* Execution can take place in tracing mode, in which the evaluator remembers each eval-
uation step as it happens, but doesn’t suspend execution until an actual breakpoint is
reached. When this happens, the history of evaluation steps can be inspected.

» Exceptions (e.g. pattern matching failure and error) can be treated as breakpoints, to
help locate the source of an exception in the program.

There is currently no support for obtaining a “stack trace”, but the tracing and history features
provide a useful second-best, which will often be enough to establish the context of an error.
For instance, it is possible to break automatically when an exception is thrown, even if it is
thrown from within compiled code (see Debugging exceptions (page 68)).

3.5.1 Breakpoints and inspecting variables

Let’s use quicksort as a running example. Here’s the code:

gsort [] = []
gsort (a:as) = gsort left ++ [a] ++ gsort right
where (left,right) = (filter (<=a) as, filter (=a) as)

main = print (qgsort [8, 4, 0, 3, 1, 23, 11, 18])

First, load the module into GHCi:

ghci> :1 gsort.hs

[1 of 1] Compiling Main (gsort.hs, interpreted)
Ok, modules loaded: Main.
*ghci>

Now, let’s set a breakpoint on the right-hand-side of the second equation of gsort:

*ghci> :break 2
Breakpoint 0 activated at qsort.hs:2:15-46
*ghci>

5 Note that packages only contain compiled code, so debugging a package requires finding its source and loading
that directly.

60 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

The command :break 2 sets a breakpoint on line 2 of the most recently-loaded module, in
this case gsort.hs. Specifically, it picks the leftmost complete subexpression on that line
on which to set the breakpoint, which in this case is the expression (gsort left ++ [a] ++
gsort right).

Now, we run the program:

*ghci> main
Stopped at gsort.hs:2:15-46

_result :: [a]
a :: a

left :: [a]
right :: [a]

[gsort.hs:2:15-46] *ghci>

Execution has stopped at the breakpoint. The prompt has changed to indicate that we are
currently stopped at a breakpoint, and the location: [gsort.hs:2:15-46]. To further clarify
the location, we can use the : list (page 78) command:

[gsort.hs:2:15-46] *ghci> :list

1 qgsort [] =[]

2 qgsort (a:as) = qsort left ++ [a] ++ gsort right

3 where (left,right) = (filter (<=a) as, filter (>a) as)

The :list (page 78) command lists the source code around the current breakpoint. If your
output device supports it, then GHCi will highlight the active subexpression in bold.

GHCi has provided bindings for the free variables® of the expression on which the break-
point was placed (a, left, right), and additionally a binding for the result of the expression
(_result). These variables are just like other variables that you might define in GHCi; you
can use them in expressions that you type at the prompt, you can ask for their types with
:type (page 83), and so on. There is one important difference though: these variables may
only have partial types. For example, if we try to display the value of left:

[gsort.hs:2:15-46] *ghci> left

<interactive>:1:0:
Ambiguous type variable “a' in the constraint:
"Show a' arising from a use of “print' at <interactive>:1:0-3
Cannot resolve unknown runtime types: a
Use :print or :force to determine these types

This is because qsort is a polymorphic function, and because GHCi does not carry type infor-
mation at runtime, it cannot determine the runtime types of free variables that involve type
variables. Hence, when you ask to display left at the prompt, GHCi can’t figure out which
instance of Show to use, so it emits the type error above.

Fortunately, the debugger includes a generic printing command, :print (page 79), which can
inspect the actual runtime value of a variable and attempt to reconstruct its type. If we try it
on left:

[gsort.hs:2:15-46] *ghci> :set -fprint-evld-with-show
[gsort.hs:2:15-46] *ghci> :print left
left = (_tl::[a])

6 We originally provided bindings for all variables in scope, rather than just the free variables of the expression,
but found that this affected performance considerably, hence the current restriction to just the free variables.

3.5. The GHCi Debugger 61

GHC User’s Guide Documentation, Release 9.4.8

This isn’t particularly enlightening. What happened is that left is bound to an unevaluated
computation (a suspension, or thunk), and :print (page 79) does not force any evaluation.
The idea is that :print (page 79) can be used to inspect values at a breakpoint without
any unfortunate side effects. It won’t force any evaluation, which could cause the program
to give a different answer than it would normally, and hence it won’t cause any exceptions
to be raised, infinite loops, or further breakpoints to be triggered (see Nested breakpoints
(page 65)). Rather than forcing thunks, :print (page 79) binds each thunk to a fresh variable
beginning with an underscore, in this case t1.

-fprint-evld-with-show
The flag - fprint-evld-with-show (page 62) instructs :print (page 79) to reuse avail-

able Show instances when possible. This happens only when the contents of the variable
being inspected are completely evaluated.

If we aren’t concerned about preserving the evaluatedness of a variable, we can use : force
(page 76) instead of :print (page 79). The : force (page 76) command behaves exactly like
:print (page 79), except that it forces the evaluation of any thunks it encounters:

[gsort.hs:2:15-46] *ghci> :force left
left = [4,0,3,1]

Now, since : force (page 76) has inspected the runtime value of left, it has reconstructed
its type. We can see the results of this type reconstruction:

[qsort.hs:2:15-46] *ghci> :show bindings
_result :: [Integer]

a :: Integer

left :: [Integer]

right :: [Integer]

~t1 :: [Integer]

Not only do we now know the type of left, but all the other partial types have also been
resolved. So we can ask for the value of a, for example:

[gsort.hs:2:15-46] *ghci> a
8

You might find it useful to use Haskell’s seq function to evaluate individual thunks rather than
evaluating the whole expression with : force (page 76). For example:

[gsort.hs:2:15-46] *ghci> :print right
right = (_tl::[Integer])
[qsort.hs:2:15-46] *ghci> seq t1 ()
()

[gsort.hs:2:15-46] *ghci> :print right
right = 23 : (_t2::[Integer])

We evaluated only the t1 thunk, revealing the head of the list, and the tail is another thunk
now bound to t2. The seq function is a little inconvenient to use here, so you might want to
use :def (page 74) to make a nicer interface (left as an exercise for the reader!).

Finally, we can continue the current execution:

[qsort.hs:2:15-46] *ghci> :continue
Stopped at gsort.hs:2:15-46

(continues on next page)

62 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

(continued from previous page)

_result :: [a]
a :: a

left :: [a]
right :: [a]

[gsort.hs:2:15-46] *ghci>

The execution continued at the point it previously stopped, and has now stopped at the break-
point for a second time.
3.5.1.1 Setting breakpoints

Breakpoints can be set in various ways. Perhaps the easiest way to set a breakpoint is to
name a top-level function:

[:break identifier J

Where (identifier) names any top-level function in an interpreted module currently loaded into
GHCIi (qualified names may be used). The breakpoint will be set on the body of the function,
when it is fully applied. If the function has several patterns, then a breakpoint will be set on
each of them.

By using qualified names, one can set breakpoints on all functions (top-level and nested) in
every loaded and interpreted module:

[: break [ModQual.]topLevelldent[.nestedIdent]...[.nestedIdent]]

(ModQual) is optional and is either the effective name of a module or the local alias of a
qualified import statement.

(topLevelldent) is the name of a top level function in the module referenced by (ModQual).

(nestedldent) is optional and the name of a function nested in a let or where clause inside the
previously mentioned function (nestedIldent) or (topLevelldent).

If (ModQual) is a module name, then (topLevelldent) can be any top level identifier in this
module. If (ModQual) is missing or a local alias of a qualified import, then (topLevelldent)
must be in scope.

Breakpoints can be set on arbitrarily deeply nested functions, but the whole chain of nested
function names must be specified.

Consider the function foo in a module Main:

foo s = 'a' : add s
where add = (++"z")

The breakpoint on the function add can be set with one of the following commands:

:break Main.foo.add
:break foo.add

Breakpoints can also be set by line (and optionally column) number:

:break line

:break line column

:break module 1line

:break module line column

3.5. The GHCi Debugger 63

GHC User’s Guide Documentation, Release 9.4.8

When a breakpoint is set on a particular line, GHCi sets the breakpoint on the leftmost subex-
pression that begins and ends on that line. If two complete subexpressions start at the same
column, the longest one is picked. If there is no complete subexpression on the line, then the
leftmost expression starting on the line is picked, and failing that the rightmost expression
that partially or completely covers the line.

When a breakpoint is set on a particular line and column, GHCIi picks the smallest subexpres-
sion that encloses that location on which to set the breakpoint. Note: GHC considers the TAB
character to have a width of 1, wherever it occurs; in other words it counts characters, rather
than columns. This matches what some editors do, and doesn’t match others. The best advice
is to avoid tab characters in your source code altogether (see -Wtabs (page 129) in Warnings
and sanity-checking (page 111)).

If the module is omitted, then the most recently-loaded module is used.

Not all subexpressions are potential breakpoint locations. Single variables are typically not
considered to be breakpoint locations (unless the variable is the right-hand-side of a function
definition, lambda, or case alternative). The rule of thumb is that all redexes are breakpoint
locations, together with the bodies of functions, lambdas, case alternatives and binding state-
ments. There is normally no breakpoint on a let expression, but there will always be a break-
point on its body, because we are usually interested in inspecting the values of the variables
bound by the let.

3.5.1.2 Managing breakpoints
The list of breakpoints currently defined can be displayed using : show breaks (page 82):

*ghci> :show breaks
[0] Main gsort.hs:1:11-12 enabled
[1] Main gsort.hs:2:15-46 enabled

To disable one or several defined breakpoint, use the :disable (page 75) command with one
or several blank separated numbers given in the output from :show breaks (page 82):. To
disable all breakpoints at once, use :disable *.

*ghci> :disable 0

*ghci> :show breaks

[0] Main qsort.hs:1:11-12 disabled
[1] Main gsort.hs:2:15-46 enabled

Disabled breakpoints can be (re-)enabled with the :enable (page 76) command. The param-
eters of the :disable (page 75) and :enable (page 76) commands are identical.

To delete a breakpoint, use the :delete (page 75) command with the number given in the
output from :show breaks (page 82):

*ghci> :delete 0
*ghci> :show breaks
[1] Main gsort.hs:2:15-46 disabled

To delete all breakpoints at once, use :delete *.

64 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

3.5.2 Single-stepping

Single-stepping is a great way to visualise the execution of your program, and it is also a
useful tool for identifying the source of a bug. GHCi offers two variants of stepping. Use
:step (page 82) to enable all the breakpoints in the program, and execute until the next
breakpoint is reached. Use :steplocal (page 82) to limit the set of enabled breakpoints to
those in the current top level function. Similarly, use :stepmodule (page 83) to single step
only on breakpoints contained in the current module. For example:

*ghci> :step main
Stopped at gsort.hs:5:7-47
_result :: I0 ()

The command :step expr (page 82) begins the evaluation of {(expr) in single-stepping mode.
If (expr) is omitted, then it single-steps from the current breakpoint. :steplocal (page 82)
and :stepmodule (page 83) commands work similarly.

The : list (page 78) command is particularly useful when single-stepping, to see where you
currently are:

[gsort.hs:5:7-47] *ghci> :list

4

5 main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
6

[qsort.hs:5:7-47] *ghci>

In fact, GHCi provides a way to run a command when a breakpoint is hit, so we can make it
automatically do : list (page 78):

[qsort.hs:5:7-47] *ghci> :set stop :list
[gsort.hs:5:7-47] *ghci> :step
Stopped at gsort.hs:5:14-46

result :: [Integer]

4
5 main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
6
[

gsort.hs:5:14-46] *ghci>

3.5.3 Nested breakpoints

When GHC i is stopped at a breakpoint, and an expression entered at the prompt triggers a
second breakpoint, the new breakpoint becomes the “current” one, and the old one is saved
on a stack. An arbitrary number of breakpoint contexts can be built up in this way. For
example:

[qsort.hs:2:15-46] *ghci> :st gsort [1,3]
Stopped at gsort.hs:(1,0)-(3,55)
_result :: [a]

[gsort.hs:(1,0)-(3,55)] *ghci>

While stopped at the breakpoint on line 2 that we set earlier, we started a new evaluation with

:step gsort [1,3]. This new evaluation stopped after one step (at the definition of gqsort).
The prompt has changed, now prefixed with .. ., to indicate that there are saved breakpoints
beyond the current one. To see the stack of contexts, use :show context (page 82):

3.5. The GHCi Debugger 65

GHC User’s Guide Documentation, Release 9.4.8

[qsort.hs:(1,0)-(3,55)] *ghci> :show context
--> main
Stopped at gsort.hs:2:15-46
--> qsort [1,3]
Stopped at gsort.hs:(1,0)-(3,55)
[gsort.hs:(1,0)-(3,55)] *ghci>

To abandon the current evaluation, use :abandon (page 72):

[gsort.hs:(1,0)-(3,55)] *ghci> :abandon
[qsort.hs:2:15-46] *ghci> :abandon
*ghci>

3.5.4 The _result variable

When stopped at a breakpoint or single-step, GHCi binds the variable result to the value of
the currently active expression. The value of result is presumably not available yet, because
we stopped its evaluation, but it can be forced: if the type is known and showable, then
just entering result at the prompt will show it. However, there’s one caveat to doing this:
evaluating result will be likely to trigger further breakpoints, starting with the breakpoint
we are currently stopped at (if we stopped at a real breakpoint, rather than due to :step
(page 82)). So it will probably be necessary to issue a : continue (page 74) immediately when
evaluating result. Alternatively, you can use : force (page 76) which ignores breakpoints.

3.5.5 Tracing and history

A question that we often want to ask when debugging a program is “how did I get here?”.
Traditional imperative debuggers usually provide some kind of stack-tracing feature that lets
you see the stack of active function calls (sometimes called the “lexical call stack”), describ-
ing a path through the code to the current location. Unfortunately this is hard to provide
in Haskell, because execution proceeds on a demand-driven basis, rather than a depth-first
basis as in strict languages. The “stack” in GHC’s execution engine bears little resemblance
to the lexical call stack. Ideally GHCi would maintain a separate lexical call stack in addition
to the dynamic call stack, and in fact this is exactly what our profiling system does (Profiling
(page 655)), and what some other Haskell debuggers do. For the time being, however, GHCi
doesn’t maintain a lexical call stack (there are some technical challenges to be overcome).
Instead, we provide a way to backtrack from a breakpoint to previous evaluation steps: es-
sentially this is like single-stepping backwards, and should in many cases provide enough
information to answer the “how did I get here?” question.

To use tracing, evaluate an expression with the :trace (page 83) command. For example, if
we set a breakpoint on the base case of qsort:

*ghci> :list gsort

1 gsort [] =[]

2 gsort (a:as) = gsort left ++ [a] ++ gsort right

3 where (left,right) = (filter (<=a) as, filter (>a) as)

4

*ghci> :b 1

Breakpoint 1 activated at gsort.hs:1:11-12
*ghci>

and then run a small gsort with tracing:

66 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

*ghci> :trace qsort [3,2,1]
Stopped at gsort.hs:1:11-12
_result :: [a]
[gsort.hs:1:11-12] *ghci>

We can now inspect the history of evaluation steps:

[gqsort.hs:1:11-12] *ghci> :hist
- : gsort.hs:3:24-38

-2 : qgsort.hs:3:23-55

-3 : qsort.hs:(1,0)-(3,55)
-4 : qsort.hs:2:15-24

-5 : gsort.hs:2:15-46

-6 : gsort.hs:3:24-38

-7 : gsort.hs:3:23-55

-8 : qsort.hs:(1,0)-(3,55)
-9 : qsort.hs:2:15-24

-10 : gsort.hs:2:15-46

-11 : gsort.hs:3:24-38

-12 : gsort.hs:3:23-55

-13 : qgsort.hs:(1,0)-(3,55)
-14 : qsort.hs:2:15-24

-15 : gsort.hs:2:15-46

-16 : qgsort.hs:(1,0)-(3,55)
<end of history>

To examine one of the steps in the history, use :back (page 72):

[gsort.hs:1:11-12] *ghci> :back
Logged breakpoint at qsort.hs:3:24-38
_result :: [a]

as :: [a]

a :: a

[-1: gsort.hs:3:24-38] *ghci>

Note that the local variables at each step in the history have been preserved, and can be
examined as usual. Also note that the prompt has changed to indicate that we’re currently
examining the first step in the history: -1. The command : forward (page 76) can be used to
traverse forward in the history.

The :trace (page 83) command can be used with or without an expression. When used with-
out an expression, tracing begins from the current breakpoint, just like : step (page 82).

The history is only available when using : trace (page 83); the reason for this is we found that
logging each breakpoint in the history cuts performance by a factor of 2 or more.

-fghci-hist-size=(n)

Default
50

Modify the depth of the evaluation history tracked by GHCi.

3.5. The GHCi Debugger 67

GHC User’s Guide Documentation, Release 9.4.8

3.5.6 Debugging exceptions

Another common question that comes up when debugging is “where did this exception come
from?”. Exceptions such as those raised by error or head [] have no context information
attached to them. Finding which particular call to head in your program resulted in the
error can be a painstaking process, usually involving Debug.Trace.trace, or compiling with
profiling and using Debug.Trace.traceStack or +RTS -xc (see -xc (page 238)).

The GHCi debugger offers a way to hopefully shed some light on these errors quickly and
without modifying or recompiling the source code. One way would be to set a break-
point on the location in the source code that throws the exception, and then use :trace
(page 83) and :history (page 76) to establish the context. However, head is in a library
and we can’t set a breakpoint on it directly. For this reason, GHCi provides the flags
-fbreak-on-exception (page 68) which causes the evaluator to stop when an exception is
thrown, and - fbreak-on-error (page 68), which works similarly but stops only on uncaught
exceptions. When stopping at an exception, GHCi will act just as it does when a breakpoint
is hit, with the deviation that it will not show you any source code location. Due to this, these
commands are only really useful in conjunction with :trace (page 83), in order to log the
steps leading up to the exception. For example:

*ghci> :set -fbreak-on-exception

*ghci> :trace gsort ("abc" ++ undefined)
“Stopped at <exception thrown>
_exception :: e

[<exception thrown>] *ghci> :hist

- : gsort.hs:3:24-38

-2 : qsort.hs:3:23-55

-3 : qsort.hs:(1,0)-(3,55)

-4 : gsort.hs:2:15-24

-5 : gsort.hs:2:15-46

-6 : qsort.hs:(1,0)-(3,55)

<end of history>

[<exception thrown>] *ghci> :back
Logged breakpoint at gsort.hs:3:24-38
_result :: [a]

as :: [a]

a :: a

[-1: gsort.hs:3:24-38] *ghci> :force as
*** Exception: Prelude.undefined

[-1: gsort.hs:3:24-38] *ghci> :print as
as = 'b' : 'c' : (_tl::[Char])

The exception itself is bound to a new variable, exception.

Breaking on exceptions is particularly useful for finding out what your program was doing
when it was in an infinite loop. Just hit Control-C, and examine the history to find out what
was going on.

-fbreak-on-exception

Causes GHCIi to halt evaluation and return to the interactive prompt in the event of an
exception. - fbreak-on-exception (page 68) breaks on all exceptions.

-fbreak-on-error

Causes GHCIi to halt evaluation and return to the interactive prompt in the event of an
exception. -fbreak-on-error (page 68) breaks on only those exceptions which would
otherwise be uncaught.

68 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

3.5.7 Example: inspecting functions

It is possible to use the debugger to examine function values. When we are at a breakpoint
and a function is in scope, the debugger cannot show you the source code for it; however, it is
possible to get some information by applying it to some arguments and observing the result.

The process is slightly complicated when the binding is polymorphic. We show the process
by means of an example. To keep things simple, we will use the well known map function:

import Prelude hiding (map)

map :: (a->b) -> [a] -> [b]
map f [1 = []
map f (x:xs) = f x : map f xs

We set a breakpoint on map, and call it.

*ghci> :break 5

Breakpoint 0 activated at map.hs:5:15-28
*ghci> map Just [1..5]

Stopped at map.hs:(4,0)-(5,12)

_result :: [b]
X . a
f::a->b
xs :: [al

GHC i tells us that, among other bindings, f is in scope. However, its type is not fully known
yet, and thus it is not possible to apply it to any arguments. Nevertheless, observe that the
type of its first argument is the same as the type of x, and its result type is shared with
_result.

As we demonstrated earlier (Breakpoints and inspecting variables (page 60)), the debugger
has some intelligence built-in to update the type of f whenever the types of x or result are
discovered. So what we do in this scenario is force x a bit, in order to recover both its type
and the argument part of f.

*ghci> seq x ()
*ghci> :print x
x =1

We can check now that as expected, the type of x has been reconstructed, and with it the type
of f has been too:

*ghci> :t x

X :: Integer
*ghci> :t f

f :: Integer -> b

From here, we can apply f to any argument of type Integer and observe the results.

*ghci> let b = f 10
*ghci> :t b
b :: b
*ghci> b
<interactive>:1:0:
Ambiguous type variable "b' in the constraint:
(continues on next page)

3.5. The GHCi Debugger 69

GHC User’s Guide Documentation, Release 9.4.8

(continued from previous page)

“Show b' arising from a use of “print' at <interactive>:1:0
*ghci> :p b
b= (1t2::a)
*ghci> seq b ()
()
*ghci> :t b
b :: a
*ghci> :p b
b = Just 10
*ghci> :t b
b :: Maybe Integer
*ghci> :t f
f :: Integer -> Maybe Integer
*ghci> f 20
Just 20
*ghci> map f [1..5]
[Just 1, Just 2, Just 3, Just 4, Just 5]

In the first application of f, we had to do some more type reconstruction in order to recover
the result type of f. But after that, we are free to use f normally.

3.5.8 Limitations

* When stopped at a breakpoint, if you try to evaluate a variable that is already under
evaluation, the second evaluation will hang. The reason is that GHC knows the variable
is under evaluation, so the new evaluation just waits for the result before continuing, but
of course this isn’t going to happen because the first evaluation is stopped at a breakpoint.
Control-C can interrupt the hung evaluation and return to the prompt.

The most common way this can happen is when you’re evaluating a CAF (e.g. main),
stop at a breakpoint, and ask for the value of the CAF at the prompt again.

* Implicit parameters (see Implicit parameters (page 531)) are only available at the scope
of a breakpoint if there is an explicit type signature.

3.6 Invoking GHCi

GHCi is invoked with the command ghci or ghc --interactive. One or more modules or
filenames can also be specified on the command line; this instructs GHCi to load the specified
modules or filenames (and all the modules they depend on), just as if you had said :1load
modules at the GHCi prompt (see GHCi commands (page 72)). For example, to start GHCi
and load the program whose topmost module is in the file Main. hs, we could say:

[$ ghci Main.hs J

Most of the command-line options accepted by GHC (see Using GHC (page 93)) also make
sense in interactive mode. The ones that don’t make sense are mostly obvious.

-flocal-ghci-history

By default, GHCi keeps global history in $XDG DATA HOME/ghc/ghci history or
%APPDATAS/<app>/ghci history, but you can use current directory, e.g.:

£$ ghci -flocal-ghci-history J

70 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

It will create .ghci-history in current folder where GHCIi is launched.

-fghci-leak-check

(Debugging only) When loading new modules with :load, check that any previously
loaded modules have been correctly garbage collected. Emits messages if a leak is de-
tected.

3.6.1 Packages

Most packages (see Using Packages (page 260)) are available without needing to specify any
extra flags at all: they will be automatically loaded the first time they are needed.

For hidden packages, however, you need to request the package be loaded by using the
-package (pkg) (page 262) flag:

$ ghci -package readline
GHCi, version 8.y.z: https://www.haskell.org/ghc/ :? for help

Loading package base ... linking ... done.
Loading package readline-1.0 ... linking ... done.
ghci>

The following command works to load new packages into a running GHCi:

[ghci> :set -package name]

But note that doing this will cause all currently loaded modules to be unloaded, and you’ll be
dumped back into the Prelude.

3.6.2 Extra libraries

Extra libraries may be specified on the command line using the normal -11ib option. (The
term library here refers to libraries of foreign object code; for using libraries of Haskell source
code, see Modules vs. filenames (page 45).) For example, to load the “m” library:

[$ ghci -1m]

On systems with . so-style shared libraries, the actual library loaded will the 1iblib.so. GHCi
searches the following places for libraries, in this order:

» Paths specified using the -L (dir) (page 288) command-line option,

* The standard library search path for your system loader, which on some systems may be
overridden by setting the LD LIBRARY PATH environment variable.

* The linker standard library search can also be overridden on some systems using the
LIBRARY PATH environment variable. Because of some implementation detail on Win-
dows, setting LIBRARY PATH will also extend the system loader path for any library it
finds. So often setting LIBRARY PATH is enough.

On systems with .d11-style shared libraries, the actual library loaded will be 1ib.dl1, liblib.
dl1l. GHCIi also has full support for import libraries, either Microsoft style .1ib, or GNU GCC
style .a and .dl1l.a libraries. If you have an import library it is advisable to always specify
the import library instead of the .d11l. e.g. use -lgcc’ instead of " -1libgcc s seh-1.
Again, GHCi will signal an error if it can’t find the library.

GHCi can also load plain object files (.0 or .obj depending on your platform) or static archives
(.a) from the command-line. Just add the name the object file or library to the command line.
On Windows GHCi also supports the big-obj format.

3.6. Invoking GHCi 71

GHC User’s Guide Documentation, Release 9.4.8

Ordering of -1 options matters: a library should be mentioned before the libraries it depends
on (see Options affecting linking (page 287)).

3.7 GHCi commands

GHCi commands all begin with “:” and consist of a single command name followed by zero or
more parameters. The command name may be abbreviated, with ambiguities being resolved
in favour of the more commonly used commands.

:abandon
Abandons the current evaluation (only available when stopped at a breakpoint).

:add[*] (module)

Add {(module)(s) to the current target set, and perform a reload. Normally pre-compiled
code for the module will be loaded if available, or otherwise the module will be compiled
to byte-code. Using the * prefix forces the module to be loaded as byte-code.

(module) may be a file path. A “~” symbol at the beginning of (module) will be replaced
by the contents of the environment variable HOME.

:all-types

List all types collected for expressions and (local) bindings currently loaded (while :set
+C (page 84) was active) with their respective source-code span, e.g.

GhciTypes> :all-types

GhciTypes.hs:(38,13)-(38,24): Maybe Id
GhciTypes.hs:(45,10)-(45,29): Outputable SpanInfo
GhciTypes.hs:(45,10)-(45,29): (Rational -> SpanInfo -> SDoc) ->,
—~Outputable SpanInfo

:back (n)

Travel back (n) steps in the history. (n) is one if omitted. See Tracing and history
(page 66) for more about GHCi’s debugging facilities. See also: :trace (page 83),
:history (page 76), : forward (page 76).

tbreak [(identifier) | [{module)] (line) [{(column)]]
Set a breakpoint on the specified function or line and column. See Setting breakpoints
(page 63).

tbrowse[!] [[*] (module)]

Displays the identifiers exported by the module {module), which must be either loaded
into GHCi or be a member of a package. If (module) is omitted, the most recently-loaded
module is used.

Like all other GHCi commands, the output is always displayed in the current GHCi scope
(What’s really in scope at the prompt? (page 52)).

There are two variants of the browse command:

« If the * symbol is placed before the module name, then all the identifiers in scope in
(module) (rather that just its exports) are shown.

The *-form is only available for modules which are interpreted; for compiled mod-
ules (including modules from packages) only the non-* form of : browse (page 72) is
available.

72 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

* Data constructors and class methods are usually displayed in the context of their
data type or class declaration. However, if the ! symbol is appended to the command,
thus :browse!, they are listed individually. The !-form also annotates the listing with
comments giving possible imports for each group of entries. Here is an example:

ghci> :browse! Data.Maybe

-- not currently imported
Data.Maybe.catMaybes :: [Maybe a] -> [a]
Data.Maybe.fromJust :: Maybe a -> a
Data.Maybe.fromMaybe :: a -> Maybe a -> a
Data.Maybe.isJust :: Maybe a -> Bool
Data.Maybe.isNothing :: Maybe a -> Bool
Data.Maybe.listToMaybe :: [a] -> Maybe a
Data.Maybe.mapMaybe :: (a -> Maybe b) -> [a] -> [b]
Data.Maybe.maybeTolList :: Maybe a -> [a]
-- imported via Prelude

Just :: a -> Maybe a

data Maybe a = Nothing | Just a

Nothing :: Maybe a

maybe :: b -> (a -> b) -> Maybe a -> b

This output shows that, in the context of the current session (ie in the scope of
Prelude), the first group of items from Data.Maybe are not in scope (although they
are available in fully qualified form in the GHCi session - see What’s really in scope
at the prompt? (page 52)), whereas the second group of items are in scope (via
Prelude) and are therefore available either unqualified, or with a Prelude. qualifier.

tcd (dir)
Changes the current working directory to (dir). A “~” symbol at the beginning of (dir)

will be replaced by the contents of the environment variable HOME. See also the :show
paths (page 82) command for showing the current working directory.

Note: changing directories causes all currently loaded modules to be unloaded. This is
because the search path is usually expressed using relative directories, and changing
the search path in the middle of a session is not supported.

:emd (expr)
Executes (expr) as a computation of type I0 String, and then executes the resulting

string as a list of GHCi commands. Multiple commands are separated by newlines. The
:cmd (page 73) command is useful with :def (page 74) and :set stop (page 81).

:complete (type) [(n)-1[{(m)] (string-literal)
This command allows to request command completions from GHCi even when interacting
over a pipe instead of a proper terminal and is designed for integrating GHCi’s comple-
tion with text editors and IDEs.

When called, :complete (page 73) prints the (n) to (m)"™ completion candidates for
the partial input (string-literal) for the completion domain denoted by (type). Currently,
only the repl domain is supported which denotes the kind of completion that would be
provided interactively by GHCi at the input prompt.

If omitted, (n) and (m) default to the first or last available completion candidate respec-
tively. If there are less candidates than requested via the range argument, (n) and {(m)
are implicitly capped to the number of available completion candidates.

The output of :complete (page 73) begins with a header line containing three space-
delimited fields:

3.7. GHCi commands 73

GHC User’s Guide Documentation, Release 9.4.8

* An integer denoting the number 1 of printed completions,
* an integer denoting the total number of completions available, and finally

* a string literal denoting a common prefix to be added to the returned completion
candidates.

The header line is followed by (1) lines each containing one completion candidate encoded
as (quoted) string literal. Here are some example invocations showing the various cases:

rghci> :complete repl 0 ""

0 470 ""

ghci> :complete repl 5 "import For"
5 21 "import "

"Foreign"

"Foreign.C"

"Foreign.C.Error"
"Foreign.C.String"
"Foreign.C.Types"

ghci> :complete repl 5-10 "import For"
6 21 "import "

"Foreign.C.Types"
"Foreign.Concurrent"
"Foreign.ForeignPtr"
"Foreign.ForeignPtr.Safe"
"Foreign.ForeignPtr.Unsafe"
"Foreign.Marshal"

ghci> :complete repl 20- "import For"
2 21 "import "

"Foreign.StablePtr"
"Foreign.Storable"

ghci> :complete repl "map"

33 ""

"map"

“mapM"

“mapM_"

ghci> :complete repl 5-10 "map"

o3 ""

:continue [(ignoreCount)]
Continue the current evaluation, when stopped at a breakpoint.

If an (ignoreCount) is specified, the program will ignore the current breakpoint for the
next (ignoreCount) iterations. See command :ignore (page 77).

:ctags [(filename)]

Generates a “tags” file for Vi-style editors (:ctags (page 74)) or Emacs-style editors
(:etags (page 76)). If no filename is specified, the default tags or TAGS is used, respec-
tively. Tags for all the functions, constructors and types in the currently loaded modules
are created. All modules must be interpreted for these commands to work.

tdef[!] (name) (expr)

:def (page 74) is used to define new commands, or macros, in GHCi. The command :def
(name) (expr) defines anew GHCicommand :name, implemented by the Haskell expres-
sion (expr), which must have type String -> I0 String. When :name args is typed at
the prompt, GHCi will run the expression (name args), take the resulting String, and

74 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

feed it back into GHCi as a new sequence of commands. Separate commands in the
result must be separated by “\n”.

That’s all a little confusing, so here’s a few examples. To start with, here’s a new GHCi
command which doesn’t take any arguments or produce any results, it just outputs the
current date and time:

ghci> let date = Data.Time.getZonedTime >>= print >> return ""
ghci> :def date date
ghci> :date

2017-04-10 12:34:56.93213581 UTC

Here’s an example of a command that takes an argument. It’s a re-implementation of
:cd (page 73):

ghci> let mycd d = System.Directory.setCurrentDirectory d >> return ""
ghci> :def mycd mycd
ghci> :mycd ..

Or I could define a simple way to invoke “ghc --make Main” in the current directory:

{ghci> :def make (_ -> return ":! ghc --make Main")]

We can define a command that reads GHCi input from a file. This might be useful for
creating a set of bindings that we want to repeatedly load into the GHCi session:

ghci> :def . readFile
ghci> :. cmds.ghci

Notice that we named the command : ., by analogy with the “.” Unix shell command
that does the same thing.

Typing :def on its own lists the currently-defined macros. Attempting to redefine an
existing command name results in an error unless the :def! form is used, in which case
the old command with that name is silently overwritten. However for builtin commands
the old command can still be used by preceding the command name with a double colon
(eg ::load). It’s not possible to redefine the commands :{, :} and :!.

:delete * | (num)
Delete one or more breakpoints by number (use : show breaks (page 82) to see the num-
ber of each breakpoint). The * form deletes all the breakpoints.

:disable * | (num)
Disable one or more breakpoints by number (use :show breaks (page 82) to see the
number and state of each breakpoint). The * form disables all the breakpoints.

:doc (name)
(Experimental: This command will likely change significantly in GHC 8.8.)
Displays the documentation for the given name. Currently the command is restricted to
displaying the documentation directly on the declaration in question, ignoring documen-
tation for arguments, constructors etc.

redit (file)

Opens an editor to edit the file (file), or the most recently loaded module if (file) is omitted.
If there were errors during the last loading, the cursor will be positioned at the line
of the first error. The editor to invoke is taken from the VISUAL (page 76) or EDITOR

3.7. GHCi commands 75

GHC User’s Guide Documentation, Release 9.4.8

environment variables, or a default editor on your system if neither is not set. You can
change the editor using :set editor (page 80).

VISUAL
Hidden

tenable * | (num)

Enable one or more disabled breakpoints by number (use :show breaks (page 82) to
see the number and state of each breakpoint). The * form enables all the disabled break-
points. Enabling a break point will reset its ignore count to 0. (See :ignore (page 77))

:etags
See :ctags (page 74).
:force (identifier)

Prints the value of (identifier) in the same way as :print (page 79). Unlike :print
(page 79), : force (page 76) evaluates each thunk that it encounters while traversing
the value. This may cause exceptions or infinite loops, or further breakpoints (which are
ignored, but displayed).

:forward (n)

Move forward (n) steps in the history. (n) is one if omitted. See Tracing and history
(page 66) for more about GHCi’s debugging facilities. See also: :trace (page 83),
:history (page 76), :back (page 72).

thelp
:?
Displays a list of the available commands.

Repeat the previous command.

thistory [num]

Display the history of evaluation steps. With a number, displays that many steps (default:
20). For use with : trace (page 83); see Tracing and history (page 66). To set the number
of history entries stored by GHCIi, use the - fghci-hist-size=(n) (page 67) flag.

:info[!] (name)

Displays information about the given name(s). For example, if (name) is a class, then
the class methods and their types will be printed; if (name) is a type constructor, then
its definition will be printed; if (name) is a function, then its type will be printed. If
(name) has been loaded from a source file, then GHCi will also display the location of its
definition in the source.

For types and classes, GHCi also summarises instances that mention them. To avoid
showing irrelevant information, an instance is shown only if (a) its head mentions (name),
and (b) all the other things mentioned in the instance are in scope (either qualified or
otherwise) as a result of a : load (page 78) or :module (page 79) commands.

The command :info! works in a similar fashion but it removes restriction (b), showing
all instances that are in scope and mention {(name) in their head.

:instances (type)

Displays all the class instances available to the argument (type). The command will
match (type) with the first parameter of every instance and then check that all constraints
are satisfiable.

76 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

When combined with PartialTypeSignatures (page 534), a user can insert wildcards
into a query and learn the constraints required of each wildcard for (type) match with
an instance.

The output is a listing of all matching instances, simplified and instantiated as much as
possible.

For example:

-

> :instances Maybe (Maybe Int)

instance Eq (Maybe (Maybe Int)) -- Defined in ‘GHC.Maybe’
instance Ord (Maybe (Maybe Int)) -- Defined in ‘GHC.Maybe’
instance Show (Maybe (Maybe Int)) -- Defined in ‘GHC.Show’
instance Read (Maybe (Maybe Int)) -- Defined in ‘GHC.Read’

> :set -XPartialTypeSignatures -fno-warn-partial-type-signatures

> :instances Maybe
instance Eq => Eq (Maybe) -- Defined in ‘GHC.Maybe’

instance Semigroup _ => Monoid (Maybe) -- Defined in ‘GHC.Base’
instance Ord => Ord (Maybe) -- Defined in ‘GHC.Maybe’
instance Semigroup = => Semigroup (Maybe) -- Defined in ‘GHC.Base’

instance Show => Show (Maybe) -- Defined in ‘GHC.Show’
instance Read @ => Read (Maybe) -- Defined in ‘GHC.Read’

Only instances which could potentially be used will be displayed in the results. Instances
which require unsatisfiable constraints such as TypeError will not be included. In the
following example, the instance for A is not shown because it cannot be used.

ghci>:set -XDataKinds -XUndecidableInstances

ghci>import GHC.TypeLits

ghci>class A a

ghci>instance (TypeError (Text "Not possible")) => A Bool
ghci>:instances Bool

instance Eq Bool -- Defined in ‘GHC.Classes’
instance Ord Bool -- Defined in ‘GHC.Classes’
instance Enum Bool -- Defined in ‘GHC.Enum’
instance Show Bool -- Defined in ‘GHC.Show’
instance Read Bool -- Defined in ‘GHC.Read’
instance Bounded Bool -- Defined in ‘GHC.Enum’

:issafe [(module)]
Displays Safe Haskell information about the given module (or the current module if omit-
ted). This includes the trust type of the module and its containing package.

:ignore (break) (ignoreCount)
Set the ignore count of the breakpoint with number (break) to (ignoreCount).
The next {ignoreCount) times the program hits the breakpoint {(break), this breakpoint
is ignored and the program doesn’t stop. Every time the breakpoint is ignored, the

ignore count is decremented by 1. When the ignore count is zero, the program again
stops at the break point.

You can also specify an (ignoreCount) on a :continue (page 74) command when you
resume execution of your program.

3.7. GHCi commands 77

GHC User’s Guide Documentation, Release 9.4.8

tkind[!] (type)
Infers and prints the kind of (type). The latter can be an arbitrary type expression, in-
cluding a partial application of a type constructor, such as Either Int. In fact, :kind
(page 77) even allows you to write a partial application of a type synonym (usually disal-
lowed), so that this works:

ghci> type T a b = (a,b,a)
ghci> :k T Int Bool

T Int Bool :: *

ghci> :k T
T::*_>*_>*

ghci> :k T Int

T Int :: * -> *

L

If you specify the optional “!”, GHC will in addition normalise the type by expanding out
type synonyms and evaluating type-function applications, and display the normalised
result.

:list (identifier)

Lists the source code around the definition of (identifier) or the current breakpoint if
not given. This requires that the identifier be defined in an interpreted module. If your
output device supports it, then GHCi will highlight the active subexpression in bold.

:list [(module)] (line)

Lists the source code around the given line number of (module). This requires that the
module be interpreted. If your output device supports it, then GHCi will highlight the
active subexpression in bold.

:load[!] [*]{module)

Recursively loads the specified (module)s, and all the modules they depend on. Here,
each (module) must be a module name or filename, but may not be the name of a module
in a package.

All previously loaded modules, except package modules, are forgotten. The new set of
modules is known as the target set. Note that : load (page 78) can be used without any
arguments to unload all the currently loaded modules and bindings.

Normally pre-compiled code for a module will be loaded if available, or otherwise the
module will be compiled to byte-code. Using the * prefix forces a module to be loaded
as byte-code.

Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the - fdefer-type-errors (page 115) flag is set before loading
and unset after loading if the flag has not already been set before. See Deferring type
errors to runtime (page 433) for further motivation and details.

After a : load (page 78) command, the current context is set to:
* (module), if it was loaded successfully, or

* the most recently successfully loaded module, if any other modules were loaded as
a result of the current : load (page 78), or

¢ Prelude otherwise.

:loc-at (module) (line) (col) (end-line) (end-col) [(name)]
Tries to find the definition site of the name at the given source-code span, e.g.:

78 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

X> :loc-at X.hs 6 14 6 16 mu
X.hs:(8,7)-(8,9)

This command is useful when integrating GHCi with text editors and IDEs for providing
a goto-definition facility.

The :loc-at command requires :set +c (page 84) to be set.
:main (argl) ... (argn)

When a program is compiled and executed, it can use the getArgs IO action to access
the command-line arguments. However, we cannot simply pass the arguments to main
while we are testing in ghci, as main doesn’t take its arguments directly.

Instead, we can use the :main (page 79) command. This runs whatever main is in scope,
with any arguments being treated the same as command-line arguments, e.g.:

ghci> main = System.Environment.getArgs >>= print
ghci> :main foo bar
[Ilfooll’llbarll]

We can also quote arguments which contains characters like spaces, and they are treated
like Haskell strings, or we can just use Haskell list syntax:

ghci> :main foo "bar baz"
["foo","bar baz"]

ghci> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other IO actions can be called, either with the -main-is flag or the : run (page 80)

command:
ghci> foo = putStrLn "foo" >> System.Environment.getArgs >>= print
ghci> bar = putStrLn "bar" >> System.Environment.getArgs >>= print

ghci> :set -main-is foo
ghci> :main foo "bar baz"

foo

["foo","bar baz"]

ghci> :run bar ["foo", "bar baz"]
bar

["foo","bar baz"]

:module +|- [*](modl)

import (mod)

Sets or modifies the current context for statements typed at the prompt. The form import
mod is equivalent to :module +mod. See What’s really in scope at the prompt? (page 52)
for more details.

:print (names)

Prints a value without forcing its evaluation. :print (page 79) may be used on values
whose types are unknown or partially known, which might be the case for local variables
with polymorphic types at a breakpoint. While inspecting the runtime value, :print
(page 79) attempts to reconstruct the type of the value, and will elaborate the type in
GHCi’s environment if possible. If any unevaluated components (thunks) are encoun-
tered, then :print (page 79) binds a fresh variable with a name beginning with t to
each thunk. See Breakpoints and inspecting variables (page 60) for more information.

3.7. GHCi commands 79

GHC User’s Guide Documentation, Release 9.4.8

See also the :sprint (page 82) command, which works like :print (page 79) but does
not bind new variables.

rquit
Quits GHCi. You can also quit by typing Control-D at the prompt.

treload[']

Attempts to reload the current target set (see : load (page 78)) if any of the modules in
the set, or any dependent module, has changed. Note that this may entail loading new
modules, or dropping modules which are no longer indirectly required by the target.

Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the - fdefer-type-errors (page 115) flag is set before loading
and unset after loading if the flag has not already been set before. See Deferring type
errors to runtime (page 433) for further motivation and details.

irun
See :main (page 79).

iscript [(n)] (filename)
Executes the lines of a file as a series of GHCi commands. The syntax for file-name ar-
guments respects shell quoting rules, i.e., file names containing spaces can be enclosed
in double quotes or with spaces escaped with a backslash. This command is compatible
with multiline statements as set by :set +m (page 84)

:set [(option) ...]
Sets various options. See The :set and :seti commands (page 84) for a list of available
options and Interactive-mode options (page 172) for a list of GHCi-specific flags. The
:set (page 80) command by itself shows which options are currently set. It also lists the
current dynamic flag settings, with GHCi-specific flags listed separately.

:set args (arg)
Sets the list of arguments which are returned when the program calls System.
Environment.getArgs.

:set editor (cmd)
Sets the command used by :edit (page 75) to {cmd).

:set local-config (source|ignore)

If ignore, ./.ghci files will be ignored (sourcing untrusted local scripts is a security
risk). The default is source. Set this directive in your user .ghci script, i.e. before the
local script would be sourced.

Even when set to ignore, a local script will still be processed if given by -ghci-script
(page 87) on the command line, or sourced via :script (page 80).

:set prog (prog)

Sets the string to be returned when the program calls System.Environment.
getProgName.

:set prompt (prompt)

Sets the string to be used as the prompt in GHCi. Inside {(prompt), the next sequences
are replaced:

* %s by the names of the modules currently in scope.

* %1 by the line number (as referenced in compiler messages) of the current prompt.

80 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

* %d by the date in “Weekday Month Date” format (e.g., “Tue May 26”) .
* %t by the current time in 24-hour HH:MM:SS format.
* %T by the current time in 12-hour HH:MM:SS format.
* %@ by the current time in 12-hour am/pm format.
* %A by the current time in 24-hour HH:MM format.
* %U by the username of the current user.
* %w by the current working directory.
* %0 by the operating system.
* %a by the machine architecture.
* %N by the compiler name.
* %V by the compiler version.
* %scall(cmd [args]) by the result of calling cmd args.
* %% by %.
If (prompt) starts with " then it is parsed as a Haskell String; otherwise it is treated as
a literal string.
:set prompt-cont (prompt)
Sets the string to be used as the continuation prompt (used when using the : { (page 49)
command) in GHCI.
:set prompt-function (prompt-function)

Sets the function to be used for the prompt displaying in GHCi. The function should
be of the type [String] -> Int -> IO String. This function is called each time the
prompt is being made. The first argument stands for the names of the modules currently
in scope(the name of the “topmost” module will begin with a *; see What’s really in
scope at the prompt? (page 52) for more information). The second arguments is the line
number (as referenced in compiler messages) of the current prompt.

:set prompt-cont-function (prompt-function)

Sets the function to be used for the continuation prompt (used when using the :{
(page 49) command) displaying in GHCi.

:set stop (num) (cmd)

Set a command to be executed when a breakpoint is hit, or a new item in the history is
selected. The most common use of :set stop (page 81) is to display the source code at
the current location, e.g. :set stop :list.

If a number is given before the command, then the commands are run when the specified
breakpoint (only) is hit. This can be quite useful: for example, :set stop 1 :continue
effectively disables breakpoint 1, by running :continue (page 74) whenever it is hit
In this case GHCi will still emit a message to say the breakpoint was hit. If you don’t
want such a message, you can use the :disable (page 75) command. What’s more, with
cunning use of :def (page 74) and :cmd (page 73) you can use :set stop (page 81) to
implement conditional breakpoints:

*ghci> :def cond \expr -> return (":cmd if (" ++ expr ++ ") then return \
~"\" else return \":continue\"")
*ghci> :set stop 0 :cond (x < 3)

3.7. GHCi commands 81

GHC User’s Guide Documentation, Release 9.4.8

To ignore breakpoints for a specified number of iterations use the : ignore (page 77) or
the (ignoreCount) parameter of the : continue (page 74) command.
:seti [(option) ...]

Like : set (page 80), but options set with : seti (page 82) affect only expressions and com-
mands typed at the prompt, and not modules loaded with : load (page 78) (in contrast,
options set with :set (page 80) apply everywhere). See Setting options for interactive
evaluation only (page 85).

Without any arguments, displays the current set of options that are applied to expres-
sions and commands typed at the prompt.
:show bindings
Show the bindings made at the prompt and their types.
:show breaks
List the active breakpoints.

:show context
List the active evaluations that are stopped at breakpoints.

:show imports
Show the imports that are currently in force, as created by import and :module (page 79)
commands.

:show modules
Show the list of modules currently loaded.

:show packages
Show the currently active package flags, as well as the list of packages currently loaded.

:show paths
Show the current working directory (as set via : cd (page 73) command), as well as the
list of directories searched for source files (as set by the -i option).

:show language
Show the currently active language flags for source files.

:showi language
Show the currently active language flags for expressions typed at the prompt (see also
:seti (page 82)).

:show [args|prog|prompt|editor|stopl
Displays the specified setting (see :set (page 80)).

:sprint (expr)
Prints a value without forcing its evaluation. :sprint (page 82) is similar to :print
(page 79), with the difference that unevaluated subterms are not bound to new variables,
they are simply denoted by .

:step [(expr)]

Enable all breakpoints and begin evaluating an expression in single-stepping mode. In
this mode evaluation will be stopped after every reduction, allowing local variables to
be inspected. If (expr) is not given, evaluation will resume at the last breakpoint. See
Single-stepping (page 65).

82 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

:steplocal

Enable only breakpoints in the current top-level binding and resume evaluation at
the last breakpoint. Continuation with :steplocal (page 82) is not possible if this
last breakpoint was hit by an error (-fbreak-on-error (page 68)) or an exception
(- fbreak-on-exception (page 68)).

:stepmodule
Enable only breakpoints in the current module and resume evaluation at the last break-
point.

:trace (expr)

Evaluates the given expression (or from the last breakpoint if no expression is given),
and additionally logs the evaluation steps for later inspection using :history (page 76).
See Tracing and history (page 66).

:type (expression)

Infers and prints the type of {(expression), solving constraints and reducing type families
as much as possible. For polymorphic types, it does not instantiate any forall quantified
variables.

*X> :type length
length :: Foldable t == t a -> Int

Type family reduction is skipped if the function is not fully instantiated, as this has been
observed to give more intuitive results. You may want to use :info (page 76) if you are
not applying any arguments, as that will return the original type of the function.

:type +d (expression)

Infers and prints the type of (expression), instantiating all the forall quantifiers, solv-
ing constraints, defaulting, and generalising. In this mode, if the inferred type is
constrained by any interactive class (Num, Show, Eq, Ord, Foldable, or Traversable),
the constrained type variable(s) are defaulted according to the rules described under
ExtendedDefaultRules (page 57). This mode is quite useful when the inferred type is
quite general (such as for foldr) and it may be helpful to see a more concrete instantia-
tion.

*X> :type +d length
length :: [a] -> Int

:type-at (path) (line) (col) (end-line) (end-col) [{(name)]
Reports the inferred type at the given span/position in the module, e.g.:

*X> :type-at X.hs 6 6 6 7 f
Int -> Int

This command is useful when integrating GHCi with text editors and IDEs for providing
a show-type-under-point facility.

The first parameter (path) must be a file path and not a module name. The type of this
path is dependent on how the module was loaded into GHCi: If the module was loaded
by name, then the path name calculated by GHCi as described in Modules vs. filenames
(page 45) must be used. If the module was loaded with an absolute or a relative path,
then the same path must be specified.

The last string parameter is useful for when the span is out of date, i.e. the file changed
and the code has moved. In which case : type-at (page 83) falls back to a general : type
(page 83) like lookup.

3.7. GHCi commands 83

GHC User’s Guide Documentation, Release 9.4.8

The :type-at (page 83) command requires :set +c (page 84) to be set.

:undef (name)
Undefines the user-defined command (name) (see :def (page 74) above).
:unset (option)
Unsets certain options. See The :set and :seti commands (page 84) for a list of available
options.
:uses (module) (line) (col) (end-line) (end-col) [{(name)]
Reports all module-local uses of the thing at the given position in the module, e.g.:

:uses GhciFind.hs 53 66 53 70 name
GhciFind.hs: (46,25)-(46,29)
GhciFind.hs: (47,37)-(47,41)
GhciFind.hs: (53,66)-(53,70)
GhciFind.hs: (57,62)-(57,66)

This command is useful for highlighting and navigating all uses of an identifier in editors
and IDEs.

The :uses (page 84) command requires :set +c (page 84) to be set.

(builtin-command)

Executes the GHCi built-in command (e.g. ::type 3). That is, look up on the list of
builtin commands, excluding defined macros. See also: :def (page 74).

:! {(command)
Executes the shell command (command).

3.8 The :set and :seti commands

The :set (page 80) command sets two types of options: GHCi options, which begin with “+”,
and “command-line” options, which begin with “-“.

Note

At the moment, the :set (page 80) command doesn’t support any kind of quoting in its
arguments: quotes will not be removed and cannot be used to group words together. For
example, :set -DF00='BAR BAZ' will not do what you expect.

3.8.1 GHCi options
GHCi options may be set using :set (page 80) and unset using :unset (page 84).
The available GHCi options are:

:set +c

Collect type and location information after loading modules. The commands :all-types
(page 72), : loc-at (page 78), : type-at (page 83), and :uses (page 84) require +c to be
active.

:set +m

Enable parsing of multiline commands. A multiline command is prompted for when the
current input line contains open layout contexts (see Multiline input (page 50)).

84 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

:set +r

Normally, any evaluation of top-level expressions (otherwise known as CAFs or Constant
Applicative Forms) in loaded modules is retained between evaluations. Turning on +r
causes all evaluation of top-level expressions to be discarded after each evaluation (they
are still retained during a single evaluation).

This option may help if the evaluated top-level expressions are consuming large amounts
of space, or if you need repeatable performance measurements.

:set +s

Display some stats after evaluating each expression, including the elapsed time and num-
ber of bytes allocated. NOTE: the allocation figure is only accurate to the size of the stor-
age manager’s allocation area, because it is calculated at every GC. Hence, you might
see values of zero if no GC has occurred.

:set +t

Display the type of each variable bound after a statement is entered at the prompt. If the
statement is a single expression, then the only variable binding will be for the variable
it.

3.8.2 Setting GHC command-line options in GHCi

Normal GHC command-line options may also be set using :set (page 80). For example, to
turn on -Wmissing-signatures (page 125), you would say:

[ghci> :set -Wmissing-signatures J

Any GHC command-line option that is designated as dynamic (see the table in Flag reference

(page 161)), may be set using :set (page 80). To unset an option, you can set the reverse
option:

[ghci> :set -Wno-incomplete-patterns -XNoMultiParamTypeClasses J

Flag reference (page 161) lists the reverse for each option where applicable.

Certain static options (-package (pkg) (page 262), -I(dir) (page 282), -i(dir)[:(dir)]*
(page 242), and -1 (lib) (page 287) in particular) will also work, but some may not take
effect until the next reload.

3.8.3 Setting options for interactive evaluation only
GHCIi actually maintains two sets of options:
* The loading options apply when loading modules

» The interactive options apply when evaluating expressions and commands typed at the
GHCi prompt.

The :set (page 80) command modifies both, but there is also a : seti (page 82) command (for
“set interactive”) that affects only the interactive options set.

It is often useful to change the interactive options, without having that option apply to loaded
modules too. For example

[:seti -XMonoLocalBinds]

3.8. The :set and :seti commands 85

GHC User’s Guide Documentation, Release 9.4.8

It would be undesirable if MonoLocalBinds (page 540) were to apply to loaded modules too:
that might cause a compilation error, but more commonly it will cause extra recompilation,
because GHC will think that it needs to recompile the module because the flags have changed.

If you are setting language options in your . ghci file, it is good practice to use : seti (page 82)
rather than :set (page 80), unless you really do want them to apply to all modules you load
in GHCi.

The two sets of options can be inspected using the :set (page 80) and :seti (page 82) com-
mands respectively, with no arguments. For example, in a clean GHCi session we might see
something like this:

ghci> :seti

base language is: GH(C2021

with the following modifiers:
-XExtendedDefaultRules
-XNoMonomorphismRestriction

GHCi-specific dynamic flag settings:

other dynamic, non-language, flag settings:
-fexternal-dynamic-refs
-fignore-optim-changes
-fignore-hpc-changes
-fimplicit-import-qualified

warning settings:

The two sets of options are initialised as follows. First, both sets of options are initialised
as described in The .ghci and .haskeline files (page 86). Then the interactive options are
modified as follows:

* The option -XExtendedDefaultRules is enabled, in order to apply special defaulting
rules to expressions typed at the prompt (see Type defaulting in GHCi (page 57)).

» The Monomorphism Restriction is disabled (see Switching off the Monomorphism Re-
striction (page 539)).

3.9 The .ghci and .haskeline files
3.9.1 The .ghci files

When it starts, unless the -ignore-dot-ghci (page 87) flag is given, GHCi reads and executes
commands from the following files, in this order, if they exist:

1. ghcappdata/ghci.conf, where (ghcappdata) depends on your system, but is usually
something like $HOME/ .ghc on Unix or C: /Documents and Settings/user/Application
Data/ghc on Windows.

2. $XDG_CONFIG_HOME/.ghci
3. ./.ghci

The ghci. conf file is most useful for turning on favourite options (e.g. :set +s), and defining
useful macros.
Note

When setting language options in this file it is usually desirable to use :seti (page 82)
rather than :set (page 80) (see Setting options for interactive evaluation only (page 85)).

86 Chapter 3. Using GHCi

GHC User’s Guide Documentation, Release 9.4.8

Placing a .ghci file in a directory with a Haskell project is a useful way to set certain project-
wide options so you don’t have to type them every time you start GHCi: eg. if your project
uses multi-parameter type classes, scoped type variables, and CPP, and has source files in
three subdirectories A, B and C, you might put the following lines in .ghci:

:set -XMultiParamTypeClasses -XScopedTypeVariables -cpp
:set -iA:B:C

(Note that strictly speaking the -1 (page 242) flag is a static one, but in fact it works to set it
using :set (page 80) like this. The changes won’t take effect until the next : load (page 78),
though.)

Warning

Sourcing untrusted ./.ghci files is a security risk. They can contain arbitrary commands
that will be executed as the user. Use :set local-config (page 80) to inhibit the process-
ing of ./.ghci files.

Once you have a library of GHCi macros, you may want to source them from separate files, or
you may want to source your .ghci file into your running GHCi session while debugging it

[:def source readFile]

With this macro defined in your .ghci file, you can use :source filetoread GHCi commands
from file. You can find (and contribute!-) other suggestions for .ghci files on this Haskell
wiki page: GHC/GHCIi

Additionally, any files specified with -ghci-script (page 87) flags will be read after the stan-
dard files, allowing the use of custom .ghci files.

Two command-line options control whether the startup files files are read:
-ignore-dot-ghci

Don’t read either ./.ghci or the other startup files when starting up.
-ghci-script

Read a specific file after the usual startup files. May be specified repeatedly for multiple
inputs. -ignore-dot-ghci (page 87) does not apply to these files.

When defining GHCi macros, there is some important behavior you should be aware of when
names may conflict with built-in commands, especially regarding tab completion.

For example, consider if you had a macro named :time and in the shell, typed :t 3 — what
should happen? The current algorithm we use for completing commands is:

1. First, look up an exact match on the name from the defined macros.
2. Look for the exact match on the name in the built-in command list.

3. Do a prefix lookup on the list of built-in commands - if a built-in command matches, but
a macro is defined with the same name as the built-in defined, pick the macro.

4. Do a prefix lookup on the list of built-in commands.
5. Do a prefix lookup on the list of defined macros.

Here are some examples:

3.9. The .ghci and .haskeline files 87

https://haskell.org/haskellwiki/GHC/GHCi

GHC User’s Guide Documentation, Release 9.4.8

1. You have a macro :time and enter :t 3
You get :type 3

2. You have a macro :type and enter :t 3
You get :type 3 with your defined macro, not the builtin.

3. You have a macro :time and a macro :type, and enter :t 3
You get :type 3 with your defined macro.

When giving priority to built-in commands, you can use :: (builtin-command) (page 84),
like : :type 3.

3.9.2 The .haskeline file

GHCi uses Haskeline under the hood. You can configure it to, among other things, prune
duplicates from GHCi history. See: Haskeline user preferences.

3.10 Compiling to object code inside GHCi

By default, GHCi compiles Haskell source code into byte-code that is interpreted by the run-
time system. GHCIi can also compile Haskell code to object code: to turn on this feature, use
the -fobject-code (page 286) flag either on the command line or with :set (page 80) (the
option - fbyte-code (page 286) restores byte-code compilation again). Compiling to object
code takes longer, but typically the code will execute 10-20 times faster than byte-code.

Compiling to object code inside GHCIi is particularly useful if you are developing a compiled
application, because the : reload (page 80) command typically runs much faster than restart-
ing GHC with --make (page 96) from the command-line, because all the interface files are
already cached in memory.

There are disadvantages to compiling to object-code: you can’t set breakpoints in object-
code modules, for example. Only the exports of an object-code module will be visible in GHC;],
rather than all top-level bindings as in interpreted modules.

3.11 Running the interpreter in a separate process

Normally GHCi runs the interpreted code in the same process as GHC itself, on top of the same
RTS and sharing the same heap. However, if the flag - fexternal-interpreter (page 88) is
given, then GHC will spawn a separate process for running interpreted code, and communi-
cate with it using messages over a pipe.

-fexternal-interpreter

Since
8.0.1

Run interpreted code (for GHCi, Template Haskell, Quasi-quoting, or Annotations) in a
separate process. The interpreter will run in profiling mode if -prof (page 660) is in
effect, and in dynamically-linked mode if -dynamic (page 288) is in effect.

There are a couple of caveats that will hopefully be removed in the future: this option
is currently not implemented on Windows (it is a no-op), and the external interpreter
does not support the GHCi debugger, so breakpoints and single-stepping don’t work
with - fexternal-interpreter (page 88).

88 Chapter 3. Using GHCi

https://hackage.haskell.org/package/haskeline
https://github.com/judah/haskeline/wiki/UserPreferences

GHC User’s Guide Documentation, Release 9.4.8

See also the -pgmi (cmd) (page 280) (Replacing the program for one or more phases
(page 279)) and -opti (option) (page 282) (Forcing options to a particular phase
(page 281)) flags.

Why might we want to do this? The main reason is that the RTS running the interpreted code
can be a different flavour (profiling or dynamically-linked) from GHC itself. So for example:

* We can use the profiler to collect stack traces when using GHCi (see Stack Traces in
GHCi (page 59)).

* When compiling Template Haskell code with -prof (page 660) we don’t need to compile
the modules without -prof (page 660) first (see Using Template Haskell with Profiling
(page 550)) because we can run the profiled object code in the interpreter.

This feature is experimental in GHC 8.0.x, but it may become the default in future releases.

3.12 Running the interpreter on a different host

When using the flag - fexternal-interpreter (page 88) GHC will spawn and communicate
with the separate process using pipes. There are scenarios (e.g. when cross compiling) where
it is favourable to have the communication happen over the network. GHC provides two
utilities for this, which can be found in the utils directory.

* remote-iserv needs to be built with the cross compiler to be executed on the remote
host. Or in the case of using it on the same host the stage2 compiler will do as well.

* iserv-proxy needs to be built on the build machine by the build compiler.

After starting remote-iserv (tmp dir) (port) on the target and providing it with a tempo-
rary folder (where it will copy the necessary libraries to load to) and port it will listen for the
proxy to connect.

Providing -pgmi (/path/to/iserv-proxy) (page 280) and -opti (slave-ip) -opti
(slave-port) [-opti -v] (page 282)in addition to - fexternal-interpreter (page 88) will
then make ghc go through the proxy instead.

There are some limitations when using this. File and process IO will be executed on the target.
As such packages like git-embed, file-embed and others might not behave as expected if the
target and host do not share the same filesystem.

3.13 Building GHCi libraries

When invoked in the static way, GHCi will use the GHC RTS’s static runtime linker to load
object files for imported modules when available. However, when these modules are built
with -split-sections (page 288) this linking can be quite expensive. To reduce this cost,
package managers and build systems may opt to produce a pre-linked GHCi object using
the --merge-objs (page 97) mode. This merges the per-module objects into a single object,
collapsing function sections into a single text section which can be efficiently loaded by the
runtime linker.

3.14 FAQ and Things To Watch Out For

The interpreter can’t load modules with foreign export declarations!
Unfortunately not. We haven’t implemented it yet. Please compile any offending modules
by hand before loading them into GHCi.

-0 (page 139) doesn’t work with GHCi!

3.12. Running the interpreter on a different host 89

GHC User’s Guide Documentation, Release 9.4.8

For technical reasons, the bytecode compiler doesn’t interact well with one of the
optimisation passes, so we have disabled optimisation when using the interpreter.
This isn’t a great loss: you’ll get a much bigger win by compiling the bits of your
code that need to go fast, rather than interpreting them with optimisation turned
on.

Modules using unboxed tuples or sums will automatically enable - fobject-code (page 286)

The bytecode interpreter doesn’t support most uses of unboxed tuples or sums, so
GHCi will automatically compile these modules, and all modules they depend on, to
object code instead of bytecode.

GHCi checks for the presence of unboxed tuples and sums in a somewhat con-
servative fashion: it simply checks to see if a module enables the UnboxedTuples
(page 567) or UnboxedSums (page 568) language extensions. It is not always the case
that code which enables UnboxedTuples (page 567) or UnboxedSums (page 568) re-
quires - fobject-code (page 286), so if you really want to compile UnboxedTuples
(page 567)/UnboxedSums (page 568)-using code to bytecode, you can do so explicitly
by enabling the - fbyte-code (page 286) flag. If you do this, do note that bytecode
interpreter will throw an error if it encounters unboxed tuple/sum-related code that
it cannot handle.

Incidentally, the previous point, that -0 (page 139) is incompatible with GHCI, is
because the bytecode compiler can’t deal with unboxed tuples or sums.

Concurrent threads don’t carry on running when GHCIi is waiting for input.
This should work, as long as your GHCi was built with the - threaded (page 290) switch,
which is the default. Consult whoever supplied your GHCi installation.

After using getContents, I can’t use stdin, until I do :1load or :reload
This is the defined behaviour of getContents: it puts the stdin Handle in a state known as
semi-closed, wherein any further I/O operations on it are forbidden. Because 1/O state
is retained between computations, the semi-closed state persists until the next : load
(page 78) or :reload (page 80) command.

You can make stdin reset itself after every evaluation by giving GHCi the command : set
+r. This works because stdin is just a top-level expression that can be reverted to its
unevaluated state in the same way as any other top-level expression (CAF).

I can’t use Control-C to interrupt computations in GHCi on Windows.
See Running GHCi on Windows (page 707).

The default buffering mode is different in GHCi to GHC.
In GHC, the stdout handle is line-buffered by default. However, in GHCi we turn off the
buffering on stdout, because this is normally what you want in an interpreter: output
appears as it is generated.

If you want line-buffered behaviour, as in GHC, you can start your program thus:

[main = do { hSetBuffering stdout LineBuffering; ... }

90 Chapter 3. Using GHCi

CHAPTER
FOUR

USING RUNGHC

runghc allows you to run Haskell programs using the interpreter, instead of having to compile
them first.

4.1 Usage

The runghc command-line looks like:

[runghc [runghc flags] [GHC flags] module [program args]]

Any flags not recognized by runghc are automatically passed to GHC. If a flag is recognized by
both runghc and GHC but you want to pass it to GHC then you can place it after a - - separator.
Flags after the separator are treated as GHC only flags. Alternatively you can use the runghc
option - -ghc-arg=<arg> to pass any flag or argument directly to GHC.

module could be a Haskell source filename with or without the extension. If for some reason
the filename starts with a - you can use a second - - to indicate the end of flags. Anything
following a second - - will be considered a program file or module name followed by its argu-
ments. For example:

* runghc -- -- -hello.hs

4.2 runghc flags

runghc accepts the following flags:

» -f /path/to/ghc: tell runghc the path of GHC executable to use to run the program.
By default runghc will search for GHC in the directories in the system search path.

* --ghc-arg=<arg>: Pass an option or argument to GHC
* --help: print usage information.

e --version: print version information.

4.3 GHC Flags

As discussed earlier, use -- or --ghc-arg=<arg> to disambiguate GHC flags when needed.
For example, - f is recognized by runghc, therefore to pass - fliberate-case to GHC use any
of the following:

* runghc -- -fliberate-case

* runghc --ghc-arg=-fliberate-case

91

GHC User’s Guide Documentation, Release 9.4.8

Note that any non-flag arguments are never passed to GHC. An unused non-flag argument
will be considered as the name of the program to run. If a GHC flag takes an argument use
--ghc-arg=<arg> to pass the argument to GHC. For example, if you want to pass -package

foo to GHC use any of the following:
* runghc -package --ghc-arg=foo Main.hs
* runghc --ghc-arg=-package --ghc-arg=foo Main.hs

92 Chapter 4. Using runghc

CHAPTER
FIVE

USING GHC

5.1 Using GHC

5.1.1 Getting started: compiling programs

In this chapter you’ll find a complete reference to the GHC command-line syntax, including
all 400+ flags. It’s a large and complex system, and there are lots of details, so it can be quite
hard to figure out how to get started. With that in mind, this introductory section provides
a quick introduction to the basic usage of GHC for compiling a Haskell program, before the
following sections dive into the full syntax.

Let’s create a Hello World program, and compile and run it. First, create a file hello.hs
containing the Haskell code:

[main = putStrLn "Hello, World!"]

To compile the program, use GHC like this:
[$ ghc hello.hs]

(where $ represents the prompt: don’t type it). GHC will compile the source file hello.hs,
producing an object file hello.o and an interface file hello.hi, and then it will link the
object file to the libraries that come with GHC to produce an executable called hello on
Unix/Linux/Mac, or hello.exe on Windows.

By default GHC will be very quiet about what it is doing, only printing error messages. If
you want to see in more detail what’s going on behind the scenes, add -v (page 103) to the
command line.

Then we can run the program like this:

$./hello
Hello World!

If your program contains multiple modules, then you only need to tell GHC the name of the
source file containing the Main module, and GHC will examine the import declarations to
find the other modules that make up the program and find their source files. This means that,
with the exception of the Main module, every source file should be named after the module
name that it contains (with dots replaced by directory separators). For example, the module
Data.Person would be in the file Data/Person. hs on Unix/Linux/Mac, or Data\Person.hs on
Windows.

93

GHC User’s Guide Documentation, Release 9.4.8

5.1.2 Options overview

GHC'’s behaviour is controlled by options, which for historical reasons are also sometimes
referred to as command-line flags or arguments. Options can be specified in three ways:
5.1.2.1 Command-line arguments

An invocation of GHC takes the following form:

[ghc [argument...] J

Command-line arguments are either options or file names.

Command-line options begin with -. They may not be grouped: -vO0 is different from -v -0.
Options need not precede filenames: e.g., ghc *.0 -0 foo. All options are processed and
then applied to all files; you cannot, for example, invoke ghc -c¢ -01 Foo.hs -02 Bar.hs to
apply different optimisation levels to the files Foo.hs and Bar.hs.

In addition to passing arguments via the command-line, arguments can be passed via GNU-
style response files. For instance,

$ cat response-file
-01

Hello.hs

-0 Hello

$ ghc @response-file

Note

Note that command-line options are order-dependent, with arguments being evaluated
from left-to-right. This can have seemingly strange effects in the presence of flag impli-
cation. For instance, consider - fno-specialise (page 151) and -01 (page 139) (which
implies - fspecialise (page 151)). These two command lines mean very different things:

-fno-specialise -01
-fspecialise will be enabled as the -fno-specialise is overridden by the -01.
-01 -fno-specialise

-fspecialise will not be enabled, since the -fno-specialise overrides the
-fspecialise implied by -01.

5.1.2.2 Command line options in source files

Sometimes it is useful to make the connection between a source file and the command-line
options it requires quite tight. For instance, if a Haskell source file deliberately uses name
shadowing, it should be compiled with the -Wno-name-shadowing option. Rather than main-
taining the list of per-file options in a Makefile, it is possible to do this directly in the source
file using the OPTIONS GHC pragma (page 615)

{-# OPTIONS GHC -Wno-name-shadowing #-}
module X where

OPTIONS GHC is a file-header pragma (see OPTIONS GHC pragma (page 615)).

94 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Only dynamic flags can be used in an OPTIONS GHC pragma (see Dynamic and Mode options
(page 95)).

Note that your command shell does not get to the source file options, they are just included
literally in the array of command-line arguments the compiler maintains internally, so you’ll
be desperately disappointed if you try to glob etc. inside OPTIONS GHC.

Note

The contents of OPTIONS GHC are appended to the command-line options, so options given
in the source file override those given on the command-line.

It is not recommended to move all the contents of your Makefiles into your source files, but in
some circumstances, the OPTIONS GHC pragma is the Right Thing. (If you use -keep-hc-file
(page 245) and have OPTION flags in your module, the OPTIONS GHC will get put into the gen-
erated .hc file).

5.1.2.3 Setting options in GHCi

Options may also be modified from within GHCIi, using the :set (page 80) command.

5.1.3 Dynamic and Mode options
Each of GHC’s command line options is classified as dynamic or mode:

Mode: A mode may be used on the command line only. You can pass only one mode
flag. For example, - -make (page 96) or -E (page 96). The available modes are listed
in Modes of operation (page 96).

Dynamic: A dynamic flag may be used on the command line, in a OPTIONS GHC
pragma in a source file, or set using : set (page 80) in GHCIi.

The flag reference tables (Flag reference (page 161)) lists the status of each flag.

5.1.4 Meaningful file suffixes

File names with “meaningful” suffixes (e.g., . lhs or .0) cause the “right thing” to happen to
those files.

.hs
A Haskell module.

.lhs
A “literate Haskell” module.

.hspp
A file created by the preprocessor.

.hi
A Haskell interface file, probably compiler-generated.

.hie
An extended Haskell interface file, produced by the Haskell compiler.

.hc
Intermediate C file produced by the Haskell compiler.

A C file not produced by the Haskell compiler.

5.1. Using GHC 95

GHC User’s Guide Documentation, Release 9.4.8

1
An llvm-intermediate-language source file, usually produced by the compiler.

.bc
An llvm-intermediate-language bitcode file, usually produced by the compiler.

An assembly-language source file, usually produced by the compiler.

An object file, produced by an assembler.

Files with other suffixes (or without suffixes) are passed straight to the linker.

5.1.5 Modes of operation

GHC'’s behaviour is firstly controlled by a mode flag. Only one of these flags may be given,
but it does not necessarily need to be the first option on the command-line. For instance,

[$ ghc Main.hs --make -o my-application]

If no mode flag is present, then GHC will enter --make (page 96) mode (Using ghc --make
(page 99)) if there are any Haskell source files given on the command line, or else it will link
the objects named on the command line to produce an executable.

The available mode flags are:

--interactive

Interactive mode, which is also available as ghci. Interactive mode is described in more
detail in Using GHCi (page 43).

--run (file)
Run a script’s main entry-point. Similar to runghc this will by default use the bytecode
interpreter. If the command-line contains a - - argument then all arguments that follow
will be passed to the script. All arguments that precede -- are interpreted as GHC
arguments.

--make

In this mode, GHC will build a multi-module Haskell program automatically, figuring out
dependencies for itself. If you have a straightforward Haskell program, this is likely to be
much easier, and faster, than using make. Make mode is described in Using ghc --make
(page 99).

This mode is the default if there are any Haskell source files mentioned on the command
line, and in this case the - -make (page 96) option can be omitted.
-e (expr)

Expression-evaluation mode. This is very similar to interactive mode, except that there
is a single expression to evaluate ({expr)) which is given on the command line. This flag
may be given multiple times, in which case each expression is evaluated sequentially.
See Expression evaluation mode (page 102) for more details.

Stop after preprocessing (.hspp file)

Stop after generating C (. hc file)

96 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Stop after generating assembly (. s file)

Stop after generating object (.o0) file

This is the traditional batch-compiler mode, in which GHC can compile source files one at
a time, or link objects together into an executable. See Batch compiler mode (page 102).
--merge-objs

Merge a set of static object files into a library optimised for loading in GHCi. See Building
GHC:i libraries (page 89).

Dependency-generation mode. In this mode, GHC can be used to generate dependency

information suitable for use in a Makefile. See Dependency generation (page 257).
--frontend (module)

Run GHC using the given frontend plugin. See Frontend plugins (page 651) for details.

-shared
Create a shared object (or, on Windows, DLL). See Creating a DLL (page 710).
--help
-?
Cause GHC to spew a long usage message to standard output and then exit.
--show-iface (file)
Read the interface in (file) and dump it as text to stdout. For example ghc --show-iface
M.hi.
--supported-extensions
- -supported-languages
Print the supported language extensions.
--show-options
Print the supported command line options. This flag can be used for autocompletion in
a shell.
--info
Print information about the compiler.
--version
-V
Print a one-line string including GHC’s version number.
--numeric-version
Print GHC’s numeric version number only.

--print-booter-version
Print the numeric version of the GHC binary used to bootstrap the build of this compiler.

--print-build-platform

Print the target string of the build platform, on which GHC was built, as generated by
GNU Autotools. The format is cpu-manufacturer-operating system-(kernel), e.qg.,
x86 64-unknown-linux.

5.1. Using GHC 97

GHC User’s Guide Documentation, Release 9.4.8

--print-c-compiler-flags
List the flags passed to the C compiler during GHC build.

--print-c-compiler-link-flags
List the flags passed to the C compiler for the linking step during GHC build.

--print-debug-on
Print True if GHC was built with -DDebug flag. This enables assertions and extra debug
code. The flag can be set in GhcStagelHcOpts and/or GhcStage2HcOpts and is automat-
ically set for devell and devel?2 build flavors.

--print-global-package-db
Print the path to GHC’s global package database directory. A package database stores
details about installed packages as a directory containing a file for each package. This
flag prints the path to the global database shipped with GHC, and looks something like
/usr/1lib/ghc/package.conf.d on Unix. There may be other package databases, e.g.,
the user package databse. For more details see Package Databases (page 265).

--print-have-interpreter
Print YES if GHC was compiled to include the interpreter, NO otherwise. If this GHC does
not have the interpreter included, running it in interactive mode (see --interactive
(page 96)) will throw an error. This only pertains the use of GHC interactively, not any
separate GHCIi binaries (see Using GHCi (page 43)).

--print-have-native-code-generator
Print YES if native code generator supports the target platform, NO otherwise. (See Na-
tive Code Generator (-fasm) (page 278))

--print-host-platform

Print the target string of the host platform, i.e., the one on which GHC
is supposed to run, as generated by GNU Autotools. The format is
cpu-manufacturer-operating system-(kernel), e.g., x86 64-unknown-1linux.

--print-leading-underscore
Print YES if GHC was compiled to use symbols with leading underscores in object files,
NO otherwise. This is usually atarget platform dependent.

--print-libdir
Print the path to GHC’s library directory. This is the top of the directory tree containing
GHC'’s libraries, interfaces, and include files (usually something like /usr/local/lib/
ghc-5.04 on Unix). This is the value of $libdir in the package configuration file (see
Packages (page 260)).

--print-1d-flags
Print linke flags used to compile GHC.

--print-object-splitting-supported
Print YES if GHC was compiled with support for splitting generated object files into

smaller objects, NO otherwise. This feature uses platform specific techniques and may
not be available on all platforms. See -split-objs (page 287) for details.

--print-project-git-commit-id
Print the Git commit id from which this GHC was built. This can be used to trace the

current binary back to a specific revision, which is especially useful during development
on GHC itself. It is set by the configure script.

98 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

--print-project-version
Print the version set in the configure script during build. This is simply the GHC version.
--print-rts-ways

Packages, like the Runtime System, can be built in a number of ways: - profiling - with
profiling support - dynamic - with dynamic linking - logging - RTS event logging - threaded
- mulithreaded RTS - debug - RTS with debug information

Various combinations of these flavours are possible.
--print-stage
GHC is built using GHC itself and this build happens in stages, which are numbered.

* Stage 0 is the GHC you have installed. The “GHC you have installed” is also called
“the bootstrap compiler”.

* Stage 1 is the first GHC we build, using stage 0. Stage 1 is then used to build the
packages.

* Stage 2 is the second GHC we build, using stage 1. This is the one we normally
install when you say make install.

* Stage 3 is optional, but is sometimes built to test stage 2.
Stage 1 does not support interactive execution (GHCi) and Template Haskell.
--print-support-smp
Print YES if GHC was built with multiporcessor support, NO otherwise.

--print-tables-next-to-code

Print YES if GHC was built with the flag - -enable-tables-next-to-code, NO otherwise.
This option is on by default, as it generates a more efficient code layout.

--print-target-platform

Print the target string of the target platform, i.e., the one on which gen-
erated binaries will run, as generated by GNU Autotools. The format is
cpu-manufacturer-operating system-(kernel), e.g., x86 64-unknown-1linux.

--print-unregisterised

Print YES if this GHC was built in unregisterised mode, NO otherwise. “Unregisterised”
means that GHC will disable most platform-specific tricks and optimisations. Only
the LLVM and C code generators will be available. See Unregisterised compilation
(page 279) for more details.

5.1.5.1 Using ghc --make

In this mode, GHC will build a multi-module Haskell program by following dependencies from
one or more root modules (usually just Main). For example, if your Main module is in a file
called Main.hs, you could compile and link the program like this:

[ghc --make Main.hs]

In fact, GHC enters make mode automatically if there are any Haskell source files on the
command line and no other mode is specified, so in this case we could just type

[ghc Main.hs]

Any number of source file names or module names may be specified; GHC will figure out all
the modules in the program by following the imports from these initial modules. It will then

5.1. Using GHC 99

GHC User’s Guide Documentation, Release 9.4.8

attempt to compile each module which is out of date, and finally, if there is a Main module,
the program will also be linked into an executable.

The main advantages to using ghc - -make over traditional Makefiles are:

* GHC doesn’t have to be restarted for each compilation, which means it can cache infor-
mation between compilations. Compiling a multi-module program with ghc --make can
be up to twice as fast as running ghc individually on each source file.

* You don’t have to write a Makefile.

* GHC re-calculates the dependencies each time it is invoked, so the dependencies never
get out of sync with the source.

* Using the -j[(n)] (page 100) flag, you can compile modules in parallel. Specify -j
(n) to compile (n) jobs in parallel. If (n) is omitted, then it defaults to the number of
processors.

Any of the command-line options described in the rest of this chapter can be used with - -make,
but note that any options you give on the command line will apply to all the source files
compiled, so if you want any options to apply to a single source file only, you’ll need to use an
OPTIONS GHC pragma (see Command line options in source files (page 94)).

If the program needs to be linked with additional objects (say, some auxiliary C code), then
the object files can be given on the command line and GHC will include them when linking
the executable.

For backward compatibility with existing make scripts, when used in combination with -c¢
(page 97), the linking phase is omitted (same as - -make -no-1ink).

Note that GHC can only follow dependencies if it has the source file available, so if your
program includes a module for which there is no source file, even if you have an object and
an interface file for the module, then GHC will complain. The exception to this rule is for
package modules, which may or may not have source files.

The source files for the program don’t all need to be in the same directory; the -1 (page 242)
option can be used to add directories to the search path (see The search path (page 242)).

-j[(n)]
Perform compilation in parallel when possible. GHC will use up to (N) threads during
compilation. If N is omitted, then it defaults to the number of processors. Note that
compilation of a module may not begin until its dependencies have been built.

5.1.5.2 Multiple Home Units

The compiler also has support for building multiple units in a single compiler invocation. In
modern projects it is common to work on multiple interdependent packages at once, using
the support for multiple home units you can load all these local packages into one ghc session
and quickly get feedback about how changes affect other dependent packages.

In order to specify multiple units, the -unit @(filename) (page 101) is given multiple times
with a response file containing the arguments for each unit. The response file contains a
newline separated list of arguments.

[ghc -unit @unitA -unit @unitB]

where the unitA response file contains the normal arguments that you would pass to - -make
mode.

100 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

-this-unit-id a-0.1.0.0
-i

-isrc

Al

A2

Then when the compiler starts in - -make mode it will compile both units a and b.

There is also very basic support for multple home units in GHCi, at the moment you can start
a GHCi session with multiple units but only the : reload (page 80) is supported.

-unit @(filename)
This option is passed multiple times to inform the compiler about all the home units
which it will compile. The options for each unit are supplied in a response file which
contains a newline separated list of normal arguments.

There are a few extra flags which have been introduced to make working with multiple units
easier.

-working-dir (dir)
It is common to assume that a package is compiled in the directory where its cabal file
resides. Thus, all paths used in the compiler are assumed to be relative to this directory.
When there are multiple home units the compiler is often not operating in the standard
directory and instead where the cabal.project file is located. In this case the -working-dir
option can be passed which specifies the path from the current directory to the directory
the unit assumes to be it’s root, normally the directory which contains the cabal file.

When the flag is passed, any relative paths used by the compiler are offset by the working
directory. Notably this includes -1 (page 242) and -I(dir) (page 282) flags.

This option can also be queried by the getPackageRoot Template Haskell function. It is
intended to be used with helper functions such as makeRelativeToProject which make
relative filepaths relative to the compilation directory rather than the directory which
contains the .cabal file.

-this-package-name (unit-id)
This flag papers over the awkward interaction of the PackageImports (page 356) and
multiple home units. When using PackageImports you can specify the name of the pack-

age in an import to disambiguate between modules which appear in multiple packages
with the same name.

This flag allows a home unit to be given a package name so that you can also disambiguate

between multiple home units which provide modules with the same name.
-hidden-module (module name)

This flag can be supplied multiple times in order to specify which modules in a home unit

should not be visible outside of the unit it belongs to.

The main use of this flag is to be able to recreate the difference between an exposed and
hidden module for installed packages.

-reexported-module (module name)

This flag can be supplied multiple times in order to specify which modules are not defined
in a unit but should be reexported. The effect is that other units will see this module as
if it was defined in this unit.

5.1. Using GHC 101

GHC User’s Guide Documentation, Release 9.4.8

The use of this flag is to be able to replicate the reexported modules feature of packages
with multiple home units.

The home unit closure requirement

There is one very important closure property which you must ensure when using multiple
home units.

Any external unit must not depend on any home unit.

This closure property is checked by the compiler but it’s up to the tool invoking GHC to ensure
that the supplied list of home units obey this invariant.

For example, if we have three units, p, q and r, where p depends on q and q depends on r,
then the closure property states that if we load p and r as home units then we must also load
g, because q depends on the home unit r and we need q because p depends on it.

5.1.5.3 Expression evaluation mode

This mode is very similar to interactive mode, except that there is a single expression to
evaluate which is specified on the command line as an argument to the -e option:

[ghc -e expr]

Haskell source files may be named on the command line, and they will be loaded exactly as
in interactive mode. The expression is evaluated in the context of the loaded modules.

For example, to load and run a Haskell program containing a module Main, we might say:

[ghc -e Main.main Main.hs J

or we can just use this mode to evaluate expressions in the context of the Prelude:

$ ghc -e "interact (unlines.map reverse.lines)"
hello
olleh

5.1.5.4 Batch compiler mode
In batch mode, GHC will compile one or more source files given on the command line.

The first phase to run is determined by each input-file suffix, and the last phase is determined
by a flag. If no relevant flag is present, then go all the way through to linking. This table
summarises:

Phase of the compilation Suffix saying “start Flagsaying “stop af- (suffix of) output

system here” ter” file
literate pre-processor .lhs .hs

C pre-processor (opt.) .hs (with -cpp) -E .hspp
Haskell compiler .hs -C, -S .hc, .s
C compiler (opt.) .hcor.c -S .S
assembler .S -C .0
linker (other) a.out

Thus, a common invocation would be:

102 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

[ghc -c Foo.hs]

to compile the Haskell source file Foo.hs to an object file Foo.o.

Note

What the Haskell compiler proper produces depends on what backend code generator is
used. See GHC Backends (page 278) for more details.

Note

Pre-processing is optional, the -cpp (page 282) flag turns it on. See Options affecting the
C pre-processor (page 282) for more details.

Note

The option -E (page 96) runs just the pre-processing passes of the compiler, dumping the
result in a file.

Note

The option -C (page 96) is only available when GHC is built in unregisterised mode. See
Unregisterised compilation (page 279) for more details.

Overriding the default behaviour for a file

As described above, the way in which a file is processed by GHC depends on its suffix. This
behaviour can be overridden using the -x (suffix) (page 103) option:

-x (suffix)
Causes all files following this option on the command line to be processed as if they had

the suffix (suffix). For example, to compile a Haskell module in the file M.my-hs, use ghc
-C -x hs M.my-hs.

5.1.6 Verbosity options

See also the --help, --version, --numeric-version, and --print-1libdir modes in Modes
of operation (page 96).
-V
The -v (page 103) option makes GHC verbose: it reports its version number and shows
(on stderr) exactly how it invokes each phase of the compilation system. Moreover, it

passes the -v flag to most phases; each reports its version number (and possibly some
other information).

Please, oh please, use the -v option when reporting bugs! Knowing that you ran the
right bits in the right order is always the first thing we want to verify.

5.1. Using GHC 103

GHC User’s Guide Documentation, Release 9.4.8

-v{n)
To provide more control over the compiler’s verbosity, the -v flag takes an optional nu-
meric argument. Specifying -v on its own is equivalent to -v3, and the other levels have
the following meanings:

-vO
Disable all non-essential messages (this is the default).

-vl
Minimal verbosity: print one line per compilation (this is the default when - -make
(page 96) or - -interactive (page 96) is on).

-v2
Print the name of each compilation phase as it is executed. (equivalent to
-dshow-passes (page 298)).

-v3
The same as -v2, except that in addition the full command line (if appropriate) for
each compilation phase is also printed.

-v4
The same as -v3 except that the intermediate program representation after each
compilation phase is also printed (excluding preprocessed and C/assembly files).
-fprint-potential-instances
When GHC can't find an instance for a class, it displays a short list of some in the in-
stances it knows about. With this flag it prints all the instances it knows about.
-fhide-source-paths

Starting with minimal verbosity (-v1, see -v (page 103)), GHC displays the name, the
source path and the target path of each compiled module. This flag can be used to reduce
GHC'’s output by hiding source paths and target paths.

The following flags control the way in which GHC displays types in error messages and in
GHCi:
-fprint-unicode-syntax
When enabled GHC prints type signatures using the unicode symbols from the
UnicodeSyntax (page 315) extension. For instance,

ghci> :set -fprint-unicode-syntax
ghci> :t +v (>>)
(>>) * Monad m=Vab. ma—-mb-—-mb

-fprint-explicit-foralls
Using - fprint-explicit-foralls (page 104) makes GHC print explicit forall quantifi-
cation at the top level of a type; normally this is suppressed. For example, in GHCi:

ghci> let f x = x

ghci> :t f

f::ra->a

ghci> :set -fprint-explicit-foralls
ghci> :t f

f :: forall a. a -> a

L

However, regardless of the flag setting, the quantifiers are printed under these circum-
stances:

104 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

* For nested foralls, e.g.

ghci> :t GHC.ST.runST
GHC.ST.runST :: (forall s. GHC.ST.ST s a) -> a

* If any of the quantified type variables has a kind that mentions a kind variable, e.g.

ghci> :i Data.Type.Equality.sym
Data.Type.Equality.sym ::
forall k (a :: k) (b :: k).
(a Data.Type.Equality.:~: b) -> b Data.Type.Equality.:~: a
-- Defined in Data.Type.Equality

-fprint-explicit-kinds
Using - fprint-explicit-kinds (page 105) makes GHC print kind arguments in types,
which are normally suppressed. This can be important when you are using kind polymor-
phism. For example:

ghci> :set -XPolyKinds

ghci> data T a (b :: 1) = MKT

ghci> :t MKT

MKT :: forall kK 1 (a :: k) (b :: 1). Tab

ghci> :set -fprint-explicit-kinds

ghci> :t MKT

MKT :: forall k 1 (a :: k) (b :: 1). T @k} @l a b
ghci> :set -XNoPolyKinds

ghci> :t MKT

MKT :: T @{*} @* a b

In the output above, observe that T has two kind variables (k and 1) and two type vari-
ables (a and b). Note that k is an inferred variable and 1 is a specified variable (see
Inferred vs. specified type variables (page 418)), so as a result, they are displayed using
slightly different syntax in the type T @{k} @l a b. The application of 1 (with @l) is the
standard syntax for visible type application (see Visible type application (page 418)). The
application of k (with @{k}), however, uses a hypothetical syntax for visible type applica-
tion of inferred type variables. This syntax is not currently exposed to the programmer,
but it is nevertheless displayed when - fprint-explicit-kinds (page 105) is enabled.

-fprint-explicit-coercions
Using -fprint-explicit-coercions (page 105) makes GHC print coercions in types.
When trying to prove the equality between types of different kinds, GHC uses type-level
coercions. Users will rarely need to see these, as they are meant to be internal.
-fprint-axiom-incomps
Using -fprint-axiom-incomps (page 105) tells GHC to display incompatibilities be-
tween closed type families’ equations, whenever they are printed by :info (page 76)
or --show-iface (file) (page 97).

(ghci> :1 Data.Type.Equality.==
type family (==) (a :: k) (b :: k) :: Bool

where
(==) (f a) (g b) =(f ==g) & (a == b)
(==) a a = 'True
(==) 1 2 = 'False

(continues on next page)

5.1. Using GHC 105

GHC User’s Guide Documentation, Release 9.4.8

(continued from previous page)
ghci> :set -fprint-axiom-incomps
ghci> :1i Data.Type.Equality.==
type family (==) (a :: k) (b :: k) :: Bool
where
{- #0 -} (==) (f a) (g b) = (f == g) && (a == b)
{- #1 -} (==) a a = 'True
-- incompatible with: #0
{- #2 -} (==) 1 2 = 'False
-- incompatible with: #1, #0

L

The equations are numbered starting from 0, and the comment after each equation refers
to all preceding equations it is incompatible with.

-fprint-equality-relations

Using -fprint-equality-relations (page 106) tells GHC to distinguish between its
equality relations when printing. For example, ~ is homogeneous lifted equality (the
kinds of its arguments are the same) while ~~ is heterogeneous lifted equality (the
kinds of its arguments might be different) and ~# is heterogeneous unlifted equal-
ity, the internal equality relation used in GHC'’s solver. Generally, users should not
need to worry about the subtleties here; ~ is probably what you want. Without
-fprint-equality-relations (page 106), GHC prints all of these as ~. See also Equality
constraints (page 514).

-fprint-expanded-synonyms

When enabled, GHC also prints type-synonym-expanded types in type errors. For exam-
ple, with this type synonyms:

rtype Foo = Int
type Bar = Bool
type MyBarST s = ST s Bar

This error message:

‘Couldn't match type 'Int' with 'Bool’
Expected type: ST s Foo
Actual type: MyBarST s

Becomes this:

Couldn't match type 'Int' with 'Bool’
Expected type: ST s Foo
Actual type: MyBarST s
Type synonyms expanded:
Expected type: ST s Int
Actual type: ST s Bool

L

-fprint-typechecker-elaboration

When enabled, GHC also prints extra information from the typechecker in warnings. For
example:

main :: IO ()

main = do
return $ let a = "hello" in a
return ()

106

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

This warning message:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying

‘ <- ($) return let a = "hello" in a’
or by using the flag -fno-warn-unused-do-bind

Becomes this:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying
<= (9)
return
let
AbsBinds [] []
{Exports: [a <= a
<>]
Exported types: a :: [Char]
[LclId, Str=DmdTypel]
Binds: a = "hello"}
in a’
or by using the flag -fno-warn-unused-do-bind

-fdefer-diagnostics
Causes GHC to group diagnostic messages by severity and output them after other mes-
sages when building a multi-module Haskell program. This flag can make diagnostic
messages more visible when used in conjunction with --make (page 96) and -j[(n)]
(page 100). Otherwise, it can be hard to find the relevant errors or likely to ignore the
warnings when they are mixed with many other messages.

-fdiagnostics-color=(always|auto|never)

Causes GHC to display error messages with colors. To do this, the terminal must have
support for ANSI color codes, or else garbled text will appear. The default value is auto,
which means GHC will make an attempt to detect whether terminal supports colors and
choose accordingly.

The precise color scheme is controlled by the environment variable GHC COLORS (or
GHC _COLOURS). This can be set to colon-separated list of key=value pairs. These are
the default settings:

[header=:message=1:warning=1;35:error=1;31:fatal=1;31:margin=1;34]

Each value is expected to be a Select Graphic Rendition (SGR) substring. The formatting
of each element can inherit from parent elements. For example, if header is left empty,
it will inherit the formatting of message. Alternatively if header is set to 1 (bold), it will
be bolded but still inherits the color of message.

Currently, in the primary message, the following inheritance tree is in place:
* message
- header
* warning
* error
* fatal

5.1. Using GHC 107

https://en.wikipedia.org/wiki/ANSI_escape_code#SGR

GHC User’s Guide Documentation, Release 9.4.8

In the caret diagnostics, there is currently no inheritance at all between margin, warning,
error, and fatal.

The environment variable can also be set to the magical values never or always, which
is equivalent to setting the corresponding -fdiagnostics-color flag but with lower
precedence.

-fdiagnostics-show-caret

Default
on

Controls whether GHC displays a line of the original source code where the error was
detected. This also affects the associated caret symbol that points at the region of code
at fault.

-ferror-spans

Causes GHC to emit the full source span of the syntactic entity relating to an error
message. Normally, GHC emits the source location of the start of the syntactic entity

only.

For example:

[test.hs:3:6: parse error on input ‘where']
becomes:

[test296.hs:3:6-10: parse error on input “where']

And multi-line spans are possible too:

test.hs:(5,4)-(6,7):
Conflicting definitions for “a'
Bound at: test.hs:5:4
test.hs:6:7
In the binding group for: a, b, a

Note that line numbers start counting at one, but column numbers start at zero. This
choice was made to follow existing convention (i.e. this is how Emacs does it).

-fkeep-going

Since
8.10.1

Causes GHC to continue the compilation if a module has an error. Any reverse depen-
dencies are pruned immediately and the whole compilation is still flagged as an error.
This option has no effect if parallel compilation (-j[(n)] (page 100)) is in use.

-freverse-errors
Causes GHC to output errors in reverse line-number order, so that the errors and warn-
ings that originate later in the file are displayed first.

-Rghc-timing

Prints a one-line summary of timing statistics for the GHC run. This option is equivalent
to +RTS -tstderr, see RTS options to control the garbage collector (page 224).

108 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

5.1.7 Platform-specific Flags
Some flags only make sense for particular target platforms.

-mavx
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 278). Enabling this flag has no effect and is only present for future extensions.

The LLVM backend (page 278) may use AVX if your processor supports it, but detects
this automatically, so no flag is required.

-mavx2
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 278). Enabling this flag has no effect and is only present for future extensions.

The LLVM backend (page 278) may use AVX2 if your processor supports it, but detects
this automatically, so no flag is required.

-mavx512cd
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 278). Enabling this flag has no effect and is only present for future extensions.

The LLVM backend (page 278) may use AVX51?2 if your processor supports it, but detects
this automatically, so no flag is required.

-mavx512er
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 278). Enabling this flag has no effect and is only present for future extensions.

The LLVM backend (page 278) may use AVX51?2 if your processor supports it, but detects
this automatically, so no flag is required.

-mavx512f

(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 278). Enabling this flag has no effect and is only present for future extensions.

The LLVM backend (page 278) may use AVX51?2 if your processor supports it, but detects
this automatically, so no flag is required.

-mavx512pf

(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 278). Enabling this flag has no effect and is only present for future extensions.

The LLVM backend (page 278) may use AVX512 if your processor supports it, but detects
this automatically, so no flag is required.

-msse
(x86 only) Use the SSE registers and instruction set to implement floating point opera-
tions when using the native code generator (page 278). This gives a substantial perfor-
mance improvement for floating point, but the resulting compiled code will only run on
processors that support SSE (Intel Pentium 3 and later, or AMD Athlon XP and later).
The LLVM backend (page 278) will also use SSE if your processor supports it but detects
this automatically so no flag is required.

Since GHC 8.10, SSE2 is assumed to be present on both x86 and x86-64 platforms and
will be used by default. Even when setting this flag, SSE2 will be used instead.

-msse2

(x86 only, added in GHC 7.0.1) Use the SSE2 registers and instruction set to implement
floating point operations when using the native code generator (page 278). This gives

5.1. Using GHC 109

GHC User’s Guide Documentation, Release 9.4.8

a substantial performance improvement for floating point, but the resulting compiled
code will only run on processors that support SSE2 (Intel Pentium 4 and later, or AMD
Athlon 64 and later). The LLVM backend (page 278) will also use SSE?2 if your processor
supports it but detects this automatically so no flag is required.

Since GHC 8.10, SSE2 is assumed to be present on both x86 and x86-64 platforms and
will be used by default.

-msse3

(x86 only) Use the SSE3 instruction set to implement some floating point and bit opera-
tions when using the native code generator (page 278).

Note that the current version does not use SSE3 specific instructions and only requires
SSE2 processor support.

The LLVM backend (page 278) will also use SSE3 if your processor supports it but detects
this automatically so no flag is required.

-msse4

(x86 only) Use the SSE4 instruction set to implement some floating point and bit opera-
tions when using the native code generator (page 278).

Note that the current version does not use SSE4 specific instructions and only requires
SSE?2 processor support.

The LLVM backend (page 278) will also use SSE4 if your processor supports it but detects
this automatically so no flag is required.

-msse4.2

(x86 only, added in GHC 7.4.1) Use the SSE4.2 instruction set to implement some floating
point and bit operations when using the native code generator (page 278). The resulting
compiled code will only run on processors that support SSE4.2 (Intel Core i7 and later).
The LLVM backend (page 278) will also use SSE4.2 if your processor supports it but
detects this automatically so no flag is required.

-mbmi

(x86 only) Use the BMI1 instruction set to implement some bit operations when using
the native code generator (page 278).

Note that the current version does not use BMI specific instructions, so using this flag
has no effect.

-mbmi2
(x86 only, added in GHC 7.4.1) Use the BMI2 instruction set to implement some bit op-
erations when using the native code generator (page 278). The resulting compiled code
will only run on processors that support BMI2 (Intel Haswell and newer, AMD Excavator,
Zen and newer).

5.1.8 Haddock

-haddock

By default, GHC ignores Haddock comments (-- | ... and -- ...) and does not
check that they’re associated with a valid term, such as a top-level type-signature. With
this flag GHC will parse Haddock comments and include them in the interface file it
produces.

VN

Note that this flag makes GHC’s parser more strict so programs which are accepted
without Haddock may be rejected with - haddock (page 110).

110 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

5.1.9 Miscellaneous flags
Some flags only make sense for a particular use case.

-ghcversion-file (path to ghcversion.h)

When GHC is used to compile C files, GHC adds package include paths and includes
ghcversion.h directly. The compiler will lookup the path for the ghcversion.h file
from the rts package in the package database. In some cases, the compiler’s pack-
age database does not contain the rts package, or one wants to specify a specific
ghcversions.h to be included. This option can be used to specify the path to the
ghcversions. h file to be included. This is primarily intended to be used by GHC’s build
system.

-H (size)

Set the minimum size of the heap to (size). This option is equivalent to +RTS -Hsize, see
RTS options to control the garbage collector (page 224).

5.1.9.1 Other environment variables
GHC can also be configured using various environment variables.

GHC_NO_UNICODE
When non-empty, disables Unicode diagnostics output will be disabled of locale settings.

GHC_CHARENC

When set to UTF-8 the compiler will always print UTF-8-encoded output, regardless the
current locale.

5.2 Warnings and sanity-checking

GHC has a number of options that select which types of non-fatal error messages, other-
wise known as warnings, can be generated during compilation. Some options control indi-
vidual warnings and others control collections of warnings. To turn off an individual warning
-W<wflag>, use -Wno-<wflag>. To reverse -Werror, which makes all warnings into errors, use
-Wwarn.

Note

In GHC < 8 the syntax for -W<wflag> was -fwarn-<wflag> (e.q.
-fwarn-incomplete-patterns). This spelling is deprecated, but still accepted for
backwards compatibility. Likewise, -Wno-<wflag> used to be fno-warn-<wflag> (e.g.
-fno-warn-incomplete-patterns).

-Wdefault

Since
8.0

By default, you get a standard set of warnings which are generally likely to indicate bugs
in your program. These are:

. -Wwarnings-deprecations » -Wdeprecated-flags
-Woverlapping-patterns (page 117) (page 119)
(page 127) * -Wdeprecations .

. (page 117) -Wunrecognised-pragmas

5.2. Warnings and sanity-checking 111

GHC User’s Guide Documentation, Release 9.4.8

(page 116) -Wdeferred-type-errors (page 114)
-Wduplicate-exports (page 115) * -Winaccessible-code
(page 121) . (page 127)
-Wderiving-defaults -Wpartial-type-signatures-Wstar-binder
(page 120) (page 116) (page 128)
-Woverflowed-literals -Wunsupported-calling-convélopesasor-whitespace-ext-confli
(page 120) (page 119) (page 136)

. * -Wambiguous-fields
-Wempty-enumerations -Wdodgy-foreign-imports (page 137)
(page 120) (page 119) .
-Wmissing-fields . -Wunicode-bidirectional-format-c
(page 124) -Winline-rule-shadowing (page 137)
-Wmissing-methods (page 134) e -Wforall-identifier
(page 124) . (page 137)
-Wwrong-do-bind -Wunsupported- llvm-version
(page 134) (page 130) -Wgadt-mono-local-binds

o (page 138)
-Wsimplifiable-class-consthaisted-extra-shared-1ib
(page 129) (page 130) -Wtype-equality-requires-operato
-Wtyped-holes e -Wtabs (page 129) (page 138)
(page 115) .

-Wunrecognised-warning-flags

The following flags are simple ways to select standard “packages” of warnings:

-W
Provides the standard warnings plus
* -Wunused-binds e -Wunused-imports (page 119)
(page 130) (page 131) e -Wdodgy-imports
* -Wunused-matches . (page 119)
(page 132) -Wincomplete-patterns
e -Wunused-foralls (page 122) -Wunbanged-strict-patterns
(page 133) e -Wdodgy-exports (page 135)
-Wextra
Alias for -W (page 112)
-Wall
Turns on all warning options that indicate potentially suspicious code. The warnings
that are not enabled by -Wall (page 112) are
. (page 125) e -Widentities
-Wmonomorphism-restriction (page 121)
(page 129) -Wmissing-export-lists e
e -Wimplicit-prelude (page 124) -Wredundant-constraints
(page 122) . (page 120)
. -Wmissing-import-lists e« -Wpartial-fields
-Wmissing-local-signaturegpage 124) (page 135)
(page 125) . .
. -Wmissing-home-modules -Wmissed-specialisations
-Wmissing-exported-signat(page 135) (page 117)
112 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

. -Wmissing-deriving-stratefpage 122)
-Wall-missed-specialisati@page 123) .
(page 117) * -Wunused-packages -Wmissing-kind-signatures
* -Wcpp-undef (page 135) (page 126)
(page 134) . .
. -Wunused-type-patterns -Wunticked-promoted-constructors
-Wduplicate-constraints (page 132) (page 130)
(page 120) * -Wsafe (page 597)
. e -Wimplicit-lift
-Weverything
Since
8.0
Turns on every single warning supported by the compiler.
-Wcompat
Since

8.0

Turns on warnings that will be enabled by default in the future, but remain off in normal
compilations for the time being. This allows library authors eager to make their code
future compatible to adapt to new features before they even generate warnings.

This currently enables

s -Wsemigroup e -Wstar-is-type .
(page 118) (page 128) -Wtype-equality-out-of-scope
. o (page 138)
-Wnoncanonical-monoid-instélcompat-unqualified-imports
(page 118) (page 114)
-Wno-compat

Disables all warnings enabled by -Wcompat (page ??).

Turns off all warnings, including the standard ones and those that -Wall (page 112)
doesn’t enable.

-Wnot
Deprecated alias for -w (page 113)

These options control which warnings are considered fatal and cause compilation to abort.

-Werror

Since
6.8 (-Wwarn)

Makes any warning into a fatal error. Useful so that you don’t miss warnings when
doing batch compilation. To reverse -Werror and stop treating any warnings as errors
use -Wwarn, or use -Wwarn=<wflag> to stop treating specific warnings as errors.

5.2. Warnings and sanity-checking 113

GHC User’s Guide Documentation, Release 9.4.8

-Werror=(wflag)
Implies
-W<wflag>

Makes a specific warning into a fatal error. The warning will be enabled if it hasn’t been
enabled yet. Can be reversed with -Wwarn=<wflag>.

-Werror=compat has the same effect as -Werror=... for each warning flag in the
-Wcompat (page ??) option group.

-Wwarn

Warnings are treated only as warnings, not as errors. This is the default, but can be
useful to negate a -Werror (page ??) flag.

-Wwarn={(wflag)
Causes a specific warning to be treated as normal warning, not fatal error.

Note that it doesn’t fully negate the effects of -Werror=<wflag> - the warning will still
be enabled.

-Wwarn=compat has the same effect as -Wwarn=. .. for each warning flag in the -Wcompat
(page ??) option group.

When a warning is emitted, the specific warning flag which controls it is shown.
-fshow-warning-groups

Default
off

When showing which flag controls a warning, also show the respective warning group
flag(s) that warning is contained in.

The full set of warning options is described below. To turn off any warning, simply give the
corresponding -Wno- ... option on the command line. For backwards compatibility with GHC
versions prior to 8.0, all these warnings can still be controlled with -f(no-)warn-* instead
of -W(no-)*.

-Wunrecognised-warning-flags

Since
8.0

Default
on

Enables warnings when the compiler encounters a -W. .. flag that is not recognised.
-Wcompat-unqualified-imports

Since
8.10

Warns on unqualified imports of core library modules which are subject to change in
future GHC releases. Currently the following modules are covered by this warning:

e Data.List due to the future addition of Data.List.singleton and specialisation of
exports to the [] type. See the mailing list for details.

This warning can be addressed by either adding an explicit import list or using a
qualified import.

114 Chapter 5. Using GHC

https://groups.google.com/forum/#!topic/haskell-core-libraries/q3zHLmzBa5E

GHC User’s Guide Documentation, Release 9.4.8

-Wprepositive-qualified-module

Since
8.10

Normally, imports are qualified prepositively: import qualified M. By using
ImportQualifiedPost (page 357), the qualified keyword can be used after the module
name. Like so: import M qualified. This will warn when the first, prepositive syntax
is used.

-Wtyped-holes

Since
7.8

Default
on

Determines whether the compiler reports typed holes warnings. Has no effect unless
typed holes errors are deferred until runtime. See Typed Holes (page 340) and Deferring
type errors to runtime (page 433)

-Wdeferred-type-errors

Since
8.4

Default
on

Causes a warning to be reported when a type error is deferred until runtime. See Defer-
ring type errors to runtime (page 433)

-fdefer-type-errors

Since
7.6

Implies
-fdefer-typed-holes (page 115), -fdefer-out-of-scope-variables
(page 115)

Defer as many type errors as possible until runtime. At compile time you get a warning
(instead of an error). At runtime, if you use a value that depends on a type error, you
get a runtime error; but you can run any type-correct parts of your code just fine. See
Deferring type errors to runtime (page 433)

-fdefer-typed-holes

Since
7.10

Defer typed holes errors (errors about names with a leading underscore (e.g., “ ", “ foo”,
“ bar”)) until runtime. This will turn the errors produced by typed holes (page 340) into
warnings. Using a value that depends on a typed hole produces a runtime error, the
same as - fdefer-type-errors (page 115) (which implies this option). See Typed Holes
(page 340) and Deferring type errors to runtime (page 433).

Implied by - fdefer-type-errors (page 115). See also -Wtyped-holes (page 115).

5.2. Warnings and sanity-checking 115

GHC User’s Guide Documentation, Release 9.4.8

-fdefer-out-of-scope-variables

Since
8.0

Defer variable out-of-scope errors (errors about names without a leading underscore)
until runtime. This will turn variable-out-of-scope errors into warnings. Using a
value that depends on an out-of-scope variable produces a runtime error, the same
as -fdefer-type-errors (page 115) (which implies this option). See Typed Holes
(page 340) and Deferring type errors to runtime (page 433).

Implied by -fdefer-type-errors (page 115). See also
-Wdeferred-out-of-scope-variables (page 116).

-Wdeferred-out-of-scope-variables

Since
8.0

Warn when a deferred out-of-scope variable is encountered.
-Wpartial-type-signatures
Since
7.10

Default
on

Determines whether the compiler reports holes in partial type signatures as warnings.
Has no effect unless PartialTypeSignatures (page 534) is enabled, which controls
whether errors should be generated for holes in types or not. See Partial Type Signatures
(page 534).

-fhelpful-errors

Since
7.4

Default
on

When a name or package is not found in scope, make suggestions for the name or package
you might have meant instead.

-Wunrecognised-pragmas

Since
6.10

Default
on

Causes a warning to be emitted when a pragma that GHC doesn’t recognise is used. As
well as pragmas that GHC itself uses, GHC also recognises pragmas known to be used
by other tools, e.g. OPTIONS HUGS and DERIVE.

-Wmisplaced-pragmas

Since
94

116 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Default
on

Warn when a pragma that should only appear in the header of a module, such as a LAN-
GUAGE or OPTIONS GHC pragma, appears in the body of the module instead.

-Wmissed-specialisations

Since
8.0

Default
off

Emits a warning if GHC cannot specialise an overloaded function, usually because the
function needs an INLINABLE pragma. Reports when the situation arises during special-
isation of an imported function.

This form is intended to catch cases where an imported function that is marked as
INLINABLE (presumably to enable specialisation) cannot be specialised as it calls other
functions that are themselves not specialised.

Note that this warning will not throw errors if used with -Werror (page ??).

-Wmissed-specializations
Alias for -Wmissed-specialisations (page 117)

-Wall-missed-specialisations

Since
8.0

Default
off

Emits a warning if GHC cannot specialise an overloaded function, usually because the
function needs an INLINABLE pragma. Reports all such situations.

Note that this warning will not throw errors if used with -Werror (page ??).
-Wall-missed-specializations

Alias for -Wall-missed-specialisations (page 117)
-Wwarnings-deprecations

Since
6.10

Default
on

Causes a warning to be emitted when a module, function or type with a WARNING or
DEPRECATED pragma is used. See WARNING and DEPRECATED pragmas (page 615) for
more details on the pragmas.

-Wdeprecations

Default
on

Causes a warning to be emitted when a module, function or type with a WARNING or
DEPRECATED pragma is used. See WARNING and DEPRECATED pragmas (page 615) for
more details on the pragmas. An alias for -Wwarnings-deprecations (page 117).

5.2. Warnings and sanity-checking 117

GHC User’s Guide Documentation, Release 9.4.8

-Wnoncanonical-monad-instances

Since
8.0

Default
off

Warn if noncanonical Applicative or Monad instances declarations are detected.
When this warning is enabled, the following conditions are verified:
In Monad instances declarations warn if any of the following conditions does not hold:
e If return is defined it must be canonical (i.e. return = pure).
* If (>>) is defined it must be canonical (i.e. (>>) = (*>)).
Moreover, in Applicative instance declarations:

* Warn if pure is defined backwards (i.e. pure

return).

(>>)).

e Warn if (*>) is defined backwards (i.e. (*>)

-Wnoncanonical-monadfail-instances

Since
8.0

This warning is deprecated. It no longer has any effect since GHC 8.8. It was used
during the transition period of the MonadFail proposal, to detect when an instance of the
Monad class was not defined via MonadFail, or when a MonadFail instance was defined
backwards, using the method in Monad.

-Wnoncanonical-monoid-instances

Since
8.0

Warn if noncanonical Semigroup or Monoid instances declarations are detected.
When this warning is enabled, the following conditions are verified:
In Monoid instances declarations warn if any of the following conditions does not hold:
e If mappend is defined it must be canonical (i.e. mappend = (Data.Semigroup.<>)).
Moreover, in Semigroup instance declarations:
¢ Warn if (<>) is defined backwards (i.e. (<>) = mappend).
This warning is off by default. However, it is part of the -Wcompat (page ??) option group.

-Wmissing-monadfail-instances

Since
8.0

This warning is deprecated. It no longer has any effect since GHC 8.8. It was used during
the transition period of the MonadFail proposal, to warn when a failable pattern is used
in a do-block that does not have a MonadFail instance.

-Wsemigroup

Since
8.0

118 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Warn when definitions are in conflict with the future inclusion of Semigroup into the
standard typeclasses.

1. Instances of Monoid should also be instances of Semigroup

2. The Semigroup operator (<>) will be in Prelude, which clashes with custom local
definitions of such an operator

Being part of the -Wcompat (page ??) option group, this warning is off by default, but will
be switched on in a future GHC release.

-Wdeprecated-flags

Since
6.10

Default
on

Causes a warning to be emitted when a deprecated command-line flag is used.

-Wunsupported-calling-conventions

Since
7.6

Causes a warning to be emitted for foreign declarations that use unsupported calling
conventions. In particular, if the stdcall calling convention is used on an architecture
other than i386 then it will be treated as ccall.

-Wdodgy-foreign-imports

Since
6.10

Causes a warning to be emitted for foreign imports of the following form:

[foreign import "f" f :: FunPtr t

on the grounds that it probably should be

[foreign import "&f" f :: FunPtr t

The first form declares that f is a (pure) C function that takes no arguments and returns
a pointer to a C function with type t, whereas the second form declares that f itself is a
C function with type t. The first declaration is usually a mistake, and one that is hard to
debug because it results in a crash, hence this warning.

-Wdodgy-exports

Since
6.12

Causes a warning to be emitted when a datatype T is exported with all constructors, i.e.
T(..), butis it just a type synonym.

Also causes a warning to be emitted when a module is re-exported, but that module
exports nothing.

-Wdodgy-imports

Since
6.8

5.2. Warnings and sanity-checking 119

GHC User’s Guide Documentation, Release 9.4.8

Causes a warning to be emitted in the following cases:

* When a datatype T is imported with all constructors, i.e. T(..), but has been ex-
ported abstractly, i.e. T.

* When an import statement hides an entity that is not exported.

-Woverflowed-literals

Since
7.8

Causes a warning to be emitted if a literal will overflow, e.g. 300 :: Word8.

-Wempty-enumerations

Since
7.8

Causes a warning to be emitted if an enumeration is empty, e.g. [5 .. 3].

-Wderiving-defaults

Since
8.10

Causes a warning when both DeriveAnyClass (page 471) and
GeneralizedNewtypeDeriving (page 466) are enabled and no explicit deriving strategy
is in use. For example, this would result a warning:

class C a
newtype T a = MkT a deriving C

-Wduplicate-constraints

Since
7.8

Have the compiler warn about duplicate constraints in a type signature. For example

[f :: (Eq a, Show a, Eq a) => a -> a]

The warning will indicate the duplicated Eq a constraint.
This option is now deprecated in favour of -Wredundant-constraints (page 120).

-Wredundant-constraints

Since
8.0

Have the compiler warn about redundant constraints in a type signature. In particular:

* A redundant constraint within the type signature itself:

[f :: (Eq a, Ord a) => a -> a]

The warning will indicate the redundant Eq a constraint: it is subsumed by the Ord
a constraint.

* A constraint in the type signature is not used in the code it covers:

120 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

f :: Ega=>a ->a -> Bool
f xy = True

The warning will indicate the redundant Eq a constraint: : it is not used by the
definition of f.)

Similar warnings are given for a redundant constraint in an instance declaration.

When turning on, you can suppress it on a per-module basis with
-Wno-redundant-constraints (page 120). Occasionally you may specifically want
a function to have a more constrained signature than necessary, perhaps to leave
yourself wiggle-room for changing the implementation without changing the API. In
that case, you can suppress the warning on a per-function basis, using a call in a dead
binding. For example:

f :: Ega=>a ->a -> Bool
f xy = True
where
_ =X == -- Suppress the redundant-constraint warning for (Eq a)

Here the call to (==) makes GHC think that the (Eq a) constraint is needed, so no
warning is issued.

-Wduplicate-exports

Since
at least 5.04

Default
on

Have the compiler warn about duplicate entries in export lists. This is useful information
if you maintain large export lists, and want to avoid the continued export of a definition
after you’ve deleted (one) mention of it in the export list.

-Whi-shadowing

Since
at least 5.04, deprecated

Causes the compiler to emit a warning when a module or interface file in the current
directory is shadowing one with the same module name in a library or other directory.

This flag was not implemented correctly and is now deprecated. It will be removed in a
later version of GHC.

-Widentities

Since
7.2

Causes the compiler to emit a warning when a Prelude numeric conversion converts
a type T to the same type T; such calls are probably no-ops and can be omitted. The
functions checked for are: toInteger, toRational, fromIntegral, and realToFrac.

-Wimplicit-kind-vars

Since
8.6

5.2. Warnings and sanity-checking 121

GHC User’s Guide Documentation, Release 9.4.8

This warning is deprecated. It no longer has any effect since GHC 8.10. It was used
to detect if a kind variable is not explicitly quantified over. For instance, the following
would produce a warning:

[f :: forall (a :: k). Proxy a]
This is now an error and can be fixed by explicitly quantifying over k:

[f :: forall k (a :: k). Proxy a J
or

[f :: forall {k} (a :: k). Proxy a]

-Wimplicit-lift

Since
9.2

Template Haskell quotes referring to local variables bound outside of the quote are im-
plicitly converted to use lift. For example, f x = [| reverse x |] becomes f x =
[| reverse $(lift x) |]1). This flag issues a warning for every such implicit addition
of Lift. This can be useful when debugging more complex staged programs, where an
implicit 1ift can accidentally conceal a variable used at a wrong stage.

-Wimplicit-prelude

Since
6.8

Default
off

Have the compiler warn if the Prelude is implicitly imported. This happens unless ei-
ther the Prelude module is explicitly imported with an import ... Prelude ... line, or
this implicit import is disabled (either by NoImplicitPrelude (page 333) or a LANGUAGE
NoImplicitPrelude pragma).

Note that no warning is given for syntax that implicitly refers to the Prelude, even if
NoImplicitPrelude (page 333) would change whether it refers to the Prelude. For
example, no warning is given when 368 means Prelude.fromInteger (368::Prelude.
Integer) (where Prelude refers to the actual Prelude module, regardless of the imports
of the module being compiled).

-Wincomplete-patterns

Since
5.04

The option -Wincomplete-patterns (page 122) warns about places where a pattern-
match might fail at runtime. The function g below will fail when applied to non-empty
lists, so the compiler will emit a warning about this when -Wincomplete-patterns
(page 122) is enabled.

(911 =2 J

This option isn’t enabled by default because it can be a bit noisy, and it doesn’t always
indicate a bug in the program. However, it’s generally considered good practice to cover
all the cases in your functions, and it is switched on by - (page 112).

122 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

-Wincomplete-uni-patterns

Since
7.2

The flag -Wincomplete-uni-patterns (page 122) is similar to -Wincomplete-patterns
(page 122), except that it applies only to lambda-expressions and pattern bindings, con-
structs that only allow a single pattern:

h = \[] -> 2
Just k= fy

Furthermore, this flag also applies to lazy patterns, since they are syntactic sugar for
pattern bindings. For example, f ~(Just x) = (x,X) is equivalentto f y = let Just
X =y in (x,X).

-fmax-pmcheck-models=(n)

Since
8.10

Default
30

The pattern match checker works by assigning symbolic values to each pattern. We call
each such assignment a ‘model’. Now, each pattern match clause leads to potentially
multiple splits of that model, encoding different ways for the pattern match to fail. For
example, when matching x against Just 4, we split each incoming matching model into
two uncovered sub-models: One where x is Nothing and one where x is Just y but y is
not 4.

This can be exponential in the arity of the pattern and in the number of guards in some
cases. The - fmax-pmcheck-models=(n) (page 123) limit makes sure we scale polynomi-
ally in the number of patterns, by forgetting refined information gained from a partially
successful match. For the above example, if we had a limit of 1, we would continue
checking the next clause with the original, unrefined model.

-Wincomplete-record-updates

Since
6.4

The function f below will fail when applied to Bar, so the compiler will emit a warning
about this when -Wincomplete-record-updates (page 123) is enabled.

data Foo = Foo { x :: Int }
| Bar

f :: Foo -> Foo
f foo = foo { x = 6 }

This option isn’t enabled by default because it can be very noisy, and it often doesn’t
indicate a bug in the program.

-Wmissing-deriving-strategies

Since
8.8.1

5.2. Warnings and sanity-checking 123

GHC User’s Guide Documentation, Release 9.4.8

Default
off

The datatype below derives the Eq typeclass, but doesn’t specify a strategy. When
-Wmissing-deriving-strategies (page 123) is enabled, the compiler will emit a warn-
ing about this.

data Foo a = Foo a
deriving (Eq)

The compiler will warn here that the deriving clause doesn’t specify a strategy. If the
warning is enabled, but DerivingStrategies (page 474) is not enabled, the compiler
will suggest turning on the DerivingStrategies (page 474) extension.

-Wmissing-fields

Since
at least 5.04

This option is on by default, and warns you whenever the construction of a labelled field
constructor isn’t complete, missing initialisers for one or more fields. While not an error
(the missing fields are initialised with bottoms), it is often an indication of a programmer
error.

-Wmissing-export-lists

Since
8.4

This flag warns if you declare a module without declaring an explicit export list. For
example

module M where

p X = X

The -Wmissing-export-1lists (page 124) flag will warn that M does not declare an export
list. Declaring an explicit export list for M enables GHC dead code analysis, prevents
accidental export of names and can ease optimizations like inlining.

-Wmissing-import-lists

Since
7.0

This flag warns if you use an unqualified import declaration that does not explicitly list
the entities brought into scope. For example

module M where
import X(f)
import Y
import qualified Z
px=°fxx

The -Wmissing-import-1lists (page 124) flag will warn about the import of Y but not X
If module Y is later changed to export (say) f, then the reference to f in M will become
ambiguous. No warning is produced for the import of Z because extending Z's exports
would be unlikely to produce ambiguity in M.

124 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

-Wmissing-methods

Since
at least 5.04

Default
on

This option warns you whenever an instance declaration is missing one or more methods,
and the corresponding class declaration has no default declaration for them.

The MINIMAL pragma can be used to change which combination of methods will be re-
quired for instances of a particular class. See MINIMAL pragma (page 616).

-Wmissing-signatures

Since
at least 5.04

Default
off

If you would like GHC to check that every top-level function/value has a type signature,
use the -Wmissing-signatures (page 125) option. As part of the warning GHC also
reports the inferred type.

-Wmissing-exported-sigs
Since
7.10
This option is now deprecated in favour of -Wmissing-exported-signatures (page 125).

-Wmissing-exported-signatures

Since
8.0

Default
off

If you would like GHC to check that every exported top-level function/value has a type
signature, but not check unexported values, use the -Wmissing-exported-signatures
(page 125) option. If this option is used in conjunction with -Wmissing-signatures
(page 125) then every top-level function/value must have a type signature. As part of the
warning GHC also reports the inferred type.

-Wmissing-local-sigs
Since
7.0
This option is now deprecated in favour of -Wmissing-local-signatures (page 125).

-Wmissing-local-signatures

Since
8.0

If you use the -Wmissing-local-signatures (page 125) flag GHC will warn you about
any polymorphic local bindings. As part of the warning GHC also reports the inferred
type. The option is off by default.

5.2. Warnings and sanity-checking 125

GHC User’s Guide Documentation, Release 9.4.8

-Wmissing-pattern-synonym-signatures

Since
8.0

Default
off

If you would like GHC to check that every pattern synonym has a type signature, use the
-Wmissing-pattern-synonym-signatures (page 125) option. If this option is used in
conjunction with -Wmissing-exported-signatures (page 125) then only exported pat-
tern synonyms must have a type signature. GHC also reports the inferred type.

-Wmissing-kind-signatures

Since
9.2

Default
off

If you would like GHC to check that every data, type family, type-class defi-
nition has a standalone kind signature (page 402) or a CUSK (page 400), use
the -Wmissing-kind-signatures (page 126) option. You can specify the kind via
StandaloneKindSignatures (page 402) or CUSKs (page 400).

Note that -Wmissing-kind-signatures (page 126) does not warn about associated type
families, as GHC considers an associated type family declaration to have a CUSK if its en-
closing class has a CUSK. (See Complete user-supplied kind signatures and polymorphic
recursion (page 400) for more on this point.) Therefore, giving the parent class a stan-
dalone kind signature or CUSK is sufficient to fix the warning for the class’s associated
type families as well.

-Wmissing-exported-pattern-synonym-signatures

Default
off

If you would like GHC to check that every exported pattern synonym has
a type signature, but not check unexported pattern synonyms, use the
-Wmissing-exported-pattern-synonym-signatures (page 126) option. If this op-
tion is used in conjunction with -Wmissing-pattern-synonym-signatures (page 125)
then every pattern synonym must have a type signature. As part of the warning GHC
also reports the inferred type.

-Wname-shadowing

Since
at least 5.04

This option causes a warning to be emitted whenever an inner-scope value has the same
name as an outer-scope value, i.e. the inner value shadows the outer one. This can catch
typographical errors that turn into hard-to-find bugs, e.g., in the inadvertent capture of
what would be a recursive callinf = ... let f = id in ... f ...

The warning is suppressed for names beginning with an underscore. For example

[f x = do { ignore <- this; ignore <- that; return (the other) }

126

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

-Worphans

Since
6.4

These flags cause a warning to be emitted whenever the module contains an “orphan”
instance declaration or rewrite rule. An instance declaration is an orphan if it appears
in a module in which neither the class nor the type being instanced are declared in the
same module. A rule is an orphan if it is a rule for a function declared in another module.
A module containing any orphans is called an orphan module.

The trouble with orphans is that GHC must pro-actively read the interface files for all
orphan modules, just in case their instances or rules play a role, whether or not the
module’s interface would otherwise be of any use. See Orphan modules and instance
declarations (page 259) for details.

The flag -Worphans (page 126) warns about user-written orphan rules or instances.

-Woverlapping-patterns

Since
at least 5.04

By default, the compiler will warn you if a set of patterns are overlapping, e.g.,

f :: String -> Int
f [
f (_:xs)

0
_ 1
f "2 2

where the last pattern match in f won’t ever be reached, as the second pattern overlaps
it. More often than not, redundant patterns is a programmer mistake/error, so this option
is enabled by default.

If the programmer is dead set on keeping a redundant clause, for example to prevent
bitrot, they can make use of a guard scrutinising GHC.Exts.considerAccessible to pre-
vent the checker from flagging the parent clause as redundant:

:: String -> Int

0
1
2

X

(2]

A d
Inun

-- No warning!

Note that considerAccessible should come as the last statement of the guard in order
not to impact the results of the checker. E.g., if you write

h :: Bool -> Int
h x = case (x, x) of
(True, True) ->1
(False, False) -> 2
(True, False) | considerAccessible, False <- x -> 3

The pattern-match checker takes you by your word, will conclude that False <- x might
fail and warn that the pattern-match is inexhaustive. Put considerAccessible last to
avoid such confusions.

Note that due to technical limitations, considerAccessible will not suppress
-Winaccessible-code (page 127) warnings.

5.2. Warnings and sanity-checking 127

GHC User’s Guide Documentation, Release 9.4.8

-Winaccessible-code

Since
8.6

By default, the compiler will warn you if types make a branch inaccessible. This generally
requires GADTs or similar extensions.

Take, for example, the following program

({-# LANGUAGE GADTs #-}

data Foo a where
Fool :: Foo Char
Foo2 :: Foo Int

data TyEquality a b where
Refl :: TyEquality a a

checkTEQ :: Foo t -> Foo u -> Maybe (TyEquality t u)
checkTEQ x y = error "unimportant"

step2 :: Bool

step2 = case checkTEQ Fool Foo2 of
Just Refl -> True -- Inaccessible code
Nothing -> False

L

The Just Refl case in step2 is inaccessible, because in order for checkTEQ to be able to
produce a Just, t ~ umust hold, but since we’re passing Fool and Foo2 here, it follows
that t ~ Char, and u ~ Int, and thus t ~ u cannot hold.

-Wstar-is-type

Since
8.6

The use of * to denote the kind of inhabited types relies on the StarIsType (page 410) ex-
tension, which in a future release will be turned off by default and then possibly removed.
The reasons for this and the deprecation schedule are described in GHC proposal #143.

This warning allows to detect such uses of * before the actual breaking change takes
place. The recommended fix is to replace * with Type imported from Data.Kind.

Being part of the -Wcompat (page ??) option group, this warning is off by default, but will
be switched on in a future GHC release.

-Wstar-binder

Since
8.6

Under StarIsType (page410), a * in types is not an operator nor even a name, it is special
syntax that stands for Data.Kind.Type. This means that an expression like Either *
Char is parsed as Either (*) Char and not (*) Either Char.

In binding positions, we have similar parsing rules. Consider the following example

{-# LANGUAGE TypeOperators, TypeFamilies, StarIsType #-}

(continues on next page)

128

Chapter 5. Using GHC

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0143-remove-star-kind.rst

GHC User’s Guide Documentation, Release 9.4.8

(continued from previous page)

type family a + b
type family a * b

While a + b is parsed as (+) a b and becomes a binding position for the (+) type oper-
ator, a * bisparsed asa (*) b and is rejected.

As a workaround, we allow to bind (*) in prefix form:

type family (*) a b
[)

This is a rather fragile arrangement, as generally a programmer expects (*) a b to
be equivalent to a * b. With -Wstar-binder (page 128) we warn when this special

treatment of (*) takes place.
-Wsimplifiable-class-constraints

Since
8.2

Default
on

Warn about class constraints in a type signature that can be simplified using a top-level
instance declaration. For example:

[f::Eq[a]=>a->a]

Here the Eq [a] in the signature overlaps with the top-level instance for Eq [a]. GHC
goes to some efforts to use the former, but if it should use the latter, it would then have
an insoluble Eq a constraint. Best avoided by instead writing:

[f::Eqa=>a->a]
-Wtabs
Since
6.8

Have the compiler warn if there are tabs in your source file.
-Wtype-defaults

Since
at least 5.04

Default
off

Have the compiler warn/inform you where in your source the Haskell defaulting mecha-
nism for numeric types kicks in. This is useful information when converting code from
a context that assumed one default into one with another, e.g., the ‘default default’ for
Haskell 1.4 caused the otherwise unconstrained value 1 to be given the type Int, whereas
Haskell 98 and later defaults it to Integer. This may lead to differences in performance
and behaviour, hence the usefulness of being non-silent about this.

-Wmonomorphism-restriction

Since
6.8

5.2. Warnings and sanity-checking 129

GHC User’s Guide Documentation, Release 9.4.8

Default
off

Have the compiler warn/inform you where in your source the Haskell Monomorphism
Restriction is applied. If applied silently the MR can give rise to unexpected behaviour,
so it can be helpful to have an explicit warning that it is being applied.

-Wunsupported-1lvm-version

Since
7.8

Warn when using - fllvm (page 285) with an unsupported version of LLVM.
-Wmissed-extra-shared-1lib

Since
8.8

Warn when GHCi can’t load a shared lib it deduced it should load when loading a package
and analyzing the extra-libraries stanza of the target package description.

-Wunticked-promoted-constructors

Since
7.10

Warn if a promoted data constructor is used without a tick preceding its name.
For example:

data Nat = Succ Nat | Zero

data Vec n s where
Nil :: Vec Zero a
Cons :: a -> Vec n a -> Vec (Succ n) a

Will raise two warnings because Zero and Succ are not written as 'Zero and 'Succ.

This also applies to list literals since 9.4. For example:

[type L = [Int, Char, Bool]]

will raise a warning, because [Int, Char, Bool] is a promoted list which lacks a tick.
-Wunused-binds

Since
at least 5.04

Report any function definitions (and local bindings) which are unused. An alias for
* -Wunused-top-binds (page 130)
* -Wunused-local-binds (page 131)
* -Wunused-pattern-binds (page 131)
-Wunused-top-binds

Since
8.0

130 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Report any function definitions which are unused.

More precisely, warn if a binding brings into scope a variable that is not used, except if
the variable’s name starts with an underscore. The “starts-with-underscore” condition
provides a way to selectively disable the warning.

A variable is regarded as “used” if
e It is exported, or

» It appears in the right hand side of a binding that binds at least one used variable
that is used

For example:

module A (f) where
f = let (p,q) = rhsl in t p -- No warning: q is unused, but is locally,,
—~bound
t = rhs3 -- No warning: f is used, and hence so is t
g =h x -- Warning: g unused
h = rhs2 -- Warning: h is only used in the

-- right-hand side of another unused binding
~w = True -- No warning: w starts with an underscore

L

-Wunused-local-binds

Since
8.0

Report any local definitions which are unused. For example:

module A (f) where

f = let (p,q) = rhsl in t p -- Warning: q is unused

g =h x -- No warning: g is unused, but is a top-
—~level binding

-Wunused-pattern-binds

Since
8.0

Warn if a pattern binding binds no variables at all, unless it is a lone wild-card pattern,
or a banged pattern. For example:

Just _ = rhs3 -- Warning: unused pattern binding

(_,) =rhs4 -- Warning: unused pattern binding

_ = rhs3 -- No warning: lone wild-card pattern

() = rhs4 -- No warning: banged pattern; behaves like seq

In general a lazy pattern binding p = e is a no-op if p does not bind any variables. The
motivation for allowing lone wild-card patterns is they are not very different from v =
rhs3, which elicits no warning; and they can be useful to add a type constraint, e.g.
= x::Int. A banged pattern (see Bang patterns and Strict Haskell (page 553)) is not a
no-op, because it forces evaluation, and is useful as an alternative to seq.

-Wunused-imports

Since
at least 5.04

5.2. Warnings and sanity-checking 131

GHC User’s Guide Documentation, Release 9.4.8

Report any modules that are explicitly imported but never used. However, the form
import M() is never reported as an unused import, because it is a useful idiom for im-
porting instance declarations, which are anonymous in Haskell.

-Wunused-matches
Since
at least 5.04

Report all unused variables which arise from term-level pattern matches, including pat-
terns consisting of a single variable. For instance f x y = [] would report x and y as
unused. The warning is suppressed if the variable name begins with an underscore, thus:

[f X = True 1

Note that -Wunused-matches (page 132) does not warn about variables which arise from
type-level patterns, as found in type family and data family instances. This must be
enabled separately through the -Wunused-type-patterns (page 132) flag.

-Wunused-do-bind

Since
6.12

Report expressions occurring in do and mdo blocks that appear to silently throw informa-
tion away. For instance do { mapM popInt xs ; return 10 } would report the first
statement in the do block as suspicious, as it has the type StackM [Int] and not StackM
(), but that [Int] value is not bound to anything. The warning is suppressed by explicitly
mentioning in the source code that your program is throwing something away:

[do { _ <- mapM popInt xs ; return 10 }]

Of course, in this particular situation you can do even better:

{do { mapM_ popInt xs ; return 10 }]

-Wunused-type-patterns
Since
8.0

Report all unused implicitly bound type variables which arise from patterns in type family
and data family instances. For instance:

[type instance F x y = []]

would report x and y as unused on the right hand side. The warning is suppressed if the
type variable name begins with an underscore, like so:

[type instance F _x vy = []]

When ExplicitForAll (page 521) is enabled, explicitly quantified type variables may
also be identified as unused. For instance:

[type instance forall x y. F x y = []]

would still report x and y as unused on the right hand side

132 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Unlike -Wunused-matches (page 132), -Wunused-type-patterns (page 132) is not im-
plied by -Wall (page 112). The rationale for this decision is that unlike term-level pat-
tern names, type names are often chosen expressly for documentation purposes, so using
underscores in type names can make the documentation harder to read.

-Wunused-foralls

Since
8.0

Report all unused type variables which arise from explicit, user-written forall state-
ments. For instance:

(g :: forall a b c. (b -> b) |

would report a and ¢ as unused.

-Wunused-record-wildcards

Since
8.10

Report all record wildcards where none of the variables bound implicitly are used. For
instance:

data P =P { x :: Int, y :: Int }

fl :: P -> Int
fl P{..} =1+ 3

would report that the P{. .} match is unused.

-Wredundant-bang-patterns

Since
9.2

Report dead bang patterns, where dead bangs are bang patterns that under no circum-
stances can force a thunk that wasn’t already forced. Dead bangs are a form of redundant
bangs. The new check is performed in pattern-match coverage checker along with other
checks (namely, redundant and inaccessible RHSs). Given

f :: Bool -> Int
f True 1
f Ix 2

The bang pattern on !x is dead. By the time the x in the second equation is reached, x
will already have been forced due to the first equation (f True = 1). Moreover, there is
no way to reach the second equation without going through the first one.

Note that -Wredundant-bang-patterns will not warn about dead bangs that appear on
a redundant clause. That is because in that case, it is recommended to delete the clause
wholly, including its leading pattern match.

Dead bang patterns are redundant. But there are bang patterns which are redundant
that aren’t dead, for example:

[f!():@]

5.2. Warnings and sanity-checking 133

GHC User’s Guide Documentation, Release 9.4.8

the bang still forces the argument, before we attempt to match on (). But it is redun-
dant with the forcing done by the () match. Currently such redundant bangs are not
considered dead, and -Wredundant-bang-patterns will not warn about them.

-Wredundant-record-wildcards

Since
8.10

Report all record wildcards where the wild card match binds no patterns. For instance:

data P =P { x :: Int, y :: Int }

fl :: P -> Int
fl P{x,y,..} =X +y

would report that the P{x, y, ..} match has a redundant use of ...

-Wredundant-strictness-flags

Since
9.4

Report strictness flags applied to unlifted types. An unlifted type is always strict, and
applying a strictness flag has no effect.

For example:

[data T =T !Int#]

-Wwrong-do-bind

Since
6.12

Report expressions occurring in do and mdo blocks that appear to lack a binding. For
instance do { return (popInt 10) ; return 10 } would report the first statement in
the do block as suspicious, as it has the type StackM (StackM Int) (which consists of two
nested applications of the same monad constructor), but which is not then “unpacked”
by binding the result. The warning is suppressed by explicitly mentioning in the source
code that your program is throwing something away:

[do { _ <- return (popInt 10) ; return 10 }]
For almost all sensible programs this will indicate a bug, and you probably intended to
write:
Edo { popInt 10 ; return 10 } J
-Winline-rule-shadowing
Since
7.8

Warn if a rewrite RULE might fail to fire because the function might be inlined before
the rule has a chance to fire. See How rules interact with INLINE/NOINLINE pragmas
(page 602).

134 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

-Wepp-undef

Since
8.2

This flag passes -Wundef to the C pre-processor (if its being used) which causes the
pre-processor to warn on uses of the #if directive on undefined identifiers.

-Wunbanged-strict-patterns

Since
8.2

This flag warns whenever you write a pattern that binds a variable whose type is un-
lifted, and yet the pattern is not a bang pattern nor a bare variable. See Unboxed types
(page 565) for information about unlifted types.

-Wmissing-home-modules

Since
8.2

When a module provided by the package currently being compiled (i.e. the “home” pack-
age) is imported, but not explicitly listed in command line as a target. Useful for Cabal
to ensure GHC won't pick up modules, not listed neither in exposed-modules, nor in
other-modules.

-Wpartial-fields

Since
8.4

The option -Wpartial-fields (page 135) warns about record fields that could fail when
accessed via a lacking constructor. The function f below will fail when applied to Bar,
so the compiler will emit a warning at its definition when -Wpartial-fields (page 135)
is enabled.

The warning is suppressed if the field name begins with an underscore.

[data Foo = Foo { f :: Int } | Bar J

-Wunused-packages

Since
8.10

The option -Wunused-packages (page 135) warns about packages, specified on command
line via -package (pkg) (page 262) or -package-id (unit-id) (page 263), but were not
needed during compilation. If the warning fires it means the specified package wasn’t
needed for compilation.

This warning interacts poorly with GHCi because most invocations will pass a large num-
ber of -package arguments on the initial load. Therefore if you modify the targets using
:load or :cd then the warning will be silently disabled if it’s enabled (see #21110).

-Winvalid-haddock

Since
9.0

5.2. Warnings and sanity-checking 135

https://gitlab.haskell.org/ghc/ghc/issues/21110

GHC User’s Guide Documentation, Release 9.4.8

When the -haddock option is enabled, GHC collects documentation comments and asso-
ciates them with declarations, function arguments, data constructors, and other syntac-
tic elements. Documentation comments in invalid positions are discarded:

myValue =
-- | Invalid (discarded) comment in an expression
2 + 2

This warning informs you about discarded documentation comments. It has no effect
when -haddock (page 110) is disabled.

-Woperator-whitespace-ext-conflict

Since
9.2

When TemplateHaskell (page 541) is enabled, f $x is parsed as f applied to an untyped
splice. But when the extension is disabled, the expression is parsed as a use of the $
infix operator.

To make it easy to read f $x without checking the enabled extensions, one could rewrite
itas f $ x, which is what this warning suggests.

Currently, it detects the following cases:
* $x could mean an untyped splice under TemplateHaskell (page 541)
* $$x could mean a typed splice under TemplateHaskell (page 541)
* %m could mean a multiplicity annotation under LinearTypes (page 429)

It only covers extensions that currently exist. If you want to enforce a stricter policy
and always require whitespace around all infix operators, use -Woperator-whitespace
(page 136).

-Woperator-whitespace

Since
9.2

There are four types of infix operator occurrences, as defined by GHC Proposal #229:

al'!b -- a loose infix occurrence
alb -- a tight infix occurrence
a'b -- a prefix occurrence
al' b -- a suffix occurrence

A loose infix occurrence of any operator is always parsed as an infix operator, but other
occurrence types may be assigned a special meaning. For example, a prefix ! denotes a
bang pattern, and a prefix $ denotes a TemplateHaskell (page 541) splice.

This warning encourages the use of loose infix occurrences of all infix operators, to pre-
vent possible conflicts with future language extensions.

-Wauto-orphans

Since
7.4

Does nothing.

136 Chapter 5. Using GHC

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0229-whitespace-bang-patterns.rst

GHC User’s Guide Documentation, Release 9.4.8

-Wmissing-space-after-bang
Since
8.8
Does nothing.
-Wderiving-typeable

Since
7.10

This flag warns when Typeable is listed in a deriving clause or derived with
StandaloneDeriving (page 455).

Since GHC 7.10, Typeable is automatically derived for all types. Thus, deriving Typeable
yourself is redundant.

-Wambiguous-fields

Since
9.2

When DuplicateRecordFields (page 442) is enabled, the option -Wambiguous-fields
(page 137) warns about occurrences of fields in selectors or updates that depend on
the deprecated mechanism for type-directed disambiguation. This mechanism will be
removed in a future GHC release, at which point these occurrences will be rejected as
ambiguous. See the proposal DuplicateRecordFields without ambiguous field access and
the documentation on DuplicateRecordFields (page 442) for further details.

This warning has no effect when DuplicateRecordFields (page 442) is disabled.
-Wforall-identifier

Since
94

In a future GHC release, forall will become a keyword regardless of enabled extensions.
This will make definitions such as the following illegal:

-- from constraints-0.13
forall :: forall p. (forall a. Dict (p a)) -> Dict (Forall p)

forall d = ...

Library authors are advised to use a different identifier, such as forAll, forall , or
for_all:

forall :: forall p. (forall a. Dict (p a)) -> Dict (Forall p)

forall d = ...

The warning is only triggered at definition sites where it can be addressed by using a
different name.

Users of a library that exports forall as an identifier cannot address the issue them-
selves, so the warning is not reported at use sites.

-Wunicode-bidirectional-format-characters

Since
9.0.2

5.2. Warnings and sanity-checking 137

https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0366-no-ambiguous-field-access.rst

GHC User’s Guide Documentation, Release 9.4.8

Explicit unicode bidirectional formatting characters can cause source code to be ren-
dered misleadingly in many viewers. We warn if any such character is present in the
source.

Specifically, the characters disallowed by this warning are those which are a part of the
‘Explicit Formatting™ category of the Unicode Bidirectional Character Type Listing

-Wgadt-mono-local-binds

Since
94.1

This warning is triggered on pattern matching involving GADTSs, if MonoLocalBinds
(page 540) is disabled. Type inference can be fragile in this case.

See the OutsideIn(X) paper (section 4.2) and Let-generalisation (page 540) for more
details.

To resolve this warning, you can enable MonoLocalBinds (page 540) or an extension
implying it (GADTs (page 371) or TypeFamilies (page 375)).

The warning is also triggered when matching on GADT-like pattern synonyms (i.e. pat-
tern synonyms containing equalities in provided constraints).

In previous versions of GHC (9.2 and below), it was an error to pattern match on a GADT
if neither GADTs (page 371) nor TypeFamilies (page 375) were enabled.

-Wtype-equality-out-of-scope

Since
94.1

In accordance with GHC Proposal #371, the type equality syntaxa ~ b is nolonger built-
in. Instead, ~ is a regular type operator that can be imported from Data.Type.Equality
or Prelude.

To minimize breakage, a compatibility fallback is provided: whenever ~ is used but is not
in scope, the compiler assumes that it stands for a type equality constraint. The warning
is triggered by any code that relies on this fallback. It can be addressed by bringing ~
into scope explicitly.

The likely culprit is that you use NoImplicitPrelude (page 333) and a custom Prelude.
In this case, consider updating your custom Prelude to re-export ~ from Data.Type.
Equality.

Being part of the -Wcompat (page ??) option group, this warning is off by default, but will
be switched on in a future GHC release.
-Wtype-equality-requires-operators

Since
94.1

In accordance with GHC Proposal #371, the type equality syntaxa ~ bis nolonger built-
in. Instead, ~ is a regular type operator that requires the TypeOperators (page 359)
extension.

To minimize breakage, ~ specifically (unlike other type operators) can be used even when
TypeOperators (page 359) is disabled. The warning is triggered whenever this happens,
and can be addressed by enabling the extension.

If you’'re feeling really paranoid, the -dcore-lint (page 306) option is a good choice. It turns
on heavyweight intra-pass sanity-checking within GHC. (It checks GHC's sanity, not yours.)

138 Chapter 5. Using GHC

https://www.unicode.org/reports/tr9/#Bidirectional_Character_Types
https://www.microsoft.com/en-us/research/publication/outsideinx-modular-type-inference-with-local-assumptions/
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0371-non-magical-eq.md
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0371-non-magical-eq.md

GHC User’s Guide Documentation, Release 9.4.8

5.3 Optimisation (code improvement)

The -0* options specify convenient “packages” of optimisation flags; the -f* options de-
scribed later on specify individual optimisations to be turned on/off; the -m* options specify
machine-specific optimisations to be turned on/off.

Most of these options are boolean and have options to turn them both “on” and “off” (be-
ginning with the prefix no-). For instance, while -fspecialise enables specialisation,
-fno-specialise disables it. When multiple flags for the same option appear in the command-
line they are evaluated from left to right. For instance, -fno-specialise -fspecialise will
enable specialisation.

It is important to note that the -0* flags are roughly equivalent to combinations of - f* flags.
For this reason, the effect of the -0* and - f* flags is dependent upon the order in which they
occur on the command line.

For instance, take the example of -fno-specialise -01. Despite the -fno-specialise ap-
pearing in the command line, specialisation will still be enabled. This is the case as -01
implies - fspecialise, overriding the previous flag. By contrast, -01 -fno-specialise will
compile without specialisation, as one would expect.

5.3.1 -0*: convenient “packages” of optimisation flags.

There are many options that affect the quality of code produced by GHC. Most people only
have a general goal, something like “Compile quickly” or “Make my program run like greased
lightning.” The following “packages” of optimisations (or lack thereof) should suffice.

Note that higher optimisation levels cause more cross-module optimisation to be performed,
which can have an impact on how much of your program needs to be recompiled when you
change something. This is one reason to stick to no-optimisation when developing code.

No ""-O*""-type option specified: This is taken to mean “Please compile quickly; I'm not
over-bothered about compiled-code quality.” So, for example, ghc -c Foo.hs
-00

Means “turn off all optimisation”, reverting to the same settings as if no -0 options had
been specified. Saying -00 can be useful if e.g. make has inserted a -0 on the command
line already.

-01
Means: “Generate good-quality code without taking too long about it.” Thus, for exam-
ple: ghc -c -0 Main.lhs

-02
Means: “Apply every non-dangerous optimisation, even if it means significantly longer
compile times.”

The avoided “dangerous” optimisations are those that can make runtime or space worse
if you’re unlucky. They are normally turned on or off individually.

-0(n)
Any -On where n > 2 is the same as -O2.

We don’t use a -0* flag for day-to-day work. We use -0 to get respectable speed; e.g., when

we want to measure something. When we want to go for broke, we tend to use -02 (and we
go for lots of coffee breaks).

5.3. Optimisation (code improvement) 139

GHC User’s Guide Documentation, Release 9.4.8

The easiest way to see what -0 (etc.) “really mean” is to run with -v (page 103), then stand
back in amazement.

5.3.2 -f*: platform-independent flags

These flags turn on and off individual optimisations. Flags marked as on by default are enabled
by -0, and as such you shouldn’t need to set any of them explicitly. A flag - fwombat can be
negated by saying - fno-wombat.

-fcore-constant-folding

Default
on

Enables Core-level constant folding, i.e. propagation of values that can be computed at
compile time.

-fcase-merge

Default
on

Merge immediately-nested case expressions that scrutinise the same variable. For ex-

ample,
(case x of
Red -> el
-> case x of
Blue -> e2

Green -> e3

Is transformed to,

case x of
Red -> el
Blue -> e2

Green -> e2

L

-fcase-folding

Default
on

Allow constant folding in case expressions that scrutinise some primops: For example,

case X minusWord#® 10## of

10## -> el
20## -> e2
\Y; -> e3

Is transformed to,

case x of
20## -> el
30## -> e2

-> let v = x “minusWord# 10## in e3

140 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

-fcall-arity

Default
on

Enable call-arity analysis.
-fexitification
Default
on
Enables the floating of exit paths out of recursive functions.
-fcmm-elim-common-blocks
Default
on

Enables the common block elimination optimisation in the code generator. This optimi-
sation attempts to find identical Cmm blocks and eliminate the duplicates.

-fcmm-sink
Default
on

Enables the sinking pass in the code generator. This optimisation attempts to find iden-
tical Cmm blocks and eliminate the duplicates attempts to move variable bindings closer
to their usage sites. It also inlines simple expressions like literals or registers.

-fcmm-static-pred

Default
off but enabled with -0 (page 139).

This enables static control flow prediction on the final Cmm code. If enabled GHC will
apply certain heuristics to identify loops and hot code paths. This information is then
used by the register allocation and code layout passes.

-fcmm-control-flow

Default
on

Enables some control flow optimisations in the Cmm code generator, merging basic
blocks and avoiding jumps right after jumps.

-fasm-shortcutting

Default
off

This enables shortcutting at the assembly stage of the code generator. In simpler terms
shortcutting means if a block of instructions A only consists of a unconditionally jump,
we replace all jumps to A by jumps to the successor of A.

This is mostly done during Cmm passes. However this can miss corner cases. So at
-02 this flag runs the pass again at the assembly stage to catch these. Note that due to
platform limitations (#21972) this flag does nothing on macOS.

5.3. Optimisation (code improvement) 141

https://gitlab.haskell.org/ghc/ghc/issues/21972

GHC User’s Guide Documentation, Release 9.4.8

-fblock-layout-cfg

Default
off but enabled with -0 (page 139).

The new algorithm considers all outgoing edges of a basic blocks for code layout instead
of only the last jump instruction. It also builds a control flow graph for functions, tries to
find hot code paths and place them sequentially leading to better cache utilization and
performance.

This is expected to improve performance on average, but actual performance difference
can vary.

If you find cases of significant performance regressions, which can be traced back to
obviously bad code layout please open a ticket.

-fblock-layout-weights

This flag is hacker territory. The main purpose of this flag is to make it easy to debug
and tune the new code layout algorithm. There is no guarantee that values giving better
results now won’t be worse with the next release.

If you feel your code warrants modifying these settings please consult the source code
for default values and documentation. But I strongly advise against this.

-fblock-layout-weightless

Default
off

When not using the cfg based blocklayout layout is determined either by the last jump
in a basic block or the heaviest outgoing edge of the block in the cfg.

With this flag enabled we use the last jump instruction in blocks. Without this flags the
old algorithm also uses the heaviest outgoing edge.

When this flag is enabled and - fblock- layout-cfg (page 141) is disabled block layout
behaves the same as in 8.6 and earlier.

-fcpr-anal

Default
on

Turn on CPR analysis, which enables the worker/wrapper transformation (cf.
-fworker-wrapper (page 158)) to unbox the result of a function, such as

sum :: [Int] -> Int
sum [] 0
sum (x:Xxs) X + sum XS

CPR analysis will see that each code path produces a constructed product such as I# 0#
in the first branch (where GHC.Exts.I# is the data constructor of Int, boxing up the the
primitive integer literal 0# of type Int#) and optimise to

sum xs = I# ($wsum Xs)
$wsum [] 0#
$wsum (I# x:xs) x# +# $wsum Xs

and then sum can inline to potentially cancel away the I# box.

Here’s an example of the function that does not return a constructed product:

142

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

f [Int] -> (Int -> Int) -> Int
T[] g=g980
f (x:xs) g=x+ f xs g

The expression g 0 is not a constructed product, because we don’t know anything about
g.
CPR analysis also works nestedly, for example

sumIO :: [Int] -> IO Int
sumIO [] = return O
sumIO (x:xs) = do

r <- sumIO xs

return $! x + r

Note the use of $!: Without it, GHC would be unable to see that evaluation of r and x
terminates (and rapidly, at that). An alternative would be to evaluate both with a bang
pattern or a seq, but the return $! <res> idiom should work more reliably and needs
less thinking. The above example will be optimised to

(sumIO :: [Int] -> IO Int

sumIO xs = I0 $ \s -> case $wsum xs s of
(# s', r #) -> (# s', I# r #)

$wsumIO :: [Int] -> (# RealWorld#, Int# #)

$wsumIO [] s = (# s, O0# #)

$wsumIO (I# x:xs) s = case $wsumIO xs of
(# s', r #) => (# s', x +# r#)

L

And the latter can inline sumIO and cancel away the I# constructor. Unboxing the result
of a State action should work similarly.

-fcse
Default
on

Enables the common-sub-expression elimination optimisation. Switching this off can be
useful if you have some unsafePerformIO expressions that you don’t want commoned-
up.
-fstg-cse
Default
on

Enables the common-sub-expression elimination optimisation on the STG intermediate
language, where it is able to common up some subexpressions that differ in their types,
but not their representation.

-fdicts-cheap

Default
off

A very experimental flag that makes dictionary-valued expressions seem cheap to the
optimiser.

5.3. Optimisation (code improvement) 143

GHC User’s Guide Documentation, Release 9.4.8

-fdicts-strict

Default
off

Make dictionaries strict.

This enables WW to fire on dictionary constraints which usually results in better runtime.
In niche cases it can lead to significant compile time regressions because of changed
inlining behaviour. Rarely this can also affect runtime negatively.

If enabling this flag leads to regressions try increasing the unfolding threshold using
-funfolding-use-threshold=(n) (page 157) by a modest amount (~30) as this is likely
a result of a known limitation described in #18421.

-fdmd-tx-dict-sel
Default
on

Use a special demand transformer for dictionary selectors. Behaviour is unconditionally
enabled starting with 9.2

-fdo-eta-reduction

Default
on

Eta-reduce lambda expressions, if doing so gets rid of a whole group of lambdas.

-fdo-lambda-eta-expansion

Default
on

Eta-expand let-bindings to increase their arity.

-feager-blackholing

Default
off

Usually GHC black-holes a thunk only when it switches threads. This flag makes it do so
as soon as the thunk is entered. See Haskell on a shared-memory multiprocessor.

See Compile-time options for SMP parallelism (page 159) for a discussion on its use.

-fexcess-precision

Default
off

When this option is given, intermediate floating point values can have a greater preci-
sion/range than the final type. Generally this is a good thing, but some programs may
rely on the exact precision/range of Float/Double values and should not use this option
for their compilation.

Note that the 32-bit x86 native code generator only supports excess-precision mode,
so neither -fexcess-precision nor -fno-excess-precision has any effect. This is a
known bug, see Bugs in GHC (page 723).

144 Chapter 5. Using GHC

https://simonmar.github.io/bib/papers/multiproc.pdf

GHC User’s Guide Documentation, Release 9.4.8

-fexpose-all-unfoldings

Default
off

An experimental flag to expose all unfoldings, even for very large or recursive functions.
This allows for all functions to be inlined while usually GHC would avoid inlining larger
functions.

-ffloat-in

Default
on

Float let-bindings inwards, nearer their binding site. See Let-floating: moving bindings
to give faster programs (ICFP’96).

This optimisation moves let bindings closer to their use site. The benefit here is that
this may avoid unnecessary allocation if the branch the let is now on is never executed.
It also enables other optimisation passes to work more effectively as they have more
information locally.

This optimisation isn’t always beneficial though (so GHC applies some heuristics to de-
cide when to apply it). The details get complicated but a simple example is that it is often
beneficial to move let bindings outwards so that multiple let bindings can be grouped into
a larger single let binding, effectively batching their allocation and helping the garbage
collector and allocator.

-ffull-laziness

Default
on

Run the full laziness optimisation (also known as let-floating), which floats let-bindings
outside enclosing lambdas, in the hope they will be thereby be computed less often. See
Let-floating: moving bindings to give faster programs (ICFP’96). Full laziness increases
sharing, which can lead to increased memory residency.

Note

GHC doesn’t implement complete full laziness. Although GHC’s full-laziness optimi-
sation does enable some transformations which would be performed by a fully lazy
implementation (such as extracting repeated computations from loops), these trans-
formations are not applied consistently, so don’t rely on them.

-ffun-to-thunk

Default
off

Worker/wrapper removes unused arguments, but usually we do not remove them all,
lest it turn a function closure into a thunk, thereby perhaps creating a space leak and/or
disrupting inlining. This flag allows worker/wrapper to remove all value lambdas.

This flag was ineffective in the presence of - ffull-laziness (page 145), which would
flout a thunk out of a constant worker function even though - ffun-to-thunk (page 145)
was off.

5.3. Optimisation (code improvement) 145

https://www.microsoft.com/en-us/research/publication/let-floating-moving-bindings-to-give-faster-programs/
https://www.microsoft.com/en-us/research/publication/let-floating-moving-bindings-to-give-faster-programs/
https://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz

GHC User’s Guide Documentation, Release 9.4.8

Hence use of this flag is deprecated since GHC 9.4.1 and we rather suggest to pass
-fno-full-laziness instead. That implies there’s no way for worker/wrapper to turn a
function into a thunk in the presence of -fno-full-laziness. If that is inconvenient for
you, please leave a comment on the issue tracker (#21204).

-fignore-asserts

Default
on

Causes GHC to ignore uses of the function Exception.assert in source code (in other
words, rewriting Exception.assert p e to e (see Assertions (page 611)).

-fignore-interface-pragmas

Default
off

Tells GHC to ignore all inessential information when reading interface files. That is, even
if M. hi contains unfolding or strictness information for a function, GHC will ignore that
information.

-flate-dmd-anal

Default
off

Run demand analysis again, at the end of the simplification pipeline. We found some
opportunities for discovering strictness that were not visible earlier; and optimisations
like - fspec-constr (page 149) can create functions with unused arguments which are
eliminated by late demand analysis. Improvements are modest, but so is the cost. See
notes on the wiki page.

-fliberate-case

Default
off but enabled with -02 (page 139).

Turn on the liberate-case transformation. This unrolls recursive function once in its own
RHS, to avoid repeated case analysis of free variables. It’s a bit like the call-pattern
specialiser (- fspec-constr (page 149)) but for free variables rather than arguments.

-fliberate-case-threshold=(n)

Default
2000

Set the size threshold for the liberate-case transformation.
-floopification

Default
on

When this optimisation is enabled the code generator will turn all self-recursive saturated
tail calls into local jumps rather than function calls.

-fllvm-pass-vectors-in-regs

Default
on

146 Chapter 5. Using GHC

https://gitlab.haskell.org/ghc/ghc/-/issues/21204
https://gitlab.haskell.org/ghc/ghc/wikis/late-dmd

GHC User’s Guide Documentation, Release 9.4.8

This flag has no effect since GHC 8.8 - its behavior is always on. It used to instruct GHC
to use the platform’s native vector registers to pass vector arguments during function

calls.
-fmax-inline-alloc-size=(n)

Default
128

Set the maximum size of inline array allocations to n bytes. GHC will allocate non-pinned
arrays of statically known size in the current nursery block if they’re no bigger than n
bytes, ignoring GC overheap. This value should be quite a bit smaller than the block size

(typically: 4096).
-fmax-inline-memcpy-insns=(n)
Default

32
Inline memcpy calls if they would generate no more than (n) pseudo-instructions.

-fmax-inline-memset-insns=(n)
Default

32
Inline memset calls if they would generate no more than n pseudo instructions.

-fmax-relevant-binds=(n)

Default
6

The type checker sometimes displays a fragment of the type environment in error mes-
sages, but only up to some maximum number, set by this flag. Turning it off with
-fno-max-relevant-binds gives an unlimited number. Syntactically top-level bindings
are also usually excluded (since they may be numerous), but - fno-max-relevant-binds

includes them too.

-fmax-uncovered-patterns=(n)

Default
4

Maximum number of unmatched patterns to be shown in warnings generated by
-Wincomplete-patterns (page 122) and -Wincomplete-uni-patterns (page 122).

-fmax-simplifier-iterations=(n)

Default
4

Sets the maximal number of iterations for the simplifier.
-fmax-worker-args=(n)

Default
10
A function will not be split into worker and wrapper if the number of value arguments of
the resulting worker exceeds both that of the original function and this setting.

5.3. Optimisation (code improvement) 147

GHC User’s Guide Documentation, Release 9.4.8

-fno-opt-coercion

Default
coercion optimisation enabled.

Turn off the coercion optimiser.
-fno-pre-inlining
Default
pre-inlining enabled
Turn off pre-inlining.

-fno-state-hack

Default
state hack is enabled

Turn off the “state hack” whereby any lambda with a State# token as argument is con-
sidered to be single-entry, hence it is considered okay to inline things inside it. This can
improve performance of IO and ST monad code, but it runs the risk of reducing sharing.

-fomit-interface-pragmas

Default
Implied by -00 (page ??), otherwise off.

Tells GHC to omit all inessential information from the interface file generated for the
module being compiled (say M). This means that a module importing M will see only
the types of the functions that M exports, but not their unfoldings, strictness info, etc.
Hence, for example, no function exported by M will be inlined into an importing module.
The benefit is that modules that import M will need to be recompiled less often (only
when M’s exports change their type, not when they change their implementation).

-fomit-yields

Default
on (yields are not inserted)

Tells GHC to omit heap checks when no allocation is being performed. While this im-
proves binary sizes by about 5%, it also means that threads run in tight non-allocating
loops will not get preempted in a timely fashion. If it is important to always be able to
interrupt such threads, you should turn this optimization off. Consider also recompiling
all libraries with this optimization turned off, if you need to guarantee interruptibility.

-fpedantic-bottoms

Default
off

Make GHC be more precise about its treatment of bottom (but see also - fno-state-hack
(page 148)). In particular, stop GHC eta-expanding through a case expression, which is
good for performance, but bad if you are using seq on partial applications.

-fregs-graph

Default
off due to a performance regression bug (#7679)

Only applies in combination with the native code generator. Use the graph colouring reg-
ister allocator for register allocation in the native code generator. By default, GHC uses

148 Chapter 5. Using GHC

https://gitlab.haskell.org/ghc/ghc/issues/7679

GHC User’s Guide Documentation, Release 9.4.8

a simpler, faster linear register allocator. The downside being that the linear register
allocator usually generates worse code.

-fregs-iterative

Default
off

Only applies in combination with the native code generator. Use the iterative coalescing
graph colouring register allocator for register allocation in the native code generator.
This is the same register allocator as the - fregs-graph (page 148) one but also enables
iterative coalescing during register allocation.

-fsimplifier-phases=(n)

Default
2

Set the number of phases for the simplifier. Ignored with -00.
-fsimpl-tick-factor=(n)

Default
100

GHC'’s optimiser can diverge if you write rewrite rules (Rewrite rules (page 599)) that
don’t terminate, or (less satisfactorily) if you code up recursion through data types (Bugs
in GHC (page 723)). To avoid making the compiler fall into an infinite loop, the optimiser
carries a “tick count” and stops inlining and applying rewrite rules when this count is
exceeded. The limit is set as a multiple of the program size, so bigger programs get more
ticks. The -fsimpl-tick-factor flag lets you change the multiplier. The default is 100;
numbers larger than 100 give more ticks, and numbers smaller than 100 give fewer.

If the tick-count expires, GHC summarises what simplifier steps it has done; you can use
-fddump-simpl-stats to generate a much more detailed list. Usually that identifies the
loop quite accurately, because some numbers are very large.

-fdmd-unbox-width=(n)
Default
3

Boxity analysis optimistically pretends that a function returning a record with at most
-fdmd-unbox-width fields has only call sites that don’t need the box of the returned
record. That may in turn allow more argument unboxing to happen. Set to 0 to be com-
pletely conservative (which guarantees that no reboxing will happen due to this mecha-
nism).

-fspec-constr

Default
off but enabled by -02 (page 139).

Turn on call-pattern specialisation; see Call-pattern specialisation for Haskell programs.

This optimisation specializes recursive functions according to their argument “shapes”.
This is best explained by example so consider:

last :: [a] -> a
last [] = error "last"
(continues on next page)

5.3. Optimisation (code improvement) 149

https://www.microsoft.com/en-us/research/publication/system-f-with-type-equality-coercions-2/

GHC User’s Guide Documentation, Release 9.4.8

(continued from previous page)

last (x : [1)
last (x : xs)

X
last xs

In this code, once we pass the initial check for an empty list we know that in the recursive
case this pattern match is redundant. As such -fspec-constr will transform the above

code to:
last :: [a] -> a
last [] = error "last"
last (x : xs) = last' x Xxs
where
last' x [] = X
last' x (y : ys) = last' y ys

As well avoid unnecessary pattern matching it also helps avoid unnecessary allocation.
This applies when a argument is strict in the recursive call to itself but not on the initial
entry. As strict recursive branch of the function is created similar to the above example.

It is also possible for library writers to instruct GHC to perform call-pattern specialisation
extremely aggressively. This is necessary for some highly optimized libraries, where we
may want to specialize regardless of the number of specialisations, or the size of the
code. As an example, consider a simplified use-case from the vector library:

(import GHC.Types (SPEC(..))

foldl :: (a -> b ->a) ->a -> Stream b -> a

{-# INLINE foldl #-}

foldl f z (Stream step s _) = foldl loop SPEC z s

where
foldl loop !sPEC z s = case step s of

Yield x s' -> foldl loop sPEC (f z x) s'
Skip -> foldl loop SPEC z s'
Done -> Zz

Here, after GHC inlines the body of foldl to a call site, it will perform call-pattern
specialisation very aggressively on foldl loop due to the use of SPEC in the argument
of the loop body. SPEC from GHC.Types is specifically recognised by the compiler.

(NB: it is extremely important you use seq or a bang pattern on the SPEC argument!)

In particular, after inlining this will expose f to the loop body directly, allowing heavy
specialisation over the recursive cases.

-fspec-constr-keen

Default
off

If this flag is on, call-pattern specialisation will specialise a call (f (Just x)) with an
explicit constructor argument, even if the argument is not scrutinised in the body of the
function. This is sometimes beneficial; e.g. the argument might be given to some other
function that can itself be specialised.

-fspec-constr-count=(n)

Default
3

150 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Set the maximum number of specialisations that will be created for any one function by
the SpecConstr transformation.

-fspec-constr-threshold=(n)

Default
2000

Set the size threshold for the SpecConstr transformation.
-fspecialise

Default
on

Specialise each type-class-overloaded function defined in this module for the types at
which it is called in this module. If - fcross-module-specialise (page 151) is set im-
ported functions that have an INLINABLE pragma (INLINABLE pragma (page 619)) will
be specialised as well.

-fspecialise-aggressively

Default
off

By default only type class methods and methods marked INLINABLE or INLINE are spe-
cialised. This flag will specialise any overloaded function regardless of size if its un-
folding is available. This flag is not included in any optimisation level as it can mas-
sively increase code size. It can be used in conjunction with - fexpose-all-unfoldings
(page 144) if you want to ensure all calls are specialised.

-fcross-module-specialise

Default
on

Specialise INLINABLE (INLINABLE pragma (page 619)) type-class-overloaded functions
imported from other modules for the types at which they are called in this module. Note
that specialisation must be enabled (by - fspecialise) for this to have any effect.

-flate-specialise

Default
off

Runs another specialisation pass towards the end of the optimisation pipeline. This can
catch specialisation opportunities which arose from the previous specialisation pass or
other inlining.

You might want to use this if you are you have a type class method which returns a
constrained type. For example, a type class where one of the methods implements a
traversal.

-finline-generics
Default
on

Since
9.2.1

5.3. Optimisation (code improvement) 151

GHC User’s Guide Documentation, Release 9.4.8

Annotate methods of derived Generic and Genericl instances with INLINE[1] pragmas
based on heuristics dependent on the size of the data type in question. Improves per-
formance of generics-based algorithms as GHC is able to optimize away intermediate
representation more often.

-finline-generics-aggressively

Default
off

Since
9.2.1

Annotate methods of all derived Generic and Genericl instances with INLINE[1] prag-
mas.

This flag should only be used in modules deriving Generic instances that weren’t con-
sidered appropriate for INLINE[1] annotations by heuristics of -finline-generics
(page 151), yet you know that doing so would be beneficial.

When enabled globally it will most likely lead to worse compile times and code size
blowup without runtime performance gains.

-fsolve-constant-dicts

Default
on

When solving constraints, try to eagerly solve super classes using available dictionaries.

For example:

class M a b wherem :: a -> b
type Ca b = (Num a, M a b)

f :: CIntb=>b->1Int -> Int
f_x=x+1

The body of f requires a Num Int instance. We could solve this constraint from the context
because we have C Int b and that provides us a solution for Num Int. However, we can
often produce much better code by directly solving for an available Num Int dictionary
we might have at hand. This removes potentially many layers of indirection and crucially
allows other optimisations to fire as the dictionary will be statically known and selector
functions can be inlined.

The optimisation also works for GADTs which bind dictionaries. If we statically know
which class dictionary we need then we will solve it directly rather than indirectly using
the one passed in at run time.

-fstatic-argument-transformation

Default
off

Turn on the static argument transformation, which turns a recursive function into a non-
recursive one with a local recursive loop. See Chapter 7 of Andre Santos’s PhD thesis.

-fstg-lift-lams

152 Chapter 5. Using GHC

https://www.microsoft.com/en-us/research/publication/compilation-transformation-non-strict-functional-languages/

GHC User’s Guide Documentation, Release 9.4.8

Default
on

Enables the late lambda lifting optimisation on the STG intermediate language. This
selectively lifts local functions to top-level by converting free variables into function pa-
rameters.

-fstg-1ift-1lams-known

Default
off

Allow turning known into unknown calls while performing late lambda lifting. This is
deemed non-beneficial, so it’s off by default.

-fstg-lift-lams-non-rec-args

Default
5

Create top-level non-recursive functions with at most <n> parameters while performing
late lambda lifting. The default is 5, the number of available parameter registers on
x86 64.

-fstg-lift-lams-rec-args

Default
5

Create top-level recursive functions with at most <n> parameters while performing late
lambda lifting. The default is 5, the number of available parameter registers on x86 64.

-fstrictness

Default
on

Turn on demand analysis.

A Demand describes an evaluation context of an expression. Demand analysis tries to
find out what demands a function puts on its arguments when called: If an argument is
scrutinised on every code path, the function is strict in that argument and GHC is free
to use the more efficient call-by-value calling convention, as well as pass parameters
unboxed.

Apart from strictness analysis, demand analysis also performs usage analysis: Where
strict translates to “evaluated at least once”, usage analysis asks whether arguments
and bindings are “evaluated at most once” or not at all (“evaluated at most zero times”),
e.g. absent. For the former, GHC may use call-by-name instead of call-by-need, effec-
tively turning thunks into non-memoised functions. For the latter, no code needs to be
generated at all: An absent argument can simply be replaced by a dummy value at the
call site or omitted altogether.

The worker/wrapper transformation (- fworker-wrapper (page 158)) is responsible for
exploiting unboxing opportunities and replacing absent arguments by dummies. For
arguments that can’t be unboxed, opportunities for call-by-value and call-by-name are
exploited in CorePrep when translating to STG.

It’s not only interesting to look at how often a binding is evaluated, but also how often
a function is called. If a function is called at most once, we may freely eta-expand it,
even if doing so destroys shared work if the function was called multiple times. This
information translates into OneShotInfo annotations that the Simplifier acts on.

5.3. Optimisation (code improvement) 153

GHC User’s Guide Documentation, Release 9.4.8

Notation

So demand analysis is about conservatively inferring lower and upper bounds about how
many times something is evaluated/called. We call the “how many times” part a cardinal-
ity. In the compiler and debug output we differentiate the following cardinality intervals
as approximations to cardinality:

Interval Set of denoted Syntax Explanation tying syntax to semantics
cardinalities

[1,0] {} B Bottom element

[0,0] {0} A Absent

[0,1] {0,1} M Used at most once (“Maybe”)

[0,w] {0,1,w} L Lazy. Top element, no information, used at
least 0, at most many times

[1,1] {1} 1 Strict, used exactly once

[1,w] {1,w} S Strict, used possibly many times

Note that it’s never interesting to differentiate between a cardinality of 2 and 3, or even
4232123. We just approximate the >1 case with w, standing for “many times”.

Apart from the cardinality describing how often an argument is evaluated, a demand also
carries a sub-demand, describing how deep something is evaluated beyond a simple seq-
like evaluation.

This is the full syntax for cardinalities, demands and sub-demands in BNF:

card ::=B | A|M|]L]1]S semantics as in the table above
d ::= card sd card = how often, sd = how deep
| card abbreviation: Same as "card card"
sd ::= card polymorphic sub-demand, card at every,
~leve
| P(d,d,..) product sub-demand
| Ccard(sd) call sub-demand

For example, fst is strict in its argument, and also in the first component of the argument.
It will not evaluate the argument’s second component. That is expressed by the demand
1P(1L,A). The P is for “product sub-demand”, which has a demand for each product field.
The notation 1L just says “evaluated strictly (1), with everything nested inside evaluated
according to L” - e.g., no information, because that would depend on the evaluation
context of the call site of fst. The role of L in 1L is that of a polymorphic sub-demand,
being semantically equivalent to the sub-demand P(LP(. .)), which we simply abbreviate
by the (consequently overloaded) cardinality notation L.

For another example, the expression x + 1 evaluates x according to demand 1P(L). We
have seen single letters stand for cardinalities and polymorphic sub-demands, but what
does the single letter L mean for a demand? Such a single letter demand simply expands
to a cardinality and a polymorphic sub-demand of the same letter: E.g. L is equivalent to
LL by expansion of the single letter demand, which is equivalent to LP(LP(..)), so Ls all
the way down. It is always clear from context whether we talk about about a cardinality,
sub-demand or demand.

Demand signatures

154 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

We summarise a function’s demand properties in its demand signature. This is the gen-
eral syntax:

r{x—>dx,y—>dy,z—>dz...}<d1><d2><d3>...<dn>div

N N e N N

| Neoodesogonocos /o
| I I
demand on free demand on divergence
variables arguments information
(omitted if empty) (omitted if

no information)

L

We summarise fst’s demand properties in its demand signature <1P(1L,A)>, which just
says “If fst is applied to one argument, that argument is evaluated according to 1P (1L,
A)”. For another example, the demand signature of seq would be <1A><1L> and that of
+ would be <1P(L)><1P(L)>.

If not omitted, the divergence information can be b (surely diverges) or x (surely di-
verges or throws a precise exception). For example, error has demand signature <S>b
and throwIO (which is the only way to throw precise exceptions) has demand signature
< ><lL><l>x (leaving out the complicated demand on the Exception dictionary).

Call sub-demands

Consider maybe:

maybe :: b -> (a -> b) -> Maybe a -> b
maybe n _ Nothing n
maybe _ s (Just a) s

a

We give it demand signature <L><MCM(L)><1L>. The CM(L) is a call sub-demand that says
“Called at most once, where the result is used according to L”. The expression f “seq’
f 1 puts f under demand SC1(L) and serves as an example where the upper bound on
evaluation cardinality doesn’t coincide with that of the call cardinality.

Cardinality is always relative to the enclosing call cardinality, sog 1 2 + g 3 4 puts g
under demand SCS(C1(L)), which says “called multiple times (S), but every time it is
called with one argument, it is applied exactly once to another argument (1)”.

-fstrictness-before=(n)
Run an additional demand analysis before simplifier phase (n).
-funbox-small-strict-fields

Default
on

This option causes all constructor fields which are marked strict (i.e. “!”) and which
representation is smaller or equal to the size of a pointer to be unpacked, if possible. It
is equivalent to adding an UNPACK pragma (see UNPACK pragma (page 625)) to every
strict constructor field that fulfils the size restriction.

For example, the constructor fields in the following data types

data A
data B

A 'Int
B !A

(continues on next page)

5.3. Optimisation (code improvement) 155

GHC User’s Guide Documentation, Release 9.4.8

(continued from previous page)

newtype C = C B
data D = D !C

would all be represented by a single Int# (see Unboxed types and primitive operations
(page 565)) value with -funbox-small-strict-fields enabled.

This option is less of a sledgehammer than -funbox-strict-fields: it should rarely
make things worse. If you use -funbox-small-strict-fields to turn on unboxing by
default you can disable it for certain constructor fields using the NOUNPACK pragma (see
NOUNPACK pragma (page 626)).

Note that for consistency Double, Word64, and Int64 constructor fields are unpacked
on 32-bit platforms, even though they are technically larger than a pointer on those
platforms.

-funbox-strict-fields

Default
off

This option causes all constructor fields which are marked strict (i.e. !) to be unpacked
if possible. It is equivalent to adding an UNPACK pragma to every strict constructor field
(see UNPACK pragma (page 625)).

This option is a bit of a sledgehammer: it might sometimes make things worse. Selec-
tively unboxing fields by using UNPACK pragmas might be better. An alternative is to
use -funbox-strict-fields to turn on unboxing by default but disable it for certain
constructor fields using the NOUNPACK pragma (see NOUNPACK pragma (page 626)).

Alternatively you can use - funbox-small-strict-fields (page 155) to only unbox strict
fields which are “small”.

-funfolding-creation-threshold=(n)

Default
750

Governs the maximum size that GHC will allow a function unfolding to be. (An unfolding
has a “size” that reflects the cost in terms of “code bloat” of expanding (aka inlining)
that unfolding at a call site. A bigger function would be assigned a bigger cost.)

Consequences:
a. nothing larger than this will be inlined (unless it has an INLINE pragma)
b. nothing larger than this will be spewed into an interface file.

Increasing this figure is more likely to result in longer compile times than faster code.
The - funfolding-use-threshold=(n) (page 157) is more useful.

-funfolding-dict-discount=(n)

Default
30

How eager should the compiler be to inline dictionaries?

-funfolding-fun-discount=(n)

Default
60

156 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

How eager should the compiler be to inline functions?

-funfolding-keeness-factor=(n)

This factor was deprecated in GHC 9.0.1. See #15304 for details. Users who need to
control inlining should rather consider - funfolding-use-threshold=(n) (page 157).

-funfolding-use-threshold=(n)

Default
80

This is the magic cut-off figure for unfolding (aka inlining): below this size, a function
definition will be unfolded at the call-site, any bigger and it won’t. The size computed for
a function depends on two things: the actual size of the expression minus any discounts
that apply depending on the context into which the expression is to be inlined.

The difference between this and - funfolding-creation-threshold=(n) (page 156) is
that this one determines if a function definition will be inlined at a call site. The other
option determines if a function definition will be kept around at all for potential inlining.

-funfolding-case-threshold=(n)

Default
2

GHC is in general quite eager to inline small functions. However sometimes these func-
tions will be expanded by more inlining after inlining. Since they are now applied to “in-
teresting” arguments. Even worse, their expanded form might reference again a small
function, which will be inlined and expanded afterwards. This can repeat often and lead
to explosive growth of programs.

As it happened in #18730.

Starting with GHC 9.0 we will be less eager to inline deep into nested cases. We achieve
this by applying a inlining penalty that increases as the nesting gets deeper. However
sometimes a specific (maybe quite high!) threshold of nesting is to be expected.

In such cases this flag can be used to ignore the first (n) levels of nesting when computing
the penalty.

This flag in combination with - funfolding-case-scaling=(n) (page 157) can be used
to break inlining loops without disabling inlining completely. For this purpose a smaller
value is more likely to break such loops although often adjusting the scaling is enough
and preferably.

-funfolding-case-scaling=(n)

Default
30

GHC is in general quite eager to inline small functions. However sometimes these func-
tions will be expanded by more inlining after inlining. Since they are now applied to “in-
teresting” arguments. Even worse, their expanded form might reference again a small
function, which will be inlined and expanded afterwards. This can repeat often and lead
to explosive growth of programs.

As it happened in #18730.

Starting with GHC 9.0 we will be less eager to inline deep into nested cases. We achieve
this by applying a inlining penalty that increases as the nesting gets deeper. However
sometimes we are ok with inlining a lot in the name of performance.

5.3. Optimisation (code improvement) 157

https://gitlab.haskell.org/ghc/ghc/issues/15304

GHC User’s Guide Documentation, Release 9.4.8

In such cases this flag can be used to tune how hard we penalize inlining into deeply
nested cases beyond the threshold set by - funfolding-case-threshold=(n) (page 157).
Cases are only counted against the nesting level if they have more than one alternative.

We use 1/n to scale the penalty. That is a higher value gives a lower penalty.

This can be used to break inlining loops. For this purpose a lower value is recommended.
Values in the range 10 <= n <= 20 allow some inlining to take place while still allowing
GHC to compile modules containing such inlining loops.

-fworker-wrapper
Enable the worker/wrapper transformation after a demand analysis pass.

Exploits strictness and absence information by unboxing strict arguments and replacing
absent fields by dummy values in a wrapper function that will inline in all relevant sce-
narios and thus expose a specialised, unboxed calling convention of the worker function.

Implied by -0 (page 139), and by -fstrictness (page 153). Disabled by
-fno-strictness (page ??). Enabling - fworker-wrapper (page 158) while demand anal-
ysis is disabled (by - fno-strictness (page ??)) has no effect.

-fworker-wrapper-cbv
Disabling this flag prevents a W/W split if the only benefit would be call-by-value for
some arguments.

Otherwise this exploits strictness information by passing strict value arguments call-by-
value to the functions worker. Even for functions who would otherwise not get a worker.

This avoids (potentially repeated) checks for evaluatedness of arguments in the rhs of
the worker by pushing this check to the call site. If the argument is statically visible to
be a value at the call site the overhead for the check disappears completely.

This can cause slight codesize increases. It will also cause many more functions to get
a worker/wrapper split which can play badly with rules (see Ticket #20364) which is
why it’s currently disabled by default. In particular if you depend on rules firing on
functions marked as NOINLINE without marking use sites of these functions as INLINE
or INLINEABLE then things will break unless this flag is disabled.

While WorkerWrapper is disabled this has no effect.
-fbinary-blob-threshold=(n)

Default
500000

The native code-generator can either dump binary blobs (e.g. string literals) into the
assembly file (by using “.asciz” or “.string” assembler directives) or it can dump them
as binary data into a temporary file which is then included by the assembler (using the
“.inchin” assembler directive).

This flag sets the size (in bytes) threshold above which the second approach is used. You
can disable the second approach entirely by setting the threshold to 0.

5.4 Using Concurrent Haskell

GHC supports Concurrent Haskell by default, without requiring a special option or libraries
compiled in a certain way. To get access to the support libraries for Concurrent Haskell,
just import Control.Concurrent. More information on Concurrent Haskell is provided in the
documentation for that module.

158 Chapter 5. Using GHC

./../libraries/base-4.17.2.1/Control-Concurrent.html

GHC User’s Guide Documentation, Release 9.4.8

Optionally, the program may be linked with the -threaded (page 290) option (see Options
affecting linking (page 287). This provides two benefits:

* It enables the -N (x) (page 160) to be used, which allows threads to run in parallel on
a multi-processor or multi-core machine. See Using SMP parallelism (page 159).

» If a thread makes a foreign call (and the call is not marked unsafe), then other Haskell
threads in the program will continue to run while the foreign call is in progress. Addi-
tionally, foreign exported Haskell functions may be called from multiple OS threads
simultaneously. See Multi-threading and the FFI (page 583).

The following RTS option(s) affect the behaviour of Concurrent Haskell programs:
-C (s)

Default
20 milliseconds

Sets the context switch interval to (s) seconds. A context switch will occur at the next
heap block allocation after the timer expires (a heap block allocation occurs every 4k
of allocation). With -C0O or -C, context switches will occur as often as possible (at every
heap block allocation).

5.5 Using SMP parallelism

GHC supports running Haskell programs in parallel on an SMP (symmetric multiprocessor).

There’s a fine distinction between concurrency and parallelism: parallelism is all about mak-
ing your program run faster by making use of multiple processors simultaneously. Concur-
rency, on the other hand, is a means of abstraction: it is a convenient way to structure a
program that must respond to multiple asynchronous events.

However, the two terms are certainly related. By making use of multiple CPUs it is possible
to run concurrent threads in parallel, and this is exactly what GHC’s SMP parallelism sup-
port does. But it is also possible to obtain performance improvements with parallelism on
programs that do not use concurrency. This section describes how to use GHC to compile
and run parallel programs, in Parallel and Concurrent (page 561) we describe the language
features that affect parallelism.

5.5.1 Compile-time options for SMP parallelism

In order to make use of multiple CPUs, your program must be linked with the -threaded
(page 290) option (see Options affecting linking (page 287)). Additionally, the following com-
piler options affect parallelism:

-feager-blackholing

Blackholing is the act of marking a thunk (lazy computation) as being under evaluation.
It is useful for three reasons: firstly it lets us detect certain kinds of infinite loop (the
NonTermination exception), secondly it avoids certain kinds of space leak, and thirdly
it avoids repeating a computation in a parallel program, because we can tell when a
computation is already in progress.

The option - feager-blackholing (page 144) causes each thunk to be blackholed as soon
as evaluation begins. The default is “lazy blackholing”, whereby thunks are only marked
as being under evaluation when a thread is paused for some reason. Lazy blackholing is
typically more efficient (by 1-2% or so), because most thunks don’t need to be blackholed.
However, eager blackholing can avoid more repeated computation in a parallel program,
and this often turns out to be important for parallelism.

5.5. Using SMP parallelism 159

GHC User’s Guide Documentation, Release 9.4.8

We recommend compiling any code that is intended to be run in parallel with the
-feager-blackholing (page 144) flag.

5.5.2 RTS options for SMP parallelism

There are two ways to run a program on multiple processors: call Con-
trol.Concurrent.setNumCapabilities from your program, or use the RTS -N (x) (page 160)
options.

-N (x)
-N
-maxN (x)
Use (x) simultaneous threads when running the program.

The runtime manages a set of virtual processors, which we call capabilities, the number
of which is determined by the -N option. Each capability can run one Haskell thread at a
time, so the number of capabilities is equal to the number of Haskell threads that can run
physically in parallel. A capability is animated by one or more OS threads; the runtime
manages a pool of OS threads for each capability, so that if a Haskell thread makes a
foreign call (see Multi-threading and the FFI (page 583)) another OS thread can take
over that capability.

Normally (x) should be chosen to match the number of CPU cores on the machine!. For
example, on a dual-core machine we would probably use +RTS -N2 -RTS.

Omitting (x), i.e. +RTS -N -RTS, lets the runtime choose the value of (x) itself based on
how many processors are in your machine.

Omitting -N{x) entirely means -N1.

With -maxN(x), i.e. +RTS -maxN3 -RTS, the runtime will choose at most (x), also limited
by the number of processors on the system. Omitting (x) is an error, if you need a default
use option -N.

Be careful when using all the processors in your machine: if some of your processors
are in use by other programs, this can actually harm performance rather than improve it.
Asking GHC to create more capabilities than you have physical threads is almost always
a bad idea.

Setting -N also has the effect of enabling the parallel garbage collector (see RTS options
to control the garbage collector (page 224)).

The current value of the -N option is available to the Haskell program via Control.
Concurrent.getNumCapabilities, and it may be changed while the program is running
by calling Control.Concurrent.setNumCapabilities.

The following options affect the way the runtime schedules threads on CPUs:

-qa
Use the OS’s affinity facilities to try to pin OS threads to CPU cores.

When this option is enabled, the OS threads for a capability i are bound to the CPU core
1 using the API provided by the OS for setting thread affinity. e.g. on Linux GHC uses
sched setaffinity().

Depending on your workload and the other activity on the machine, this may or may not
result in a performance improvement. We recommend trying it out and measuring the
difference.

1 Whether hyperthreading cores should be counted or not is an open question; please feel free to experiment and
let us know what results you find.

160 Chapter 5. Using GHC

./../libraries/base-4.17.2.1/Control-Concurrent.html#v:setNumCapabilities
./../libraries/base-4.17.2.1/Control-Concurrent.html#v:setNumCapabilities

GHC User’s Guide Documentation, Release 9.4.8

-qm
Disable automatic migration for load balancing. Normally the runtime will automatically
try to schedule threads across the available CPUs to make use of idle CPUs; this option
disables that behaviour. Note that migration only applies to threads; sparks created by
par are load-balanced separately by work-stealing.

This option is probably only of use for concurrent programs that explicitly schedule
threads onto CPUs with Control.Concurrent.forkOn.

5.5.3 Hints for using SMP parallelism

Add the -s [(file)] (page 232) RTS option when running the program to see timing stats,
which will help to tell you whether your program got faster by using more CPUs or not. If the
user time is greater than the elapsed time, then the program used more than one CPU. You
should also run the program without -N (x) (page 160) for comparison.

The output of +RTS -s tells you how many “sparks” were created and executed during the
run of the program (see RTS options to control the garbage collector (page 224)), which will
give you an idea how well your par annotations are working.

GHC'’s parallelism support has improved in 6.12.1 as a result of much experimentation and
tuning in the runtime system. We’d still be interested to hear how well it works for you, and
we’re also interested in collecting parallel programs to add to our benchmarking suite.

5.6 Flag reference

This section is a quick-reference for GHC’s command-line flags. For each flag, we also list its
mode/dynamic status (see Dynamic and Mode options (page 95)), and the flag’s opposite (if
available).

5.6.1 Verbosity options

More details in Verbosity options (page 103)

| Flag

Description Type Reverse \

-fabstract-refinement-hol default: off. Toggles
(page 347) whether refinements dy- -fno-abstract-refin€g
where one or more of the namic (page ??)
holes are abstract are

reported.

-fdefer-diagnostics Defer and group diagnos-
(page 107) tic messages by severity dy-

namic
-fdiagnostics-color=(alwg Use colors in error mes-
(page 107) sages dy-

namic
-fdiagnostics-show-caret | Whether to show snippets
(page 108) of original source code dy- -fno-diagnostics-shg

namic (page ??)

continues on next page

5.6. Flag reference 161

ment-hole-f

w-caret

./../libraries/base-4.17.2.1/Control-Concurrent.html#v:forkOn

GHC User’s Guide Documentation, Release 9.4.8

Table 1 - continued from previous page

| Flag | Description Type Reverse
-ferror-spans (page 108) Output full span in error
messages dy-
namic
-fhide-source-paths hide module source and
(page 104) object paths dy-
namic
-fkeep-going (page 108) Continue compilation as
far as possible on errors dy-
namic
-fmax-refinement-hole-fit default: 6. Set the max-
(page 347) imum number of refine- dy- -fno-max-refinement-hole-fits
ment hole fits for typed namic (page ??)
holes to display in type er-
ror messages.
-fmax-relevant-binds=(n) | default: 6. Set the maxi-
(page 147) mum number of bindings dy- -fno-max-relevant-binds
to display in type error namic (page ??)
messages.
-fmax-valid-hole-fits=(n) default: 6. Set the maxi-
(page 344) mum number of valid hole dy- -fno-max-valid-hole-fits
fits for typed holes to dis- namic (page ??)
play in type error mes-
sages.
-fno-show-valid-hole-fitg Disables showing a list of
(page 344) valid hole fits for typed dy-
holes in type error mes- namic
sages.
-fno-sort-valid-hole-fitg Disables the sorting of the
(page 348) list of valid hole fits for dy- -fsort-valid-hole-fits
typed holes in type error namic (page ??)
messages.
-fprint-axiom-incomps Display equation incom-
(page 105) patibilities in closed type dy- -fno-print-axiom-ingomps
families namic (page ??)
-fprint-equality-relation Distinguish between
(page 106) equality relations when dy- -fno-print-equality-relations
printing namic (page ??)
-fprint-expanded-synonymg In type errors, also print
(page 106) type-synonym-expanded dy- -fno-print-expanded-synonyms
types. namic (page ??)
-fprint-explicit-coercion Print coercions in types
(page 105) dy- -fno-print-explicit-coercions
namic (page ??)

continues on next page

162

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 1 - continued from previous page

| Flag | Description Type Reverse \
-fprint-explicit-foralls | Print explicit forall
(page 104) quantification in types. dy- -fno-print-explicit-foralls
See also ExplicitForAll mnamic (page ??)
(page 521)
-fprint-explicit-kinds Print explicit kind
(page 105) foralls and kind argu- dy- -fno-print-explicit-kinds
ments in types. See namic (page ??)
also KindSignatures
(page 525)
-fprint-explicit-runtime- Print RuntimeRep and
(page 415) Levity variables in dy- -fno-print-explicit-runtime-rer
types which are runtime- namic (page ??)
representation polymor-
phic.
-fprint-potential-instand display all available in-
(page 104) stances in type error mes- dy- -fno-print-potential-instances
sages namic (page ??)
-fprint-typechecker-elabd Print extra information
(page 106) from typechecker. dy- -fno-print-typechecKer-elaborat
namic (page ??)
-fprint-unicode-syntax Use unicode syntax when
(page 104) printing expressions, dy- -fno-print-unicode-syntax
types and kinds. See namic (page ??)
also UnicodeSyntax
(page 315)
-frefinement-level-hole-1 default: off. Sets the level
(page 347) of refinement of the refine- dy- -fno-refinement-level-hole-fits
ment hole fits, where level namic (page ??)
n means that hole fits of up
to n holes will be consid-
ered.
-freverse-errors Output errors in reverse
(page 108) order dy- -fno-reverse-errors
namic (page ??)
-fshow-docs-of-hole-fits | Toggles whether to show
(page 345) the documentation of the dy- -fno-show-docs-of-hgle-fits
valid hole fits in the out- namic (page ??)
put.
-fshow-hole-constraints | Show constraints when re-
(page 344) porting typed holes. dy-
namic
-fshow-hole-matches-of-hg Toggles whether to show
(page 347) the type of the additional dy- -fno-show-hole-matches-of-hole-
holes in refinement hole namic (page ??)

fits.

continues on next page

5.6. Flag reference

163

GHC User’s Guide Documentation, Release 9.4.8

Table 1 - continued from previous page

| Flag | Description Type Reverse
-fshow-provenance-of-holq Toggles whether to show
(page 345) the provenance of the dy- -fno-show-provenance
valid hole fits in the mnamic (page ??)
output.
-fshow-type-app-of-hole-1 Toggles whether to show
(page 345) the type application of the dy- -fno-show-type-app-ad
valid hole fits in the out- namic (page ??)
put.
-fshow-type-app-vars-of-h Toggles whether to show
(page 345) what type each quantified dy- -fno-show-type-app-Vv
variable takes in a valid namic (page ??)
hole fit.
-fshow-type-of-hole-fits | Toggles whether to show
(page 345) the type of the valid hole dy- -fno-show-type-of-hag
fits in the output. namic (page ??)
-fsort-by-size-hole-fits | Sort valid hole fits by size.
(page 348) dy- -fno-sort-by-size-hag
namic (page ??)
-fsort-by-subsumption-hol Sort valid hole fits by sub-
(page 348) sumption. dy- -fno-sort-by-subsump
namic (page 2?)
-funclutter-valid-hole-f1 Unclutter the list of valid
(page 345) hole fits by not showing dy-
provenance nor type appli- namic
cations of suggestions.
-Rghc-timing (page 108) Summarise timing stats
for GHC (same as +RTS dy-
-tstderr). namic
-v (page 103) verbose mode (equivalent
to -v3) dy-
namic
-v(n) (page 103) set verbosity level
dy-
namic
5.6.2 Alternative modes of operation
More details in Modes of operation (page 96)
164 Chapter 5. Using GHC

-of-hole-fi

f-hole-fits

ars-of-hole

le-fits

le-fits

tion-hole-f

GHC User’s Guide Documentation, Release 9.4.8

| Flag | Description | Type | Reverse

--frontend (module) run GHC with the given

(page 97) frontend plugin; see Fron- | mode
tend plugins (page 651)
for details.

--help (page 97), -7 | Display help

(page 97) mode

--1info (page 97) display information about
the compiler mode

--interactive (page 96) | Interactive mode - nor-
mally used by just run-| mode
ning ghci; see Using GHCi
(page 43) for details.

- -make (page 96) Build a multi-module
Haskell program, auto-| mode
matically figuring out
dependencies. Likely
to be much easier, and
faster, than using make;
see Using ghc --make
(page 99) for details.

--numeric-version display GHC version (nu-

(page 97) meric only) mode

--print-booter-version| display bootstrap compiler

(page 97) version mode

--print-build-platform| display platform on which

(page 97) GHC was built mode

--print-c-compiler-fla{ C compiler flags used to

(page 97) build GHC mode

--print-c-compiler-1ink C linker flags used to build

(page 98) GHC mode

--print-debug-on print whether GHC was

(page 98) built with -DDEBUG mode

--print-global-package| display GHC's global pack-

(page 98) age database directory mode

--print-have-interpretq display whether GHC was

(page 98) built with interactive sup- | mode
port

--print-have-native-co(q display whether target

(page 98) platform has NCG support | mode

continues on next page

5.6. Flag reference

165

GHC User’s Guide Documentation, Release 9.4.8

Table 2 - continued from previous page

| Flag | Description | Type | Reverse
--print-host-platform | display host platform of
(page 98) GHC mode
--print-1ld-flags display linker flags used to
(page 98) compile GHC mode
--print-leading-unders(display use of leading
(page 98) underscores on symbol | mode
names
--print-libdir display GHC library direc-
(page 98) tory mode
--print-object-splitti) display whether GHC sup-
(page 98) ports object splitting mode
--print-project-git-col display Git commitid GHC
(page 98) is built from mode
--print-project-versiol display GHC version
(page 98) mode
--print-rts-ways display which way RTS
(page 99) was built mode
--print-stage (page 99) | display stage number of
GHC mode
--print-support-smp display whether GHC was
(page 99) compiled with SMP sup- | mode
port
--print-tables-next-to{ display whether GHC
(page 99) was compiled with | mode
--enable-tables-next-to-
--print-target-platfori display target platform of
(page 99) GHC mode
--print-unregisterised| display whether this GHC
(page 99) was built in unregisterised | mode
mode
--run (file) (page 96) | Run a Haskell program.
mode
--show-iface (file) display the contents of an
(page 97) interface file. mode
--show-options display the supported com-
(page 97) mand line options mode
continues on next page
166 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 2 - continued from previous page

| Flag | Description | Type | Reverse

--supported-extensions| display the supported lan-

(page 97), | guage extensions mode

- -supported- languages

(page 97)

--version (page 97), -V | display GHC version

(page 97) mode

-e (expr) (page 96) Evaluate expr; see Ex-
pression evaluation mode | mode
(page 102) for details.

-M (page 97) generate dependency
information suitable for | mode
use in a Makefile; see
Dependency generation
(page 257) for details.

-shared (page 97) Create a shared object.

mode
5.6.3 Which phases to run
More details in Batch compiler mode (page 102)
| Flag | Description | Type | Reverse

--merge-objs (page 97) | Merge a set of objects into
a GHCI library. mode

-C (page 96) Stop after generating C (.
hc file) mode

- ¢ (page 97) Stop after generating ob-
ject (. o) file mode

-E (page 96) Stop after preprocessing (.
hspp file) mode

-F (page 285) Enable the use of a pre-
processor (page 285) | dy-
(set with -pgmF (cmd) | namic
(page 280))

-S (page 96) Stop after generating as-
sembly (.s file) mode

-x (suffix) (page 103) | Override default Dbe-
haviour for source files dy-

namic

5.6. Flag reference

167

GHC User’s Guide Documentation, Release 9.4.8

5.6.4 Redirecting output

More details in Redirecting the compilation output(s) (page 242)

| Flag | Description | Type | Reverse
--exclude-module=(file| Regard (file) as ”sta-
(page 258) ble”; i.e., exclude it from | dy-
having dependencies on it. | namic
-ddump-mod-cycles Dump module cycles
(page 258) dy-
namic
-dep-makefile (file) Use (file) as the makefile
(page 258) dy-
namic
-dep-suffix (suffix) Make dependencies that
(page 258) declare that files with suf- | dy-
fix .(suf)(osuf) depend | namic
on interface files with suf-
fix . (suf)hi
-dumpdir (dir) redirect dump files
(page 244) dy-
namic
-dynhisuf (suffix) set the suffix to use for dy-
(page 245) namic interface files dy-
namic
-dyno (file) (page 243) | set dynamic output file-
name dy-
namic
-dynohi (file) set the filename in which
(page 244) to put the dynamic inter- | dy-
face namic
-dynosuf (suffix) set the dynamic output file
(page 244) suffix dy-
namic
-hcsuf (suffix) set the suffix to use for in-
(page 245) termediate C files dy-
namic
-hidir (dir) (page 244) | set directory for interface
files dy-
namic

continues on next page

168

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 4 - continued from previous page

| Flag | Description | Type | Reverse

-hiedir (dir) set directory for extended

(page 244) interface files dy-
namic

-hiesuf (suffix) set the suffix to use for ex-

(page 245) tended interface files dy-
namic

-hisuf (suffix) set the suffix to use for in-

(page 244) terface files dy-
namic

-include-cpp-deps Include preprocessor de-

(page 259) pendencies dy-
namic

-include-pkg-deps Regard modules imported

(page 258) from packages as unstable | dy-
namic

-0 (file) (page 242) set output filename
dy-
namic

-odir (dir) (page 243) | set directory for object

files dy-

namic

-ohi (file) (page 243) | set the filename in which

to put the interface dy-

namic

-osuf (suffix) set the output file suffix

(page 244) dy-
namic

-outputdir (dir) set output directory

(page 244) dy-
namic

-stubdir (dir) redirect FFI stub files

(page 244) dy-
namic

5.6.5 Keeping intermediate files

More details in Keeping Intermediate Files (page 245)

5.6. Flag reference

169

GHC User’s Guide Documentation, Release 9.4.8

| Flag | Description | Type | Reverse
-keep-hc-file Retain intermediate .hc
(page 245), | files. dy-
-keep-hc-files namic
(page 245)
-keep-hi-files Retain intermediate .hi
(page 245) files (the default). dy- -no-keep-hi-files
namic (page ??)
-keep-hscpp-file Retain intermediate
(page 245), | hscpp files. dy-
-keep-hscpp-files namic
(page 245)
-keep-llvm-file Retain intermediate LLVM
(page 245), | .11 files. Implies -fllvm | dy-
-keep-llvm-files (page 285). namic
(page 245)
-keep-o-files Retain intermediate .o
(page 245) files (the default). dy- -no-keep-o-files
namic (page ??)
-keep-s-file Retain intermediate .s
(page 245), | files. dy-
-keep-s-files namic
(page 245)
-keep-tmp-files Retain all intermediate
(page 245) temporary files. dy-
namic
5.6.6 Temporary files
More details in Redirecting temporary files (page 246)
| Flag | Description | Type | Reverse
-tmpdir (dir) set the directory for tem-
(page 246) porary files dy-
namic
5.6.7 Finding imports
More details in The search path (page 242)
| Flag | Description | Type | Reverse
-1 (page 242) Empty the import direc-
tory list dy-
namic

continues on next page

170

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 7 - continued from previous page

| Flag | Description | Type | Reverse
-i(dir)[:(dir)]* add (dir), (dir2), etc. to im-
(page 242) port path dy-
namic

5.6.8 Interface file options
More details in Other options related to interface files (page 246)

| Flag | Description | Type | Reverse
--Show-iface (file) See Modes of operation
(page 97) (page 96). mode
-ddump-hi (page 246) Dump the new interface to
stdout dy-
namic
-ddump-hi-diffs Show the differences vs.
(page 246) the old interface dy-
namic
-ddump-minimal-imports| Dump a minimal set of im-
(page 246) ports dy-
namic

5.6.9 Extended interface file options
More details in Options related to extended interface files (page 246)

| Flag | Description | Type | Reverse
-fvalidate-ide-info Perform some sanity
(page 247) checks on the extended | dy-
interface files namic
-fwrite-ide-info Write out extended inter-
(page 247) face files dy-
namic

5.6.10 Recompilation checking

More details in The recompilation checker (page 247)

5.6. Flag reference

171

GHC User’s Guide Documentation, Release 9.4.8

[%)

ges

S

ualified

| Flag | Description | Type | Reverse \
-fforce-recomp Turn off recompilation
(page 247) checking. This is implied | dy- -fno-force-recomp
by any -ddump-X option | namic (page ??)
when compiling a single
file (i.e. when using -c
(page 97)).
-fignore-hpc-changes Do not recompile modules
(page 247) just to match changes to | dy- -fno-ignore-hpc-change
HPC flags. This is espe- | namic (page ??)
cially useful for avoiding
recompilation when using
GHCi, and is enabled by
default for GHCi.
-fignore-optim-changes| Do not recompile modules
(page 247) just to match changes to | dy- -fno-ignore-optim-chan
optimisation flags. This is | namic (page ??)
especially useful for avoid-
ing recompilation when us-
ing GHCi, and is enabled
by default for GHCi.
5.6.11 Interactive-mode options
More details in The .ghci and .haskeline files (page 86)
| Flag | Description | Type | Reverse
-fbreak-on-error Break on uncaught excep-
(page 68) tions and errors (page 68) | dy- -fno-break-on-error
namic (page ??)
-fbreak-on-exception Break on any exception
(page 68) thrown (page 68) dy- -fno-break-on-exceptio
namic (page ??)
-fghci-hist-size=(n) Set the number of entries
(page 67) GHCi keeps for :history. | dy-
See The GHCi Debugger | namic
(page 60).
-fghci-leak-check (Debugging only) check
(page 71) for space leaks when load- | dy- -fno-ghci-leak-check
ing new modules in GHCi. | namic (page ??)
-fimplicit-import-qual] Putin scope qualified iden-
(page 54) tifiers for every loaded | dy- -fno-implicit-import-q
module namic (page ??)
-flocal-ghci-history Use current directory for
(page 70) the GHCi command his- | dy- -fno-local-ghci-histor
tory file .ghci-history. namic (page ??)

continues on next page

172

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 11 - continued from previous page

| Flag | Description | Type | Reverse
-fno-1it (page 56) No longer set the special
variable it. dy- -fno-no-1it (page ??)
namic
-fprint-bind-result Turn on printing of
(page 48) binding results in GHCi | dy- -fno-print-bind-result
(page 48) namic (page ??)
-fprint-evld-with-show| Instruct :print (page 79)
(page 62) to use Show instances | dy-
where possible. namic
-fshow-loaded-modules | Show the names of mod-
(page 44) ules that GHCi loaded af- | dy-
ter a : load (page 78) com- | namic
mand.
-ghci-script (page 87) | Read additional .ghci
files dy-
namic
-ignore-dot-ghci Disable reading of .ghci
(page 87) files dy- -no-ignore-dot-ghci
namic (page ??)
-interactive-print Select the function to
(name) (page 58) use for printing evalu-| dy-
ated expressions in GHCi | namic
(page 58)
5.6.12 Packages
More details in Packages (page 260)
| Flag | Description Type | Reverse
-clear-package-db Clear the package db
(page 266) stack. dy-
namic
-distrust (pkg) Expose package (pkg) and
(page 596) set it to be distrusted. See | dy-
Safe Haskell (page 588). namic
-distrust-all-packages| Distrust all packages by
(page 596) default. See Safe Haskell | dy-
(page 588). namic

continues on next page

5.6. Flag reference

173

GHC User’s Guide Documentation, Release 9.4.8

Table 12 - continued from previous page

| Flag | Description | Type | Reverse
-fpackage-trust Enable Safe Haskell
(page 597) (page 588) trusted pack- | dy-
age requirement for | namic
trustworthy modules.

-global-package-db Add the global package db

(page 266) to the stack. dy-
namic

-hide-all-packages Hide all packages by de-

(page 263) fault dy-
namic

-hide-package (pkg) Hide package (pkg)

(page 263) dy-
namic

-ignore-package (pkg) | Ignore package (pkg)

(page 263) dy-
namic

-no-auto-link-packages| Don't automatically link in

(page 263) the base and rts packages. | dy-
namic

-no-global-package-db | Remove the global pack-

(page 266) age db from the stack. dy-
namic

-no-user-package-db Remove the user's pack-

(page 266) age db from the stack. dy-
namic

-package (pkg) Expose package (pkg)

(page 262) dy-
namic

-package-db (file) Add (file) to the package

(page 266) db stack. dy-
namic

-package-env Use the specified package

(file) | (name) environment. dy-

(page 267) namic

-package-id (unit-id) | Expose package by id

(page 263) (unit-id) dy-
namic

continues on next page

174

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 12 - continued from previous page

| Flag | Description | Type | Reverse
-this-unit-id Compile to be part of unit
(unit-1id) (page 263) (i.e. package) (unit-id) dy-
namic
-trust (pkg) (page 596) | Expose package (pkg) and
set it to be trusted. See | dy-
Safe Haskell (page 588). namic
-user-package-db Add the user's package db
(page 266) to the stack. dy-
namic

5.6.13 Language options

Language options can be enabled either by a command-line option -Xblah, or by a {-#
LANGUAGE blah #-} pragma in the file itself. See Controlling extensions (page 309).

5.6.14 Warnings

More details in Warnings and sanity-checking (page 111)

e-variables

| Flag | Description | Type | Reverse \

-fdefer-out-of-scope-vqi Convert variable out of

(page 115) scope variables errors | dy- -fno-defer-out-of-scop
into warnings. Implied | namic (page ??)

-fdefer-type-errors
(page 115)

-fdefer-typed-holes
(page 115)

by -fdefer-type-errors
(page 115). See also
-Wdeferred-out-of-scope
(page 116).
Turn type
warnings,
the error until runtime
(page 433). Implies
-fdefer-typed-holes
(page 115) and
-fdefer-out-of-scope-va
(page 115). See also
-Wdeferred-type-errors
(page 115)

Convert typed hole
(page 340) errors into
warnings, deferring
the error until runtime
(page 433). Implied by
-fdefer-type-errors
(page 115). See
also -Wtyped-holes
(page 115).

errors into
deferring

dy-
namic

dy-
namic

-fno-defer-type-errors
(page ??)

-fno-defer-typed-holes
(page ??)

continues on next page

5.6. Flag reference

175

GHC User’s Guide Documentation, Release 9.4.8

Table 13 - continued from previous page

warnings

pS

lisations

lizations

| Flag | Description | Type | Reverse \
-fenable-th-splice-war) Generate warnings for
(page 547) Template Haskell splices dy- -fno-enable-th-splice-
namic (page ??)
-fhelpful-errors Make suggestions for mis-
(page 116) spelled names. dy- -fno-helpful-errors
namic (page ??)
-fmax-pmcheck-models=(1 soft limit on the number
(page 123) of parallel models the pat- | dy-
tern match checker should | namic
check a pattern match
clause against
-fshow-warning-groups | show which group an emit-
(page 114) ted warning belongs to. dy- -fno-show-warning-grou
namic (page ??)
-fvia-C (page 279) use the C code generator
dy-
namic
-W (page 112) enable normal warnings
dy- -w (page 113)
namic
-w (page 113) disable all warnings
dy-
namic
-Wall (page 112) enable almost all warn-
ings (details in Warn-| dy- -w (page 113)
ings and sanity-checking | namic
(page 111))
-Wall-missed-specialisi{ warn when specialisation
(page 117) of any overloaded function | dy- -Wno-all-missed-specia
fails. namic (page ??)
-Wall-missed-specializq alias for
(page 117) -Wall-missed-specialisa| dy- -Wno-all-missed-specia
(page 117) namic (page ??)
-Wambiguous-fields warn about ambiguous
(page 137) field selectors or updates | dy-
namic
-Wauto-orphans (deprecated) Does nothing
(page 136) dy-
namic
continues on next page
176 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 13 - continued from previous page

d-imports

cope-variab

| Flag | Description | Type | Reverse \
-Wcompat (page ??) enable future compati-
bility warnings (details | dy- -Wno-compat (page 113)
in Warnings and sanity- | namic
checking (page 111))
-Wcompat-unqualified-if Report unqualified im-
(page 114) ports of core libraries | dy- -Wno-compat-unqualifie
which are expected to | namic (page ??)
cause compatibility prob-
lems in future releases.
-Wcpp-undef (page 134) | warn on uses of the #if di-
rective on undefined iden- | dy-
tifiers namic
-Wdefault (page 111) enable default flags
dy-
namic
-Wdeferred-out-of-scop{ Report warnings when
(page 116) variable out-of-scope er-| dy- -Wno-deferred-out-of-s
rors are deferred until | namic (page ??)

-Wdeferred-type-errors
(page 115)

-Wdeprecated- flags
(page 119)

-Wdeprecations

(page 117)

-Wderiving-defaults
(page 120)

-Wderiving-typeable
(page 137)

runtime (page 433). See
-fdefer-out-of-scope-va
(page 115).
Report warnings
deferred type
(page 433) are en-
abled. This option is
enabled by default. See
-fdefer-type-errors
(page 115).

warn about uses of com-
mandline flags that are
deprecated

when
errors

warn about wuses of
functions & types that
have warnings or depre-
cated pragmas. Alias for
-Wwarnings-deprecations

(page 117)

warn about default
deriving when using
both DeriveAnyClass
(page 471) and
GeneralizedNewtypeDeriv
(page 466)

warn when Typeable is de-
rived

namic

dy-
namic

dy-
namic

dy-
namic

namic

-Wno-deferred-type-err
(page ??)

-Wno-deprecated-flags
(page ??)

-Wno-deprecations

(page ??)

-Wno-deriving-defaults
(page ??)

-Wno-deriving-typeable
(page ??)

ors

continues on next page

5.6. Flag reference

177

GHC User’s Guide Documentation, Release 9.4.8

Table 13 - continued from previous page

orts

ints

inds

| Flag | Description | Type | Reverse \
-Wdodgy-exports warn about dodgy exports
(page 119) dy- -Wno-dodgy-exports
namic (page ??)
-Wdodgy-foreign-importy warn about dodgy foreign
(page 119) imports dy- -Wno-dodgy-foreign-imp
namic (page ??)
-Wdodgy-imports warn about dodgy imports
(page 119) dy- -Wno-dodgy-imports
namic (page ??)
-Wduplicate-constraint{ warn when a constraint ap-
(page 120) pears duplicated in a type | dy- -Wno-duplicate-constra
signature namic (page ??)
-Wduplicate-exports warn when an entity is ex-
(page 121) ported multiple times dy- -Wno-duplicate-exports
namic (page ??)
-Wempty-enumerations warn about enumerations
(page 120) that are empty dy- -Wno-empty-enumeration
namic (page ??)
-Werror (page ??) make warnings fatal
dy- -Wwarn (page 114)
namic
-Weverything (page 113) | enable all warnings sup-
ported by GHC dy-
namic
-Wextra (page 112) alias for -W (page 112)
dy- -w (page 113)
namic
-Wforall-identifier warn when forall is used
(page 137) as an identifier (at defini- | dy- -Wno-forall-identifier
tion sites) namic (page ??)
-Wgadt-mono-local-bind{ warn when pattern match-
(page 138) ing on a GADT without | dy- -Wno-gadt-mono-local-b
MonoLocalBinds namic (page ??)
-Whi-shadowing (deprecated) warn when a
(page 121) .hi file in the current di- | dy- -Wno-hi-shadowing
rectory shadows a library | namic (page ??)
continues on next page
178 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 13 - continued from previous page

| Flag | Description | Type | Reverse
-Widentities (page 121) | warn about uses of Pre-
lude numeric conversions | dy- -Wno-identities
that are probably the iden- | namic (page ??)
tity (and hence could be
omitted)
-Wimplicit-kind-vars (deprecated) warn when
(page 121) kind variables are implic- | dy- -Wno-implicit-kind-vars
itly quantified over. namic (page ??)
-Wimplicit-lift warn about implicit 1ift
(page 122) in Template Haskell | dy- -Wno-implicit-1ift
quotes namic (page ??)
-Wimplicit-prelude warn when the Prelude is
(page 122) implicitly imported dy- -Wno-implicit-prelude
namic (page ??)
-Winaccessible-code warn about inaccessible
(page 127) code dy- -Wno-inaccessible-code
namic (page ??)
-Wincomplete-patterns | warn when a pattern
(page 122) match could fail dy- -Wno-incomplete-patterns
namic (page ??)
-Wincomplete-record-up¢ warn when a record up-
(page 123) date could fail dy- -Wno-incomplete-record-updates
namic (page ??)
-Wincomplete-uni-patte| warn when a pattern
(page 122) match in a lambda expres- | dy- -Wno-incomplete-uni-paftterns
sion, pattern binding or a | namic (page ??)
lazy pattern could fail
-Winferred-safe-importy warn when an explicitly
(page 598) Safe Haskell module im- | dy- -Wno-inferred-safe-impoprts
ports a Safe-Inferred one namic (page ??)
-Winline-rule-shadowin{ Warn if a rewrite RULE
(page 134) might fail to fire because | dy- -Wno-inline-rule-shadowing
the function might be in- | namic (page ??)
lined before the rule has
a chance to fire. See
How rules interact with
INLINE/NOINLINE prag-
mas (page 602).
-Winvalid-haddock warn when a Haddock
(page 135) comment occurs in an in- | dy- -Wno-invalid-haddock
valid position namic (page ??)

continues on next page

5.6. Flag reference

179

GHC User’s Guide Documentation, Release 9.4.8

Table 13 - continued from previous page

| Flag | Description | Type | Reverse \
-Wmisplaced-pragmas warn about uses of file
(page 116) header pragmas in the | dy- -Wno-misplaced-pragmas
module body namic (page ??)
-Wmissed-extra-shared-| Warn when GHCi can't
(page 130) load a shared lib. dy- -Wno-missed-extra-shared-1ib
namic (page ??)
-Wmissed-specialisatiol warn when specialisation
(page 117) of an imported, over-| dy- -Wno-missed-specialisajtions
loaded function fails. namic (page ??)
-Wmissed-specializatiol alias for
(page 117) -Wmissed-specialisation| dy- -Wno-missed-specializations
(page 117) namic (page ??)
-Wmissing-deriving-stry warn when a deriving
(page 123) clause is missing a deriv- | dy- -Wno-missing-deriving-strategies
ing strategy namic (page ??)
-Wmissing-export-lists| warn when a module dec-
(page 124) laration does not explicitly | dy- -Wno-missing-export-lists
list all exports namic (page ??)
-Wmissing-exported-pati warn about pattern syn-
(page 126) onyms without signatures, | dy- -Wno-missing-exported-pattern-syn
only if they are exported namic (page ??)
-Wmissing-exported-sigy) warn about top-level func-
(page 125) tions without signatures, | dy- -Wno-missing-exported-signatures
only if they are exported namic (page ??)
-Wmissing-exported-sigy (deprecated) warn about
(page 125) top-level functions with-| dy- -Wno-missing-exported-isigs
out signatures, only | namic (page ??)
if they are exported.
takes precedence over
-Wmissing-signatures
-Wmissing-fields warn when fields of a
(page 124) record are uninitialised dy- -Wno-missing-fields
namic (page ??)
continues on next page
180 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 13 - continued from previous page

les

sts

atures

natures

[%)

-instances

ynonym-sign

ell-mode

| Flag | Description | Type | Reverse \
-Wmissing-home-modules| warn when encountering
(page 135) a home module imported, | dy- -Wno-missing-home-modu
but not listed on the | namic (page ??)
command line. Useful
for cabal to ensure GHC
won't pick up modules,
not listed neither in
exposed-modules, nor in
other-modules.
-Wmissing-import-1lists| warn when an import dec-
(page 124) laration does not explicitly | dy- -Wno-missing-import-li
list all the names brought | namic (page ??)
into scope
-Wmissing-kind-signatu| warn when type declara-
(page 126) tions don't have kind sig- | dy- -Wno-missing-kind-sign
natures nor CUSKs namic (page ??)
-Wmissing-local-signat| warn about polymorphic
(page 125) local bindings without sig- | dy- -Wno-missing-local-sig
natures namic (page ??)
-Wmissing-local-sigs (deprecated) warn about
(page 125) polymorphic local bind- | dy- -Wno-missing-local-sig
ings without signatures namic (page ??)
-Wmissing-methods warn when class methods
(page 124) are undefined dy- -Wno-missing-methods
namic (page ??)
-Wmissing-monadfail-in{ (deprecated) Warn when
(page 118) a failable pattern is used | dy- -Wno-missing-monadfail
in a do-block that does | namic (page ??)
not have a MonadFail in-
stance.
-Wmissing-pattern-synol warn when pattern syn-
(page 125) onyms do not have type | dy- -Wno-missing-pattern-s
signatures namic (page ??)
-Wmissing-safe-haskell{ warn when the Safe
(page 598) Haskell mode is not explic- | dy- -Wno-missing-safe-hask
itly specified. namic (page ??)
-Wmissing-signatures warn about top-level func-
(page 125) tions without signatures dy- -Wno-missing-signature
namic (page ??)
-Wmissing-space-after-| (deprecated) Does nothing
(page 136) dy-
namic

continues on next page

5.6. Flag reference

181

GHC User’s Guide Documentation, Release 9.4.8

Table 13 - continued from previous page

riction

d-instances

dfail-insta

id-instance

ce-ext-conf

| Flag | Description | Type | Reverse \
-Wmonomorphism-restrici warn when the Monomor-
(page 129) phism Restriction is ap-| dy- -Wno-monomorphism-rest
plied namic (page ??)
-Wname - shadowing warn when names are
(page 126) shadowed dy- -Wno-name-shadowing
namic (page ??)
-Wno-compat (page 113) | Disables all warnings
enabled by -Wcompat | dy- -Wcompat (page ??)
(page ?7?). namic
-Wnoncanonical-monad-1i) warn when Applicative
(page 117) or Monad instances have | dy- -Wno-noncanonical-mona
noncanonical definitions | namic (page ??)
of return, pure, (>>), or
(*>). See flag description
in Warnings and sanity-
checking (page 111) for
more details.
-Wnoncanonical-monadfa] (deprecated) warn when
(page 118) Monad or MonadFail in- | dy- -Wno-noncanonical-mona
stances have noncanoni- | namic (page ??)
cal definitions of fail.
-Wnoncanonical-monoid-] warn when Semigroup or
(page 118) Monoid instances have | dy- -Wno-noncanonical-mono
noncanonical definitions | namic (page ??)
of (<>) or mappend. See
flag description in Warn-
ings and sanity-checking
(page 111) for more de-
tails.
-Wnot (page 113) (deprecated) Alias for -w
(page 113) dy-
namic
-Woperator-whitespace | warn on prefix, suffix, and
(page 136) tight infix uses of infix op- | dy- -Wno-operator-whitespa
erators namic (page ??)
-Woperator-whitespace-¢ warn on uses of infix oper-
(page 136) ators that would be parsed | dy- -Wno-operator-whitespa
differently were a particu- | namic (page ??)
lar GHC extension enabled
-Worphans (page 126) warn when the module
contains orphan instance | dy- -Wno-orphans (page ??)
declarations or rewrite | namic

rules (page 259)

continues on next page

182

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 13 - continued from previous page

Ls

rns

atures

fied-module

tterns

ints

wildcards

ess-flags

| Flag | Description | Type | Reverse \
-Woverflowed-literals | warn about literals that
(page 120) will overflow their type dy- -Wno-overflowed-litera
namic (page ??)
-Woverlapping-patterns| warn about overlapping
(page 127) patterns dy- -Wno-overlapping-patte
namic (page ??)
-Wpartial-fields warn when defining a par-
(page 135) tial record field. dy- -Wno-partial-fields
namic (page ??)
-Wpartial-type-signatu| warn about holes in par-
(page 116) tial type signatures when | dy- -Wno-partial-type-sign
PartialTypeSignatures namic (page ??)
(page 534) is enabled.
Not applicable when
PartialTypeSignatures
(page 534) is not enabled,
in which case errors are
generated for such holes.
-Wprepositive-qualifie(Reportimports with alead-
(page 114) ing/prepositive “qualified” | dy- -Wno-prepositive-quali
namic (page ??)
-Wredundant-bang-pattel Warn about redundant
(page 133) bang patterns. dy- -Wno-redundant-bang-pa
namic (page ??)
-Wredundant-constrainty Have the compiler warn
(page 120) about redundant con-| dy- -Wno-redundant-constra
straints in type signa-| namic (page ??)
tures.
-Wredundant-record-wil(Warn about record wild-
(page 134) card matches when the | dy- -Wno-redundant-record-
wildcard binds no pat-| namic (page ??)
terns.
-Wredundant-strictness{ Warn about redundant
(page 134) strictness flags. dy- -Wno-redundant-strictn
namic (page ??)
-Wsafe (page 597) warn if the module being
compiled is regarded to be | dy- -Wno-safe (page ??)
safe. namic
-Wsemigroup (page 118) | warn when a Monoid is not
Semigroup, and on non- | dy- -Wno-semigroup
Semigroup definitions of | namic (page ??)

(<>)?

continues on next page

5.6. Flag reference

183

GHC User’s Guide Documentation, Release 9.4.8

Table 13 - continued from previous page

s-constrain

-of-scope

uires-opera

atterns

| Flag | Description | Type | Reverse \
-Wsimplifiable-class-c(Warn about class con-
(page 129) straints in a type signa- | dy- -Wno-simplifiable-clas
ture that can be simplified | namic (page ??)
using a top-level instance
declaration.
-Wstar-binder warn about binding the
(page 128) (*) type operator despite | dy- -Wno-star-binder
StarIsType (page 410) namic (page ??)
-Wstar-is-type warn when * is used to
(page 128) mean Data.Kind.Type dy- -Wno-star-is-type
namic (page ??)
-Wtabs (page 129) warn if there are tabs in
the source file dy- -Wno-tabs (page ??)
namic
-Wtrustworthy-safe warn if the module being
(page 598) compiled is marked as | dy- -Wno-safe (page ??)
Trustworthy (page 597) | namic
but it could instead
be marked as Safe
(page 596), a more in-
formative bound.
-Wtype-defaults warn when defaulting hap-
(page 129) pens dy- -Wno-type-defaults
namic (page ??)
-Wtype-equality-out-of{ warn when type equality a
(page 138) ~ b is used despite being | dy- -Wno-type-equality-out
out of scope namic (page ??)
-Wtype-equality-requir{ warn when type equality a
(page 138) ~ b is used despite being | dy- -Wno-type-equality-req
out of scope namic (page ??)
-Wtyped-holes Report warnings when
(page 115) typed hole (page 340) | dy- -Wno-typed-holes
errors are deferred until | namic (page ??)
runtime (page 433). See
-fdefer-typed-holes
(page 115).
-Wunbanged-strict-patté¢ warn on pattern bind of un-
(page 135) lifted variable that is nei- | dy- -Wno-unbanged-strict-p
ther bare nor banged namic (page ??)
-Wunicode-bidirectiona| warn about the usage of
(page 137) unicode bidirectional lay- | dy-
out override characters namic

continues on next page

184

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 13 - continued from previous page

mas

ing-flags

ng-conventi

riction

-constructo

| Flag | Description | Type | Reverse \
-Wunrecognised-pragmas| warn about uses of prag-
(page 116) mas that GHC doesn't | dy- -Wno-unrecognised-prag
recognise namic (page ??)
-Wunrecognised-warning{ throw a warning when an
(page 114) unrecognised -W. .. flagis | dy- -Wno-unrecognised-warn
encountered on the com- | namic (page ??)
mand line.
-Wunsafe (page 597) warn if the module being
compiled is regarded to be | dy- -Wno-unsafe (page ??)
unsafe. See Safe Haskell | namic
(page 588)
-Wunsupported-calling-(warn about use of an un-
(page 119) supported calling conven- | dy- -Wno-unsupported-calli
tion namic (page ??)
-Wunsupported-1llvm-very Warn when using -fllvm
(page 130) (page 285) with an unsup- | dy- -Wno-monomorphism-rest
ported version of LLVM. namic (page ??)
-Wunticked-promoted-col warn if promoted con-
(page 130) structors are not ticked dy- -Wno-unticked-promoted
namic (page ??)
-Wunused-binds warn about bindings that
(page 130) are unused. Alias for | dy- -Wno-unused-binds
-Wunused-top-binds namic (page ??)
(page 130),
-Wunused-local-binds
(page 131) and
-Wunused-pattern-binds
(page 131)
-Wunused-do-bind warn about do bindings
(page 132) that appear to throw away | dy- -Wno-unused-do-bind
values of types other than | namic (page ??)
()
-Wunused-foralls warn about type variables
(page 133) in user-written forall\s | dy- -Wno-unused-foralls
that are unused namic (page ??)
-Wunused-imports warn about unnecessary
(page 131) imports dy- -Wno-unused-imports
namic (page ??)
-Wunused-local-binds warn about local bindings
(page 131) that are unused dy- -Wno-unused-local-bind
namic (page ??)

continues on next page

5.6. Flag reference

185

GHC User’s Guide Documentation, Release 9.4.8

Table 13 - continued from previous page

nds

dcards

rns

ions

| Flag | Description | Type | Reverse \
-Wunused-matches warn about variables in
(page 132) patterns that aren't used dy- -Wno-unused-matches
namic (page ??)
-Wunused-packages warn when package is re-
(page 135) quested on command line, | dy- -Wno-unused-packages
but not needed. namic (page ??)
-Wunused-pattern-binds| warn about pattern match
(page 131) bindings that are unused | dy- -Wno-unused-pattern-bi
namic (page ??)
-Wunused-record-wildcal Warn about record wild-
(page 133) card matches when none | dy- -Wno-unused-record-wil
of the bound variables are | namic (page ??)
used.
-Wunused-top-binds warn about top-level bind-
(page 130) ings that are unused dy- -Wno-unused-top-binds
namic (page ??)
-Wunused-type-patterns| warn about unused type
(page 132) variables which arise from | dy- -Wno-unused- type-patte
patterns in in type family | namic (page ??)
and data family instances
-Wwarn (page 114) make warnings non-fatal
dy- -Werror (page ??)
namic
-Wwarnings-deprecationy warn about uses of func-
(page 117) tions & types that have | dy- -Wno-warnings-deprecat
warnings or deprecated | namic (page ??)
pragmas
-Wwrong-do-bind warn about do bindings
(page 134) that appear to throw away | dy- -Wno-wrong-do-bind
monadic values that you | namic (page ??)

should have bound instead

5.6.15 Optimisation levels

These options are described in more detail in Optimisation (code improvement) (page 139).

See Individual optimisations (page 187) for a list of optimisations enabled on level 1 and level

2.
| Flag | Description | Type | Reverse \
-0 (page 139), -01 | Enable level 1 optimisa-
(page 139) tions dy- -00 (page ??)
namic
continues on next page
186 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 14 - continued from previous page

| Flag | Description | Type | Reverse
-00 (page ??) Disable optimisations (de-
fault) dy-
namic
-02 (page 139) Enable level 2 optimisa-
tions dy- -00 (page ??)
namic
-0(n) (page 139) Any -On where n > 2 is the
same as -0O2. dy- -00 (page ??)
namic

5.6.16 Individual optimisations

These options are described in more detail in -f*: platform-independent flags (page 140). If
a flag is implied by -0 then it is also implied by -02 (unless flag description explicitly says
otherwise). If a flag is implied by -00 only then the flag is not implied by -0 and -02.

htless

| Flag | Description | Type | Reverse \
-fasm-shortcutting Enable shortcutting on as-
(page 141) sembly. Implied by -02 | dy- -fno-asm-shortcutting
(page 139). namic (page ??)
-fbinary-blob-threshol(¢ default: 500K. Tweak as-
(page 158) sembly generator for bi-| dy-
nary blobs. namic
-fblock-layout-cfg Use the new cfg based
(page 141) block layout algorithm. dy- -fno-block- layout-cfg
namic (page ??)
-fblock-layout-weightlq Ignore cfg weights for
(page 142) code layout. dy- -fno-block-layout-weig
namic (page ??)
-fblock-layout-weights| Sets edge weights used by
(page 142) the new code layout algo- | dy-
rithm. namic
-fcall-arity (page 140) | Enable call-arity optimi-
sation. Implied by -0 | dy- -fno-call-arity
(page 139). namic (page ??)
-fcase-folding Enable constant folding in
(page 140) case expressions. Implied | dy- -fno-case-folding
by -0 (page 139). namic (page ??)

continues on next page

5.6. Flag reference

187

GHC User’s Guide Documentation, Release 9.4.8

Table 15 - continued from previous page

locks

ding

ialise

| Flag | Description | Type | Reverse
-fcase-merge (page 140) | Enable case-merging. Im-
plied by -0 (page 139). dy- -fno-case-merge
namic (page ??)
-fcmm-control-flow Enable control flow op-
(page 141) timisation in the Cmm | dy- -fno-cmm-control-flow
backend. Implied by -0 | namic (page ??)
(page 139).
-fcmm-elim-common-bloch Enable Cmm common
(page 141) block elimination. Implied | dy- -fno-cmm-elim-common-b
by -0 (page 139). namic (page ??)
-fecmm-sink (page 141) Enable Cmm sinking. Im-
plied by -0 (page 139). dy- -fno-cmm-sink (page ??)
namic
-fcmm-static-pred Enable static control flow
(page 141) prediction. Implied by -0 | dy- -fno-cmm-static-pred
(page 139). namic (page ??)
-fcore-constant-foldin{ Enable constant folding
(page 140) in Core. Implied by -0 | dy- -fno-core-constant-fol
(page 139). namic (page ??)
-fcpr-anal (page 142) Turn on Constructed Prod-
uct Result analysis. Im- | dy- -fno-cpr-anal (page ??)
plied by -0 (page 139). namic
-fcross-module-special] Turn on specialisation of
(page 151) overloaded functions im- | dy- -fno-cross-module-spec
ported from other mod- | namic (page ??)
ules.
-fcse (page 143) Enable common sub-
expression elimination. | dy- -fno-cse (page ??)
Implied by -0 (page 139). | namic
-fdicts-cheap Make dictionary-valued
(page 143) expressions seem cheap | dy- -fno-dicts-cheap
to the optimiser. namic (page ??)
-fdicts-strict Make dictionaries strict.
(page 143) Implied by -02 (page 139). | dy- -fno-dicts-strict
namic (page ??)
-fdmd-tx-dict-sel (deprecated) Use a spe-
(page 144) cial demand transformer | dy- -fno-dmd-tx-dict-sel
for dictionary selectors. namic (page ??)
continues on next page
188 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 15 - continued from previous page

| Flag | Description | Type | Reverse
-fdmd-unbox-width=(n) | default: 3. Boxity analy-
(page 149) sis pretends that returned | dy-
records with this many | namic
fields can be unboxed.
-fdo-eta-reduction Enable eta-reduction. Im-
(page 144) plied by -0 (page 139). dy- -fno-do-eta-reduction
namic (page ??)
-fdo- lambda-eta-expans] Enable lambda eta-
(page 144) expansion. Always en- | dy- -fno-do-lambda-eta-exp
abled by default. namic (page ??)
- feager-blackholing Turn on eager blackholing
(page 144) (page 159) dy-
namic
-fenable-rewrite-rules| Switch on all rewrite rules
(page 599) (including rules generated | dy- -fno-enable-rewrite-ru
by automatic specialisa- | namic (page ??)
tion of overloaded func-
tions). Implied by -0
(page 139).
-fexcess-precision Enable excess intermedi-
(page 144) ate precision dy- -fno-excess-precision
namic (page ??)
-fexitification Enables exitification opti-
(page 141) misation. Implied by -0 | dy- -fno-exitification
(page 139). namic (page ??)
-fexpose-all-unfoldingy Expose all unfoldings,
(page 144) even for very large or | dy- -fno-expose-all-unfold
recursive functions. namic (page ??)
-ffloat-1in (page 145) Turn on the float-in trans-
formation. Implied by -0 | dy- -fno-float-in (page ??)
(page 139). namic
-ffull-laziness Turn on full laziness (float-
(page 145) ing bindings outwards). | dy- -fno-full-laziness
Implied by -0 (page 139). | namic (page ??)
-ffun-to-thunk (deprecated) superseded
(page 145) by -ffull-laziness. dy- -fno-fun-to-thunk
namic (page ??)
-fignore-asserts Ignore assertions in the
(page 146) source. Implied by -0 | dy- -fno-ignore-asserts
(page 139). namic (page ??)

ansion

les

ings

continues on next page

5.6. Flag reference

189

GHC User’s Guide Documentation, Release 9.4.8

Table 15 - continued from previous page

pragmas

ggressively

eshold

| Flag | Description | Type | Reverse \
-fignore-interface-pra¢ Ignore pragmas in inter-
(page 146) face files. Implied by -00 | dy- -fno-ignore-interface-
(page ??) only. namic (page ??)
-finline-generics Annotate methods of
(page 151) derived Generic and | dy- -fno-inline-generics
Genericl instances with | namic (page ??)
INLINE[1] pragmas based
on heuristics. Implied by
-0 (page 139).
-finline-generics-aggr¢ Annotate methods of
(page 152) all derived Generic and | dy- -fno-inline-generics-a
Genericl instances with | namic (page ??)
INLINE[1] pragmas.
-flate-dmd-anal Run demand analysis
(page 146) again, at the end of the | dy- -fno-late-dmd-anal
simplification pipeline namic (page ??)
-flate-specialise Run a late specialisation
(page 151) pass dy- -fno-late-specialise
namic (page ??)
-fliberate-case Turn on the liberate-case
(page 146) transformation. Implied | dy- -fno-liberate-case
by -02 (page 139). namic (page ??)
-fliberate-case-thresh(¢ default: 2000. Set the size
(page 146) threshold for the liberate- | dy- -fno-liberate-case-thr
case transformation to (n) | namic (page ??)
-fllvm-pass-vectors-in{ (deprecated) Does nothing
(page 146) dy-
namic
-floopification Turn saturated self-
(page 146) recursive tail-calls into | dy- -fno-loopification
local jumps in the gener- | namic (page ??)
ated assembly. Implied by
-0 (page 139).
-fmax-inline-alloc-sizq default: 128. Set the maxi-
(page 147) mum size of inline array al- | dy-
locations to (n) bytes (de- | namic
fault: 128).
-fmax-inline-memcpy-1ing default: 32. Inline memcpy
(page 147) calls if they would gen-| dy-
erate no more than (n) | namic

pseudo instructions.

continues on next page

190

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 15 - continued from previous page

| Flag | Description | Type | Reverse
-fmax-inline-memset-1ingy default: 32. Inline memset
(page 147) calls if they would gen-| dy-
erate no more than (n) | namic
pseudo instructions
-fmax-simplifier-iterai default: 4. Set the max it-
(page 147) erations for the simplifier. | dy-
namic
-fmax-uncovered-patteri default: 4. Set the
(page 147) maximum number of pat- | dy-
terns to display in warn- | namic
ings about non-exhaustive
ones.
-fmax-worker-args=(n) | default: 10. Maximum
(page 147) number of value argu-| dy-
ments for a worker. namic
-fno-opt-coercion Turn off the coercion opti-
(page 147) miser dy-
namic
-fno-pre-inlining Turn off pre-inlining
(page 148) dy-
namic
-fno-state-hack Turn off the state hack-
(page 148) whereby any lambda with | dy-
a real-world state token as | namic
argument is considered to
be single-entry. Hence OK
to inline things inside it.
-fomit-interface-pragmiy Don't generate interface
(page 148) pragmas. Implied by -00 | dy- -fno-omit-interface-pr
(page ??) only. namic (page ??)
-fomit-yields Omit heap checks when
(page 148) no allocation is being per- | dy- -fno-omit-yields
formed. namic (page ??)
-foptimal-applicative-(Use a slower but better al-
(page 320) gorithm for ApplicativeDo | dy- -fno-optimal-applicati
namic (page ??)
-fpedantic-bottoms Make GHC be more
(page 148) precise about its treat- | dy- -fno-pedantic-bottoms
ment of bottom (but see | namic (page ??)

also -fno-state-hack
(page 148)). In particular,
GHC will not eta-expand
through a case expression.

agmas

ve-do

continues on next page

5.6. Flag reference

191

GHC User’s Guide Documentation, Release 9.4.8

Table 15 - continued from previous page

| Flag | Description | Type | Reverse
-fregs-graph (page 148) | Use the graph colouring
register allocator for regis- | dy- -fno-regs-graph
ter allocation in the native | namic (page ??)
code generator.
-fregs-iterative Use the iterative coalesc-
(page 149) ing graph colouring regis- | dy- -fno-regs-iterative
ter allocator in the native | namic (page ??)
code generator.
-fsimpl-tick-factor=(n) default: 100. Set the per-
(page 149) centage factor for simpli- | dy-
fier ticks. namic
-fsimplifier-phases=(n| default: 2. Set the num-
(page 149) ber of phases for the sim- | dy-
plifier. Ignored with -00 | namic
(page ??).
-fsolve-constant-dicts| When solving constraints,
(page 152) try to eagerly solve super | dy- -fno-solve-constant-di
classes using available dic- | namic (page ??)
tionaries.
-fspec-constr Turn on the SpecConstr
(page 149) transformation. Implied | dy- -fno-spec-constr
by -02 (page 139). namic (page ??)
-fspec-constr-count=(n) default: 3.* Set to (n)
(page 150) the maximum number of | dy- -fno-spec-constr-count
specialisations that will be | namic (page ??)
created for any one func-
tion by the SpecConstr
transformation.
-fspec-constr-keen Specialize a call with an
(page 150) explicit constructor argu- | dy- -fno-spec-constr-keen
ment, even if the argu-| namic (page ??)
ment is not scrutinised in
the body of the function
-fspec-constr-threshol(default: 2000. Set the size
(page 151) threshold for the Spec-| dy- -fno-spec-constr-thres
Constr transformation to | namic (page ??)
(n).
-fspecialise (page 151) | Turn on specialisation of
overloaded functions. Im- | dy- -fno-specialise
plied by -0 (page 139). namic (page ??)
-fspecialise-aggressivée Turn on specialisation of
(page 151) overloaded functions re-| dy- -fno-specialise-aggres
gardless of size, if unfold- | namic (page ??)

ing is available

cts

hold

sively

continues on next page

192

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 15 - continued from previous page

ransformati

c-args-any

gs-any

t-fields

ds

| Flag | Description | Type | Reverse \
-fstatic-argument-trany Turn on the static argu-
(page 152) ment transformation. dy- -fno-static-argument-t
namic (page ??)
-fstg-cse (page 143) Enable common sub-
expression elimination | dy- -fno-stg-cse (page ??)
on the STG intermediate | namic
language
-fstg-lift-lams Enable late lambda lifting
(page 152) on the STG intermediate | dy- -fno-stg-lift-lams
language. Implied by -02 | namic (page ??)
(page 139).
-fstg-lift-lams-known | Allow turning known into
(page 153) unknown calls while per- | dy- -fno-stg-lift-lams-kno
forming late lambda lift- | namic (page ??)
ing.
-fstg-lift-lams-non-re¢ Create top-level non-
(page 153) recursive functions with | dy- -fstg-lift-lams-non-re
at most <n> parameters | namic (page ??)
while performing late
lambda lifting.
-fstg-lift-lams-rec-ar¢ Create top-level recursive
(page 153) functions with at most | dy- -fstg-lift-lams-rec-ar
<n> parameters while per- | namic (page ??)
forming late lambda lift-
ing.
-fstrictness (page 153) | Turn on demand anal-
ysis. Implied by -0 | dy- -fno-strictness
(page 139). Implies | namic (page ??)
- fworker-wrapper
(page 158)
-fstrictness-before=(n| Run an additional demand
(page 155) analysis before simplifier | dy-
phase (n) namic
-funbox-small-strict-f] Flatten strict constructor
(page 155) fields with a pointer-sized | dy- -fno-unbox-small-stric
representation. Implied | namic (page ??)
by -0 (page 139).
-funbox-strict-fields | Flatten strict constructor
(page 156) fields dy- -fno-unbox-strict-fiel
namic (page ??)
-funfolding-case-scalil default: 30. Apply a
(page 157) penalty of (inlining cost * | dy-
1/n) for each level of case | namic
nesting.

continues on next page

5.6. Flag reference

193

GHC User’s Guide Documentation, Release 9.4.8

Table 15 - continued from previous page

| Flag | Description | Type | Reverse
-funfolding-case-thresl default: 2. Reduce in-
(page 157) lining for cases nested | dy-
deeper than n. namic
-funfolding-creation-tl default: 750. Tweak un-
(page 156) folding settings. dy-
namic
-funfolding-dict-discol default: 30. Tweak unfold-
(page 156) ing settings. dy-
namic
-funfolding-fun-discoul default: 60. Tweak unfold-
(page 156) ing settings. dy-
namic
-funfolding-keeness-fa(This has been deprecated
(page 157) in GHC 9.0.1. dy-
namic
-funfolding-use-thresh(¢ default: 80. Tweak unfold-
(page 157) ing settings. dy-
namic
-fworker-wrapper Enable the
(page 158) worker/wrapper trans- | dy-
formation. namic
- fworker-wrapper-cbv Enable w/w splits for wrap-
(page 158) pers whos sole purpose is | dy-
evaluating arguments. namic
5.6.17 Profiling options
More details in Profiling (page 655)
| Flag | Description | Type | Reverse
-auto (page 662) (deprecated) Alias for
-fprof-auto-exported dy-
(page 661) namic
-auto-all (page 662) (deprecated) Alias for
-fprof-auto (page 661) dy-
namic

continues on next page

194

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 16 - continued from previous page

| Flag | Description | Type | Reverse
-caf-all (page 662) (deprecated) Alias for
-fprof-cafs (page 662) dy-
namic
-fno-prof-count-entried Do not collect entry counts
(page 660) dy- -fprof-count-entries
namic (page ??)
-fprof-auto (page 661) | Auto-add SCC\ s to all bind-
ings not marked INLINE dy- -fno-prof-auto
namic (page ??)
-fprof-auto-calls Auto-add SCC\ s to all call
(page 661) sites dy- -fno-prof-auto
namic (page ??)
-fprof-auto-exported Auto-add SCC\ s to all
(page 661) exported bindings not | dy- -fno-prof-auto
marked INLINE (page 617) | namic (page ??)
-fprof-auto-top Auto-add SCC\ s to all top-
(page 661) level bindings not marked | dy- -fno-prof-auto
INLINE namic (page ??)
-fprof-cafs (page 662) | Auto-add SCC\s to all CAFs
dy- -fno-prof-cafs
namic (page ??)
-fprof-callers=(name) | Auto-add SCC\ s to all call-
(page 660) sites of the named func-| dy-
tion. namic
-fprof-late (page 661) | Auto-add SCC\ s to all top
level bindings after the | dy- -fno-prof-late
core pipeline has run. namic (page ??)
-fprof-late-inline Auto-add SCC\ s to all top
(page 662) level bindings after the op- | dy- -fno-prof-late-inline
timizer has run and retain | namic (page ??)
them when inlining.
-fprof-manual Process manual SCC anno-
(page 662) tations. dy- -fno-prof-manual
namic (page ??)
-no-auto (page 662) (deprecated) Alias for
-fno-prof-auto (page ??) | dy-
namic

continues on next page

5.6. Flag reference

195

GHC User’s Guide Documentation, Release 9.4.8

Table 16 - continued from previous page

| Flag | Description | Type | Reverse

-no-auto-all (page 662) | (deprecated) Alias for
-fno-prof-auto (page ??) | dy-

namic

-no-caf-all (page 662) (deprecated) Alias for
-fno-prof-cafs (page ??) | dy-

namic

-prof (page 660) Turn on profiling

dy-
namic

-ticky (page 681) Turn on ticky-ticky profil-
ing (page 681) dy-

namic

-ticky-allocd Track the number of times

(page 681) each closure type is allo- | dy-
cated. namic

-ticky-ap-thunk Don't use standard AP

(page 682) thunks on order to get | dy-
more reliable entry coun- | namic
ters.

-ticky-dyn-thunk Track allocations of dy-

(page 681) namic thunks dy-

namic

-ticky-LNE (page 681) Treat join point
binders similar to | dy-
thunks/functions. namic

-ticky-tag-checks Emit dummy ticky coun-

(page 681) ters to record how many | dy-
tag-inference checks tag | namic
inference avoided.

5.6.18 Program coverage options
More details in Observing Code Coverage (page 675)
| Flag | Description | Type | Reverse

-fthpc (page 677) Turn on Haskell program
coverage instrumentation | dy-

namic

continues on next page

196

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 17 - continued from previous page

| Flag | Description | Type | Reverse
-hpcdir(dir) (page 677) | Set the directory where
GHC places .mix files. dy-
namic
5.6.19 C pre-processor options
More details in Options affecting the C pre-processor (page 282)
| Flag | Description | Type | Reverse
-cpp (page 282) Run the C pre-processor
on Haskell source files dy-
namic
-D(symbol) [=(value)] Define a symbol in the C
(page 282) pre-processor dy- -U(symbol) (page 282)
namic
-I(dir) (page 282) Add (dir) to the directory
search list for #include | dy-
files namic
-U(symbol) (page 282) Undefine a symbol in the C
pre-processor dy-
namic

5.6.20 Code generation options

More details in Options affecting code generation (page 285)

| Flag | Description | Type | Reverse
-dynamic-too (page 286) | Build dynamic object files
as well as static object files | dy-
during compilation namic
- fasm (page ??) Use the native code gener-
ator (page 278) dy- -fllvm (page 285)
namic
-fbyte-code (page 286) | Generate byte-code
dy-
namic

continues on next page

5.6. Flag reference

197

GHC User’s Guide Documentation, Release 9.4.8

Table 19 - continued from previous page

| Flag | Description | Type | Reverse
-fexpose-internal-symb(Produce symbols for all
(page 287) functions, including inter- | dy-
nal functions. namic
-fexternal-dynamic-refy Generate code for linking
(page 286) against dynamic libraries | dy-
namic
-fllvm (page 285) Compile using the LLVM
code generator (page 278) | dy- - fasm (page ??)
namic
-fno-code (page 286) Omit code generation
dy-
namic
-fobject-code Generate object code
(page 286) dy-
namic
-fPIC (page 286) Generate position-
independent code (where | dy-
available) namic
-fPIE (page 286) Generate code for a
position-independent exe- | dy-
cutable (where available) | namic
-fwrite-interface Always write interface
(page 286) files dy-
namic
-split-objs (page 287) | Split generated object
files into smaller files dy-
namic

5.6.21 Linking options

More details in Options affecting linking (page 287)

| Flag Description | Type | Reverse|
- C (page 97) Stop after generating object (.0) file
mode
-debug (page 290) Use the debugging runtime
dy-
namic

continues on next page

198

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 20 - continued from previous page

| Flag

Description

Type

| Reverse|

-dylib-install-name
(path) (page 292)

-dynamic (page 288)

-dynload (page 289)

-eventlog (page 290)

- fcompact-unwind (page 293)

-fkeep-cafs (page 293)

-flink-rts (page 289)

-fno-embed-manifest

(page 292)

-fno-gen-manifest
(page 291)

-fno-shared-implib
(page 292)

- framework (name)
(page 287)

Set the install name (via
-install name passed to Apple's
linker), specifying the full install path
of the library file. Any libraries or
executables that link with it later will
pick up that path as their runtime
search location for it. (Darwin/OS X
only)

Build dynamically-linked object files
and executables

Selects one of a number of modes for
finding shared libraries at runtime.

Enable runtime event tracing

Instruct the linker to produce a com-
pact_unwind section.

Do not garbage-collect CAFs (top-level
expressions) at runtime

Link the runtime when generating a
shared or static library

Do not embed the manifest in the exe-
cutable (Windows only)

Do not generate a manifest file (Win-
dows only)

Don't generate an import library for a
DLL (Windows only)

On Darwin/OS X/iOS only, link in the
framework (name). This option corre-
sponds to the -framework option for
Apple's Linker.

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

continues on next page

5.6. Flag reference

199

GHC User’s Guide Documentation, Release 9.4.8

Table 20 - continued from previous page

| Flag Description | Type | Reverse|
-framework-path (dir) On Darwin/OS X/iOS only, add (dir)
(page 288) to the list of directories searched for | dy-
frameworks. This option corresponds | namic
to the -F option for Apple's Linker.
-fuse-rpaths (page 288) Set the rpath based on -L flags
dy-
namic
-fwhole-archive-hs-1libs When linking a binary exe-
(page 292) cutable, this inserts the flag -Wl, | dy-
--whole-archive Dbefore any -1 | namic
flags for Haskell libraries, and -W1,
--no-whole-archive afterwards
-L (dir) (page 288) Add (dir) to the list of directories
searched for libraries dy-
namic
-l (lib) (page 287) Link in library (lib)
dy-
namic
-main-is (thing) (page 289) Set main module and function
dy-
namic
-no-hs-main (page 289) Don't assume this program contains
main dy-
namic
-no-link (page 287) Stop after generating object (. o) file
mode
-no-pie (page 293) Don't instruct the linker to produce a
position-independent executable. dy- -pie
namic (page ??
-no-rtsopts-suggestions Don't print RTS sugges-
(page 291) tions about linking with | dy-
-rtsopts[=(none|some|all|ignore|i{ namic
(page 290).
-package (name) (page 287) Expose package (pkg)
dy-
namic
-pie (page ??) Instruct the linker to produce a
position-independent executable. dy- -no-pie
namic (page 29

continues on next page

200

Chapter 5. Using GHC

~

3)

GHC User’s Guide Documentation, Release 9.4.8

Table 20 - continued from previous page

| Flag

Description

Type

| Reverse|

-rdynamic (page 292)

-rtsopts[=(none|some|all|i
(page 290)

-shared (page 97)

-split-sections (page 288)

-static (page 288)

-staticlib (page 288)

-threaded (page 290)

-with-rtsopts=(opts)
(page 291)

This instructs the linker to add all
symbols, not only used ones, to
the dynamic symbol table. Cur-
rently Linux and Windows/MinGW32
only. This is equivalent to using
-optl -rdynamic on Linux, and -optl
-export-all-symbols on Windows.
Control whether the RTS behaviour
can be tweaked via command-line flags
and the GHCRTS environment variable.
Using none means no RTS flags can
be given; some means only a mini-
mum of safe options can be given (the
default); all (or no argument at all)
means that all RTS flags are permit-
ted; ignore means RTS flags can be
given, but are treated as regular argu-
ments and passed to the Haskell pro-
gram as arguments; ignoreAll is the
same as ignore, but GHCRTS is also
ignored. -rtsopts does not affect
-with-rtsopts behavior; flags passed
via -with-rtsopts are used regard-
less of -rtsopts.

Generate a shared library (as opposed
to an executable)

Split sections for link-time dead-code
stripping

Use static Haskell libraries

Generate a standalone static library
(as opposed to an executable). This
is useful when cross compiling. The
library together with all its dependen-
cies ends up in in a single static library
that can be linked against.

Use the threaded runtime

Set the default RTS options to (opts).

dy-
namic

dy-
namic

dy-
namic

namic

dy-

namic

namic

dy-
namic

namic

5.6. Flag reference

201

GHC User’s Guide Documentation, Release 9.4.8

5.6.22 Plugin options

More details in Compiler Plugins (page 631)

| Flag | Description | Type | Reverse
-fclear-plugins Clear the list of active plu-
(page 632) gins dy-
namic
-fplugin-opt=(module):|{ Give arguments to a
(page 631) plugin module; mod- | dy-
ule must be specified | namic
with -fplugin=(module)
(page 631)
-fplugin-trustworthy Trust the used plugins and
(page 632) no longer mark the com- | dy-
piled module as unsafe namic
-fplugin=(module) Load a plugin exported by
(page 631) a given module dy-
namic
-hide-all-plugin-packa(Hide all packages for plug-
(page 633) ins by default dy-
namic
-plugin-package (pkg) | Expose (pkg) for plugins
(page 632) dy-
namic
-plugin-package-id Expose (pkg-id) for plug-
(pkg-id) (page 633) ins dy-
namic

5.6.23 Replacing phases

More details in Replacing the program for one or more phases (page 279)

| Flag | Description | Type | Reverse
-pgma (cmd) (page 280) | Use (cmd) as the assem-
bler dy-
namic
-pgmc (cmd) (page 280) | Use (cmd) as the C com-
piler dy-
namic

continues on next page

202

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 22 - continued from previous page

| Flag | Description | Type | Reverse

-pgmcxx (cmd) Use (cmd) as the C++

(page 280) compiler dy-

namic

-pgmdll (cmd) Use (cmd) as the DLL gen-

(page 280) erator dy-

namic

-pgmF (cmd) (page 280) | Use (cmd) as the pre-
processor (with -F | dy-
(page 285) only) namic

-pgmi (cmd) (page 280) | Use (cmd) as the external
interpreter command. dy-

namic

-pgminstall name tool | Use (cmd) as the pro-

(cmd) (page 280) gram to inject runpath | dy-
into mach-o dylibs on ma- | namic
cOS

-pgmL (cmd) (page 280) | Use (cmd) as the literate
pre-processor dy-

namic

-pgml (cmd) (page 280) | Use (cmd) as the linker

dy-
namic

-pgmlc (cmd) (page 280) | Use {(cmd) as the LLVM
compiler dy-

namic

-pgmlibtool (cmd) Use (cmd) as the com-

(page 280) mand for libtool (with | dy-
-staticlib (page 288) | namic
only).

-pgmlm (cmd) (page 280) | Use (cmd) as the linker
when merging object files | dy-

namic

-pgmlo (cmd) (page 280) | Use {(cmd) as the LLVM op-
timiser dy-

namic

-pgmotool (cmd) Use (cmd) as the program

(page 280) to inspect mach-o dylibs | dy-
on macOS namic

continues on next page

5.6. Flag reference

203

GHC User’s Guide Documentation, Release 9.4.8

Table 22 - continued from previous page

| Flag | Description | Type | Reverse
-pgmP (cmd) (page 280) | Use (cmd) as the C pre-
processor (with -cpp only) | dy-
namic
-pgms (cmd) (page 280) | Use (cmd) as the splitter
dy-
namic
-pgmwindres (cmd) Use (cmd) as the program
(page 280) for embedding manifests | dy-
on Windows. namic
5.6.24 Forcing options to particular phases
More details in Forcing options to a particular phase (page 281)
| Flag | Description | Type | Reverse
-opta (option) pass (option) to the assem-
(page 281) bler dy-
namic
-optc (option) pass (option) to the C com-
(page 281) piler dy-
namic
-optcxx (option) pass (option) to the C++
(page 281) compiler dy-
namic
-optdll (option) pass (option) to the DLL
(page 281) generator dy-
namic
-optF (option) pass (option) to the cus-
(page 281) tom pre-processor dy-
namic
-opti (option) pass {(option) to the inter-
(page 282) preter sub-process. dy-
namic
-optL (option) pass (option) to the liter-
(page 281) ate pre-processor dy-
namic
continues on next page
204 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 23 - continued from previous page

| Flag | Description | Type | Reverse
-optl (option) pass (option) to the linker
(page 281) dy-
namic
-optlc (option) pass (option) to the LLVM
(page 281) compiler dy-
namic
-optlm (option) pass (option) to the linker
(page 281) when merging object files. | dy-
namic
-optlo (option) pass {(option) to the LLVM
(page 281) optimiser dy-
namic
-optP (option) pass (option) to cpp (with
(page 281) -cpp only) dy-
namic
-optwindres (option) pass (option) to windres.
(page 281) dy-
namic
-pgmc-supports-no-pie | (deprecated) Indicate
(page 281) that the linker supports | dy-
-no-pie namic
-pgml-supports-no-pie | Indicate that the linker
(page 281) supports -no-pie dy-
namic
5.6.25 Platform-specific options
More details in Platform-specific Flags (page 109)
| Flag | Description | Type | Reverse
-mavx (page 109) (x86 only) Enable support
for AVX SIMD extensions | dy-
namic
-mavx2 (page 109) (x86 only) Enable support
for AVX2 SIMD extensions | dy-
namic

continues on next page

5.6. Flag reference

205

GHC User’s Guide Documentation, Release 9.4.8

Table 24 - continued from previous page

| Flag | Description | Type | Reverse
-mavx512cd (page 109) (x86 only) Enable support
for AVX512-CD SIMD ex- | dy-
tensions namic
-mavx512er (page 109) (x86 only) Enable support
for AVX512-ER SIMD ex- | dy-
tensions namic
-mavx512f (page 109) (x86 only) Enable support
for AVX512-F SIMD exten- | dy-
sions namic
-mavx512pf (page 109) (x86 only) Enable support
for AVX512-PF SIMD ex- | dy-
tensions namic
-mbmi (page 110) (x86 only) Use BMI1 for bit
manipulation operations dy-
namic
-mbmiZ2 (page 110) (x86 only) Use BMI2 for bit
manipulation operations dy-
namic
-msse (page 109) (x86 only) Use SSE for
floating-point operations dy-
namic
-msse2 (page 109) (x86 only) Use SSE2 for
floating-point operations dy-
namic
-msse3 (page 110) (x86 only) Use SSE3 for
floating-point operations dy-
namic
-msse4 (page 110) (x86 only) Use SSE4 for
floating-point operations dy-
namic
-msse4.2 (page 110) (x86 only) Use SSE4.2 for
floating-point operations dy-
namic

5.6.26 Compiler debugging options

More details in Debugging the compiler (page 297)

206

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

| Flag Description | Type | Reverse|
-dasm-1lint (page 307) ASM pass sanity checking
dy-
namic
-dcmm-1int (page 307) C-\- pass sanity checking
dy-
namic
-dcore-1lint (page 306) Turn on internal sanity checking
dy-
namic
-ddump-asm (page 304) Dump final assembly
dy-
namic
-ddump-asm-conflicts Dump register conflicts from the regis-
(page 303) ter allocator. dy-
namic
-ddump-asm- liveness Dump assembly augmented with regis-
(page 304) ter liveness dy-
namic
-ddump-asm-native Dump initial assembly
(page 304) dy-
namic
-ddump-asm-regalloc Dump the result of register allocation
(page 304) dy-
namic
-ddump-asm-regalloc-stages Dump the build/spill stages of the
(page 304) -fregs-graph (page 148) register allo- | dy-
cator. namic
-ddump-asm-stats (page 304) Dump statistics from the register allo-
cator. dy-
namic
-ddump-bcos (page 304) Dump interpreter byte code
dy-
namic
-ddump-c-backend (page 303) Dump C code produced by the C (un-
registerised) backend. dy-
namic
continues on next page
5.6. Flag reference 207

GHC User’s Guide Documentation, Release 9.4.8

Table 25 - continued from previous page

| Flag Description | Type | Reverse|
-ddump-call-arity Dump output of the call arity analysis
(page 299) pass. dy-
namic
-ddump-cfg-weights Dump the assumed weights of the
(page 303) CFEG. dy-
namic
-ddump-cmm (page 303) Dump the final C-\- output
dy-
namic
-ddump-cmm-caf (page 303) Dump the results of the C-\- CAF anal-
ysis pass. dy-
namic
-ddump-cmm-cbe (page 302) Dump the results of common block
elimination dy-
namic
-ddump-cmm-cfg (page 302) Dump the results of the C-\- control
flow optimisation pass. dy-
namic
-ddump-cmm-cps (page 303) Dump the results of the CPS pass
dy-
namic
-ddump-cmm-from-stg Dump STG-to-C-\- output
(page 302) dy-
namic
-ddump-cmm-info (page 303) Dump the results of the C-\- info table
augmentation pass. dy-
namic
-ddump-cmm-opt (page 303) Dump the results of C-\- to C-\- optimis-
ing passes dy-
namic
-ddump-cmm-proc (page 302) Dump the results of proc-point analysis
dy-
namic
-ddump-cmm-procmap Dump the results of the C-\- proc-point
(page 303) map pass. dy-
namic
continues on next page
208 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 25 - continued from previous page

| Flag

Description

Type

| Reverse|

-ddump- cmm- raw (page 302)

-ddump-cmm-sink (page 303)

-ddump-cmm-sp (page 303)

-ddump-cmm-split (page 303)

-ddump-cmm-switch
(page 302)

-ddump-cmm-verbose
(page 302)

-ddump-cmm-verbose-by-proc
(page 302)

-ddump-core-stats
(page 300)

-ddump-cpr-signatures

(page 301)

-ddump-cpranal (page 301)

-ddump-cs-trace (page 299)

-ddump-cse (page 301)

Dump raw C-\-

Dump the results of the C-\- sinking
pass.

Dump the results of the C-\- stack lay-
out pass.

Dump the results of the C-\- proc-point
splitting pass.

Dump the results of switch lowering
passes

Write output from main C-\- pipeline
passes to files

Show output from main C-\- pipeline
passes (grouped by proc)

Print a one-line summary of the size of
the Core program at the end of the op-
timisation pipeline

Dump CPR signatures

Dump CPR analysis output

Trace constraint solver

Dump CSE output

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

continues on next page

5.6. Flag reference

209

GHC User’s Guide Documentation, Release 9.4.8

Table 25 - continued from previous page

| Flag Description | Type | Reverse|
-ddump-debug (page 304) Dump generated DWARF debug infor-
mation dy-
namic
-ddump-deriv (page 299) Dump deriving output
dy-
namic
-ddump-ds (page 300), Dump desugarer output.
-ddump-ds-preopt (page 300) dy-
namic
-ddump-ec-trace (page 299) Trace exhaustiveness checker
dy-
namic
-ddump-exitify (page 300) Dump output of the exitification pass.
dy-
namic
-ddump-faststrings Dump the whole FastString table when
(page 298) finished dy-
namic
-ddump-file-prefix=(str) Set the prefix of the filenames used for
(page 297) debugging output. dy-
namic
-ddump-foreign (page 304) Dump foreign export stubs
dy-
namic
-ddump-hie (page 299) Dump the hie file syntax tree
dy-
namic
-ddump-hpc (page 304) An alias for -ddump-ticked
(page 304). dy-
namic
-ddump-if-trace (page 298) Trace interface files
dy-
namic
-ddump-1inlinings (page 301) Dump inlinings performed by the sim-
plifier. dy-
namic

continues on next page

210

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 25 - continued from previous page

| Flag

Description

Type

| Reverse|

-ddump- json (page 297)

-ddump-late-cc (page 301)

-ddump-11lvm (page 303)

-ddump-mod-map (page 304)

-ddump-occur-anal

(page 301)

-ddump-opt-cmm (page 303)

-ddump-parsed (page 298)

-ddump-parsed-ast

(page 298)

-ddump-prep (page 301)

-ddump-rn (page 299)

-ddump-rn-ast (page 299)

-ddump-rn-stats (page 299)

Dump error messages as JSON docu-
ments

Dump core with late cost centres

added

Dump LLVM intermediate code.

Dump the state of the module mapping

database.

Dump occurrence analysis output

Dump the results of C-\- to C-\- optimis-

ing passes

Dump parse tree

Dump parser output as a syntax tree

Dump prepared core

Dump renamer output

Dump renamer output as a syntax tree

Renamer stats

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

continues on next page

5.6. Flag reference

211

GHC User’s Guide Documentation, Release 9.4.8

Table 25 - continued from previous page

| Flag Description | Type | Reverse|
-ddump-rn-trace (page 299) Trace renamer
dy-
namic
-ddump-rtti (page 304) Trace runtime type inference
dy-
namic
-ddump-rule-firings Dump rule firing info
(page 300) dy-
namic
-ddump-rule-rewrites Dump detailed rule firing info
(page 300) dy-
namic
-ddump-rules (page 300) Dump rewrite rules
dy-
namic
-ddump-simpl (page 301) Dump final simplifier output
dy-
namic
-ddump-simpl-iterations Dump output from each simplifier iter-
(page 300) ation dy-
namic
-ddump-simpl-stats Dump simplifier stats
(page 300) dy-
namic
-ddump-simpl-trace Dump trace messages in simplifier
(page 300) dy-
namic
-ddump-spec (page 300) Dump specialiser output
dy-
namic
-ddump-splices (page 299) Dump TH spliced expressions, and
what they evaluate to dy-
namic
-ddump-stg (page 302) (deprecated) Alias for
-ddump-stg-from-core (page 302) dy-
namic

continues on next page

212

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 25 - continued from previous page

| Flag

Description

Type

| Reverse|

-ddump-stg-cg (page 302)

-ddump-stg-final (page 302)

-ddump-stg-from-core

(page 302)

-ddump-stg-tags (page 302)

-ddump-stg-unarised

(page 302)

-ddump-str-signatures

(page 301)

-ddump-stranal (page 301)

-ddump-tc (page 299)

-ddump-tc-ast (page 299)

-ddump-tc-trace (page 299)

-ddump-ticked (page 304)

-ddump-timings (page 298)

Show output after Stg2Stg

Show output of last STG pass.

Show CoreToStg output

Show output of the tag inference pass.

Show unarised STG

Dump top-level demand signatures

Dump demand analysis output

Dump typechecker output

Dump typechecker output as a syntax

tree

Trace typechecker

Dump the code instrumented by
HPC (Observing Code Coverage
(page 675)).

Dump per-pass timing and allocation
statistics

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

dy-
namic

continues on next page

5.6. Flag reference

213

GHC User’s Guide Documentation, Release 9.4.8

Table 25 - continued from previous page

| Flag Description | Type | Reverse|
-ddump-to-file (page 297) Dump to files instead of stdout
dy-
namic
-ddump-types (page 299) Dump type signatures
dy-
namic
-ddump-verbose-inlinings Dump all considered inlinings
(page 301) dy-
namic
-ddump-view-pattern-common. Dump commoned view patterns
(page 301) dy-
namic
-ddump-worker-wrapper Dump worker-wrapper output
(page 301) dy-
namic
-dfaststring-stats Show statistics for fast string usage
(page 298) when finished dy-
namic
-dhex-word-literals Print values of type Word# in hexadec-
(page 305) imal. dy-
namic
-dinitial-unique=(s) Start UniqSupply allocation from (s).
(page 307) dy-
namic
-dinline-check=(str) Dump information about inlining deci-
(page 300) sions dy-
namic
-dkeep-comments (page 298) Include comments in the parser.
Useful in combination with | dy-
-ddump-parsed-ast (page 298). namic
-dlinear-core-lint Turn on internal sanity checking
(page 306) dy-
namic
-dlint (page 306) Enable several common internal sanity
checkers dy-
namic

continues on next page

214

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table

25 - continued from previous page

| Flag Description Type | Reverse|
-dno-debug-output Suppress unsolicited debugging out-
(page 305) put dy- -ddebugroutput
namic (page ??)
-dno-typeable-binds Don't generate bindings for Typeable
(page 308) methods dy-
namic
-dppr-case-as-let Print single alternative case expres-
(page 305) sions as strict lets. dy-
namic
-dppr-cols=(n) (page 305) Set the width of debugging output. For
example -dppr-cols200 dy-
namic
-dppr-debug (page 298) Turn on debug printing (more verbose)
dy-
namic
-dppr-user-length Set the depth for printing expressions
(page 305) in error msgs dy-
namic
-drule-check=(str) Dump information about potential rule
(page 300) application dy-
namic
-dshow-passes (page 298) Print out each pass name as it happens
dy-
namic
-dstg-lint (page 307) STG pass sanity checking
dy-
namic
-dsuppress-all (page 305) In dumps, suppress everything (except
for uniques) that is suppressible. dy-
namic
-dsuppress-coercion-types Suppress the printing of coercion
(page 306) types in Core dumps to make them | dy-
shorter namic
-dsuppress-coercions Suppress the printing of coercions in
(page 306) Core dumps to make them shorter dy-
namic

continues on next page

5.6. Flag reference

215

GHC User’s Guide Documentation, Release 9.4.8

Table 25 - continued from previous page

| Flag Description | Type | Reverse|

-dsuppress-core-sizes Suppress the printing of core size stats

(page 306) per binding (since 9.4) dy-
namic

-dsuppress-idinfo Suppress extended information about

(page 305) identifiers where they are bound dy-
namic

-dsuppress-module-prefixes Suppress the printing of module quali-

(page 305) fication prefixes dy-
namic

-dsuppress-stg-free-vars Suppress the printing of closure free

(page 306) variable lists in STG output dy-
namic

-dsuppress-stg-reps Suppress rep annotations on STG args.

(page 306) dy-
namic

-dsuppress-ticks (page 305) Suppress “ticks” in the pretty-printer

output. dy-

namic

-dsuppress-timestamps Suppress timestamps in dumps

(page 306) dy-
namic

-dsuppress-type-applicatiol Suppress type applications

(page 306) dy-
namic

-dsuppress-type-signatures Suppress type signatures

(page 306) dy-
namic

-dsuppress-unfoldings Suppress the printing of the stable un-

(page 305) folding of a variable at its binding site | dy-
namic

-dsuppress-uniques Suppress the printing of uniques in de-

(page 305) bug output (easier to use diff) dy-
namic

-dsuppress-var-kinds Suppress the printing of variable kinds

(page 306) dy-
namic

continues on next page
216 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 25 - continued from previous page

| Flag Description | Type | Reverse|
-dtag-inference-checks Affirm tag inference results are correct
(page 308) at runtime. dy-
namic
-dth-dec-file (page 299) Dump evaluated TH declarations into
*.th.hs files dy-
namic
-dunique-increment=(1) Set the increment for the generated
(page 307) Unique's to (i). dy-
namic
-dverbose-core2core Show output from each core-to-core
(page 300) pass dy-
namic
-dverbose-stg2stg Show output from each STG-to-STG
(page 302) pass dy-
namic
-falignment-sanitisation Compile with alignment checks for all
(page 307) info table dereferences. dy-
namic
-fcatch-nonexhaustive-case! Add a default error alternative to case
(page 307) expressions without a default alterna- | dy-
tive. namic
-fcheck-prim-bounds Instrument array primops with bounds
(page 307) checks. dy-
namic
-fdistinct-constructor-tab Generate a fresh info table for each us-
(page 691) age of a data constructor. dy-
namic
-finfo-table-map (page 691) Embed alookup table in the generated
binary which maps the address of an | dy-
info table to the source position the clo- | namic
sure originated from.
-fllvm-fill-undef-with-garl Intruct LLVM to fill dead STG registers
(page 307) with garbage dy-
namic
-fproc-alignment (page 307) Align functions at given boundary.
dy-
namic

continues on next page

5.6. Flag reference

217

GHC User’s Guide Documentation, Release 9.4.8

Table 25 - continued from previous page

| Flag Description | Type | Reverse|
-g (page 685), -g(n) Produce DWARF debug information in
(page 685) compiled object files. (n) can be 0, 1, | dy-
or 2, with higher numbers producing | namic
richer output. If (n) is omitted, level 2
is assumed.
5.6.27 Miscellaneous compiler options
| Flag Description | Type | Reverse|
-fexternal-interpreter Run interpreted code in a separate pro-
(page 88) cess dy-
namic
-ffamily-application-cache Use a cache when reducing type family
(page 383) applications dy- -fno-family-applica
namic (page ??)
-fglasgow-exts (page 310) Deprecated. Enable most language
extensions; see Controlling extensions | dy- -fno-glasgow-exts
(page 309) for exactly which ones. namic (page ??)
-fno-safe-haskell Disable Safe Haskell (page 588)
(page 597) dy-
namic
-ghcversion-file (path to (GHC as a C compiler only) Use this
ghcversion.h) (page 111) ghcversion.h file dy-
namic
-H (size) (page 111) Set the minimum size of the heap to
(size) dy-
namic
-hidden-module (module A module which should not be visible
name) (page 101) outside its unit. dy-
namic
-jl(n)] (page 100) When compiling with - -make
(page 96), compile (n) modules in | dy-
parallel. namic
-reexported-module A module which should be reexported
(module name) (page 101) from this unit. dy-
namic
-this-package-name The name of the package which this
(unit-1id) (page 101) module would be part of when in-| dy-
stalled. namic

continues on next page

218

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Table 26 - continued from previous page

| Flag Description | Type | Reverse|
-unit @(filename) Specify the options to build a specific
(page 101) unit. dy-
namic
-working-dir (dir) Specify the directory a unit is expected
(page 101) to be compiled in. dy-
namic

5.7 Runtime system (RTS) options

To make an executable program, the GHC system compiles your code and then links it with a
non-trivial runtime system, which handles storage management, thread scheduling, profiling,
and so on.

The RTS has a lot of options to control its behaviour. For example, you can change the context-
switch interval, the default size of the heap, and enable heap profiling. These options can be
passed to the runtime system in a variety of different ways; the next section (Setting RTS
options (page 219)) describes the various methods, and the following sections describe the
RTS options themselves.

5.7.1 Setting RTS options

There are four ways to set RTS options:

* on the command line between +RTS ... -RTS, when running the program (Setting RTS
options on the command line (page 219))

* at compile-time, using -with-rtsopts=(opts) (page 291) (Setting RTS options at com-
pile time (page 220))

» with the environment variable GHCRTS (page 220) (Setting RTS options with the GHCRTS
environment variable (page 220))

* by overriding “hooks” in the runtime system (“Hooks” to change RTS behaviour
(page 221))

5.7.1.1 Setting RTS options on the command line

If you set the -rtsopts[=(none|some|all|ignore|ignoreAll)] (page 290) flag appropri-
ately when linking (see Options affecting linking (page 287)), you can give RTS options on
the command line when running your program.

When your Haskell program starts up, the RTS extracts command-line arguments bracketed
between +RTS and -RTS as its own. For example:

$ ghc prog.hs -rtsopts

[1 of 1] Compiling Main (prog.hs, prog.o)
Linking prog ...

$./prog -f +RTS -H32m -S -RTS -h foo bar

The RTS will snaffle -H32m -S for itself, and the remaining arguments -f -h foo bar will be
available to your program if/when it calls System.Environment.getArgs.

5.7. Runtime system (RTS) options 219

GHC User’s Guide Documentation, Release 9.4.8

No -RTS option is required if the runtime-system options extend to the end of the command
line, as in this example:

[% hls -1tr /usr/etc +RTS -A5m]

If you absolutely positively want all the rest of the options in a command line to go to the
program (and not the RTS), use a - -RTS or - -. The difference is that - -RTS will not be passed
to the program, while - - will.

As always, for RTS options that take (size)s: If the last character of (size) is a K or k, multiply
by 1024; if an M or m, by 1024*¥1024; if a G or G, by 1024"3. (And any wraparound in the
counters is your fault!)

Giving a +RTS -7 RTS option will print out the RTS options actually available in your program
(which vary, depending on how you compiled).

Note

Since GHC is itself compiled by GHC, you can change RTS options in the compiler using
the normal +RTS ... -RTS combination. For instance, to set the maximum heap size for a
compilation to 128M, you would add +RTS -M128m -RTS to the command line.

5.7.1.2 Setting RTS options at compile time

GHC lets you change the default RTS options for a program at compile time, using the
-with-rtsopts flag (Options affecting linking (page 287)). A common use for this is to give
your program a default heap and/or stack size that is greater than the default. For example,
to set -H128m -K64m, link with -with-rtsopts="-H128m -Ko64m".

5.7.1.3 Setting RTS options with the GHCRTS environment variable

GHCRTS

If the - rtsopts flag is set to something other than none or ignoreAll when linking, RTS
options are also taken from the environment variable GHCRTS (page 220). For example,
to set the maximum heap size to 2G for all GHC-compiled programs (using an sh-like
shell):

GHCRTS="-M2G"
export GHCRTS

RTS options taken from the GHCRTS (page 220) environment variable can be overridden
by options given on the command line.

Tip

Setting something like GHCRTS=-M2G in your environment is a handy way to avoid Haskell
programs growing beyond the real memory in your machine, which is easy to do by acci-
dent and can cause the machine to slow to a crawl until the OS decides to kill the process
(and you hope it kills the right one).

220 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

5.7.1.4 “Hooks” to change RTS behaviour

GHC lets you exercise rudimentary control over certain RTS settings for any given program,
by compiling in a “hook” that is called by the run-time system. The RTS contains stub defini-
tions for these hooks, but by writing your own version and linking it on the GHC command
line, you can override the defaults.

Owing to the vagaries of DLL linking, these hooks don’t work under Windows when the pro-
gram is built dynamically.

Runtime events

’

You can change the messages printed when the runtime system “blows up,’
overflow. The hooks for these are as follows:

e.g., on stack

void OutOfHeapHook (unsigned long, unsigned long)
The heap-overflow message.

void StackOverflowHook (long int)
The stack-overflow message.

void MallocFailHook (long int)
The message printed if malloc fails.

Event log output

Furthermore GHC lets you specify the way event log data (see -1 (flags) (page 236)) is
written through a custom EventLogWriter (page 221):

type size_t
Hidden

type EventLogWriter
A sink of event-log data.
void initEventLogWriter (void)
Initializes your EventLogWriter (page 221). This is optional.

bool writeEventLog(void *eventlog, size t (page 221) eventlog size)

Hands buffered event log data to your event log writer. Return true on success.
Required for a custom EventLogWriter (page 221).

Note that this function may be called by multiple threads simultaneously.

void flushEventLog(void)
Flush buffers (if any) of your custom EventLogWriter (page 221). This can be NULL.
Note that this function may be called by multiple threads simultaneously.

void stopEventLogWriter (void)
Called when event logging is about to stop. This can be NULL.

To use an EventLogWriter (page 221) the RTS API provides the following functions:

EventLogStatus (page 222) eventLogStatus (void)

Query whether the current runtime system supports the eventlog (e.g. whether the
current executable was linked with -eventlog (page 290)) and, if it is supported, whether
it is currently logging.

5.7. Runtime system (RTS) options 221

GHC User’s Guide Documentation, Release 9.4.8

bool startEventLogging(const EventLogWriter (page 221) *writer)
Start logging events to the given EventLogWriter (page 221). Returns true on success
or false if another writer has already been configured.

void endEventLogging()
Tear down the active EventLogWriter (page 221).

where the enum EventLogStatus (page 222) is:
type EventLogStatus

* EVENTLOG NOT_SUPPORTED: The runtime system wasn’t compiled with eventlog sup-
port.

* EVENTLOG NOT_ CONFIGURED: An EventLogWriter (page 221) has not yet been config-
ured.

* EVENTLOG RUNNING: An EventLogWriter (page 221) has been configured and is run-
ning.

5.7.2 Miscellaneous RTS options

--install-signal-handlers={yes|no)
If yes (the default), the RTS installs signal handlers to catch things like Ctrl-C. This

option is primarily useful for when you are using the Haskell code as a DLL, and want to
set your own signal handlers.

Note that even with --install-signal-handlers=no, the RTS interval timer signal is
still enabled. The timer signal is either SIGVTALRM or SIGALRM, depending on the RTS
configuration and OS capabilities. To disable the timer signal, use the -V0 RTS option
(see -V (secs) (page 663)).

--install-seh-handlers=(yes|no)
If yes (the default), the RTS on Windows installs exception handlers to catch unhandled
exceptions using the Windows exception handling mechanism. This option is primarily
useful for when you are using the Haskell code as a DLL, and don’t want the RTS to
ungracefully terminate your application on errors such as segfaults.

--generate-crash-dumps

If yes (the default), the RTS on Windows will generate a core dump on any crash. These
dumps can be inspected using debuggers such as WinDBG. The dumps record all code,
registers and threading information at the time of the crash. Note that this implies
--install-seh-handlers=yes.

--generate-stack-traces=<yes|no>

If yes (the default), the RTS on Windows will generate a stack trace on crashes if excep-
tion handling are enabled. In order to get more information in compiled executables, C
code or DLLs symbols need to be available.

--disable-delayed-os-memory-return

If given, uses MADV_DONTNEED instead of MADV_FREE on platforms where this results in
more accurate resident memory usage of the program as shown in memory usage re-
porting tools (e.g. the RSS column in top and htop).

Using this is expected to make the program slightly slower.

On Linux, MADV FREE is newer and faster because it can avoid zeroing pages if they
are re-used by the process later (see man 2 madvise), but for the trade-off that memory

222 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

-Xp

inspection tools like top will not immediately reflect the freeing in their display of res-
ident memory (RSS column): Only under memory pressure will Linux actually remove
the freed pages from the process and update its RSS statistics. Until then, the pages
show up as LazyFree in /proc/PID/smaps (see man 5 proc).

The delayed RSS update can confuse programmers debugging memory issues, produc-
tion memory monitoring tools, and end users who may complain about undue memory
usage shown in reporting tools, so with this flag it can be turned off.

On 64-bit machines, the runtime linker usually needs to map object code into the low 2Gb
of the address space, due to the x86 64 small memory model where most symbol refer-
ences are 32 bits. The problem is that this 2Gb of address space can fill up, especially if
you're loading a very large number of object files into GHCi.

This flag offers a workaround, albeit a slightly convoluted one. To be able to load an
object file outside of the low 2Gb, the object code needs to be compiled with -fPIC
-fexternal-dynamic-refs. When the +RTS -xp flag is passed, the linker will assume
that all object files were compiled with - fPIC -fexternal-dynamic-refs and load them
anywhere in the address space. It’s up to you to arrange that the object files you load
(including all packages) were compiled in the right way. If this is not the case for an
object, the linker will probably fail with an error message when the problem is detected.

On some platforms where PIC is always the case, e.g. macOS and OpenBSD on x86 64,
and macOS and Linux on aarch64 this flag is enabled by default. One repercussion of
this is that referenced system libraries also need to be compiled with - fPIC if we need
to load them in the runtime linker.

-xm (address)

Warning

This option is for working around memory allocation problems only. Do not use unless
GHC i fails with a message like “failed to mmap() memory below 2Gb”. Consider
recompiling the objects with - fPIC -fexternal-dynamic-refs and using the -xp flag
instead. If you need to use this option to get GHCi working on your machine, please
file a bug.

On 64-bit machines, the RTS needs to allocate memory in the low 2Gb of the address
space. Support for this across different operating systems is patchy, and sometimes
fails. This option is there to give the RTS a hint about where it should be able to allocate
memory in the low 2Gb of the address space. For example, +RTS -xm20000000 -RTS
would hint that the RTS should allocate starting at the 0.5Gb mark. The default is to use
the OS’s built-in support for allocating memory in the low 2Gb if available (e.g. mmap
with MAP_32BIT on Linux), or otherwise -xm40000000.

-xq (size)
Default
100k
This option relates to allocation limits; for more about this see

GHC.Conc.enableAllocationLimit. When a thread hits its allocation limit, the RTS
throws an exception to the thread, and the thread gets an additional quota of allocation
before the exception is raised again, the idea being so that the thread can execute its
exception handlers. The -xq controls the size of this additional quota.

5.7. Runtime system (RTS) options 223

./../libraries/base-4.17.2.1/GHC-Conc.html#v:enableAllocationLimit

GHC User’s Guide Documentation, Release 9.4.8

5.7.3 RTS options to control the garbage collector

There are several options to give you precise control over garbage collection. Hopefully, you
won’t need any of these in normal operation, but there are several things that can be tweaked
for maximum performance.

--copying-gc

Default
on

Since
8.10.2

Reverse
-nonmoving-gc

Uses the generational copying garbage collector for all generations. This is the default.

--nonmoving-gc

Default
off

Since
8.10.1

Reverse
-copying-gc
Enable the concurrent mark-and-sweep garbage collector for old generation collectors.
Typically GHC uses a stop-the-world copying garbage collector for all generations. This
can cause long pauses in execution during major garbage collections. --nonmoving-gc
(page 224) enables the use of a concurrent mark-and-sweep garbage collector for oldest
generation collections. Under this collection strategy oldest-generation garbage collec-
tion can proceed concurrently with mutation.

Note that - -nonmoving-gc (page 224) cannot be used with -G1, profiling (page 668)
nor - ¢ (page 226).

Default
off

Since
a long time ago

Reverse
none

Uses a mark-region garbage collection strategy for the oldest-generation heap. Note
that this cannot be used in conjunction with heap profiling (-hT (page 235)) unless linked
against the profiling runtime system with -prof (page 660).

=Xn

Default
off

Since
8.10.1

224 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

An alias for - -nonmoving-gc (page 224)
-A (size)

Default
4MB

Set the allocation area size used by the garbage collector. The allocation area (actually
generation O step 0) is fixed and is never resized (unless you use -H [(size)] (page 228),
below).

Optimal settings depend on the actual machine, program, and other RTS options. In-
creasing the allocation area size means worse cache behaviour but fewer garbage col-
lections and less promotion.

In general settings >= 4MB can reduce performance in some cases, in particular for
single threaded operation. However in a parallel setting increasing the allocation area
to 16MB, or even 64MB can increase gc throughput significantly.

With only 1 generation (e.g. -G1, see -G (generations) (page 227)) the -A option spec-
ifies the minimum allocation area, since the actual size of the allocation area will be
resized according to the amount of data in the heap (see -F (factor) (page 226), be-
low).

When heap profiling using a smaller allocation area can increase accuracy as more fre-
quent major garbage collections also results in more frequent heap snapshots

-AL (size)

Default
-A (page 225) value

Since
8.2.1

Sets the limit on the total size of “large objects” (objects larger than about 3KB) that
can be allocated before a GC is triggered. By default this limit is the same as the -A
(page 225) value.

Large objects are not allocated from the normal allocation area set by the -A flag, which
is why there is a separate limit for these. Large objects tend to be much rarer than small
objects, so most programs hit the -A limit before the -AL limit. However, the -A limit
is per-capability, whereas the -AL limit is global, so as -N gets larger it becomes more
likely that we hit the -AL limit first. To counteract this, it might be necessary to use a
larger -AL limit when using a large -N.

To see whether you’'re making good use of all the memory reseverd for the allocation area
(-A times -N), look at the output of +RTS -S and check whether the amount of memory
allocated between GCs is equal to -A times -N. If not, there are two possible remedies:
use -n to set a nursery chunk size, or use -AL to increase the limit for large objects.

-0 (size)

Default
Im

Set the minimum size of the old generation.

The old generation is collected whenever it grows to this size or the value of the -F
(factor) (page 226) option multiplied by the size of the live data at the previous major
collection, whichever is larger.

5.7. Runtime system (RTS) options 225

GHC User’s Guide Documentation, Release 9.4.8

-n (size)

Default
4m with -A16m (page 225) or larger, otherwise 0.

Set the allocation area chunksize. Setting -n@ means the allocation area is not divided
into chunks.

[Example: -n4m] When set to a non-zero value, this option divides the allocation area (-A
value) into chunks of the specified size. During execution, when a processor exhausts
its current chunk, it is given another chunk from the pool until the pool is exhausted, at
which point a collection is triggered.

This option is only useful when running in parallel (-N2 or greater). It allows the pro-
cessor cores to make better use of the available allocation area, even when cores are
allocating at different rates. Without -n, each core gets a fixed-size allocation area spec-
ified by the -A, and the first core to exhaust its allocation area triggers a GC across all
the cores. This can result in a collection happening when the allocation areas of some
cores are only partially full, so the purpose of the -n is to allow cores that are allocating
faster to get more of the allocation area. This means less frequent GC, leading a lower
GC overhead for the same heap size.

This is particularly useful in conjunction with larger -A values, for example -A64m -n4m
is a useful combination on larger core counts (8+).

Use a compacting algorithm for collecting the oldest generation. By default, the oldest
generation is collected using a copying algorithm; this option causes it to be compacted
in-place instead. The compaction algorithm is slower than the copying algorithm, but
the savings in memory use can be considerable.

For a given heap size (using the -H [(size)] (page 228) option), compaction can in fact
reduce the GC cost by allowing fewer GCs to be performed. This is more likely when the
ratio of live data to heap size is high, say greater than 30%.

Note

Compaction doesn’t currently work when a single generation is requested using the
-G1 option.

-c (n)

Default
30

Automatically enable compacting collection when the live data exceeds (n)% of the max-
imum heap size (see the -M (size) (page 230) option). Note that the maximum heap
size is unlimited by default, so this option has no effect unless the maximum heap size is
set with -M (size) (page 230).

-F (factor)

Default
2

This option controls the amount of memory reserved for the older generations (and in
the case of a two space collector the size of the allocation area) as a factor of the amount

226

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

of live data. For example, if there was 2M of live data in the oldest generation when we
last collected it, then by default we’ll wait until it grows to 4M before collecting it again.

The default seems to work well here. If you have plenty of memory, it is usually better to
use -H (size) (see -H [(size)] (page 228)) than to increase -F (factor) (page 226).

The -F (factor) (page 226) setting will be automatically reduced by the garbage col-
lector when the maximum heap size (the -M (size) (page 230) setting) is approaching.

-Fd (factor)

Default
4

The inverse rate at which unused memory is returned to the OS when it is no longer
needed. After alarge amount of allocation the RTS will start by retaining a lot of allocated
blocks in case it will need them again shortly but then it will gradually release them
based on the -Fd (factor) (page 227). On each subsequent major collection which is
not caused by a heap overflow a little more memory will attempt to be returned until the
amount retained is similar to the amount of live bytes.

Increasing this factor will make the rate memory is returned slower, decreasing it will
make memory be returned more eagerly. Setting it to 0 will disable the memory return
(which will emulate the behaviour in releases prior to 9.2).

-G (generations)

Default
2

Set the number of generations used by the garbage collector. The default of 2 seems to
be good, but the garbage collector can support any number of generations. Anything
larger than about 4 is probably not a good idea unless your program runs for a long time,
because the oldest generation will hardly ever get collected.

Specifying 1 generation with +RTS -G1 gives you a simple 2-space collector, as you would
expect. In a 2-space collector, the -A (size) (page 225) option specifies the minimum
allocation area size, since the allocation area will grow with the amount of live data in
the heap. In a multi-generational collector the allocation area is a fixed size (unless you
use the -H [(size)] (page 228) option).

-qg (gen)

Default
0

Since
6.12.1

Use parallel GC in generation {gen) and higher. Omitting (gen) turns off the parallel GC
completely, reverting to sequential GC.

The default parallel GC settings are usually suitable for parallel programs (i.e. those
using GHC.Conc.par, Strategies, or with multiple threads). However, it is sometimes
beneficial to enable the parallel GC for a single-threaded sequential program too, espe-
cially if the program has a large amount of heap data and GC is a significant fraction of
runtime. To use the parallel GC in a sequential program, enable the parallel runtime with
a suitable -N (x) (page 160) option, and additionally it might be beneficial to restrict
parallel GC to the old generation with -qgl.

5.7. Runtime system (RTS) options 227

./../libraries/base-4.17.2.1/GHC-Conc.html#v:par

GHC User’s Guide Documentation, Release 9.4.8

-gb (gen)

Default
1 for -A (page 225) < 32M, 0 otherwise

Since
6.12.1

Use load-balancing in the parallel GC in generation (gen) and higher. Omitting (gen)
disables load-balancing entirely.

Load-balancing shares out the work of GC between the available cores. This is a good
idea when the heap is large and we need to parallelise the GC work, however it is also
pessimal for the short young-generation collections in a parallel program, because it
can harm locality by moving data from the cache of the CPU where is it being used
to the cache of another CPU. Hence the default is to do load-balancing only in the old-
generation. In fact, for a parallel program it is sometimes beneficial to disable load-
balancing entirely with -qb.

-gn (x)

Default
the value of -N (page 160) or the number of CPU cores, whichever is smaller.

Since
8.2.1

Set the number of threads to use for the parallel GC.

By default, all of the capabilities participate in parallel garbage collection. If we want to
use a very large -N value, however, this can reduce the performance of the GC. For this
reason, the -qn flag can be used to specify a lower number for the threads that should
participate in GC. During GC, if there are more than this number of workers active, some
of them will sleep for the duration of the GC.

The -qn flag may be useful when running with a large -A value (so that GC is infrequent),
and a large -N value (so as to make use of hyperthreaded cores, for example). For ex-
ample, on a 24-core machine with 2 hyperthreads per core, we might use -N48 -qn24
-A128m to specify that the mutator should use hyperthreads but the GC should only use
real cores. Note that this configuration would use 6GB for the allocation area.

-H [(size)]

Default
0

This option provides a “suggested heap size” for the garbage collector. Think of -Hsize
as a variable -A (size) (page 225) option. It says: I want to use at least (size) bytes, so
use whatever is left over to increase the -A value.

This option does not put a limit on the heap size: the heap may grow beyond the given
size as usual.

If (size) is omitted, then the garbage collector will take the size of the heap at the pre-
vious GC as the (size). This has the effect of allowing for a larger -A value but without
increasing the overall memory requirements of the program. It can be useful when the
default small -A value is suboptimal, as it can be in programs that create large amounts
of long-lived data.

228 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

-I (seconds)

Default
0.3 seconds in the threaded runtime, O in the non-threaded runtime

Set the amount of idle time which must pass before a idle GC is performed. Setting -I0
disables the idle GC.

In the threaded and SMP versions of the RTS (see - threaded (page 290), Options affect-
ing linking (page 287)), a major GC is automatically performed if the runtime has been
idle (no Haskell computation has been running) for a period of time.

For an interactive application, it is probably a good idea to use the idle GC, because this
will allow finalizers to run and deadlocked threads to be detected in the idle time when
no Haskell computation is happening. Also, it will mean that a GC is less likely to happen
when the application is busy, and so responsiveness may be improved. However, if the
amount of live data in the heap is particularly large, then the idle GC can cause a signif-
icant delay, and too small an interval could adversely affect interactive responsiveness.

The idle period timer only resets after some activity by a Haskell thread. If your program
is doing literally nothing then after the first idle collection is triggered then no more
future collections will be scheduled until more work is performed.

This is an experimental feature, please let us know if it causes problems and/or could
benefit from further tuning.

-Iw (seconds)

Default
0 seconds

Set the minimum wait time between runs of the idle GC.

By default, if idle GC is enabled in the threaded runtime, a major GC will be performed
every time the process goes idle for a sufficiently long duration (see -I (seconds)
(page 228)). For large server processes accepting regular but infrequent requests (e.g.,
once per second), an expensive, major GC may run after every request. As an alternative
to shutting off idle GC entirely (with -I0), a minimum wait time between idle GCs can
be specified with this flag. For example, -Iw60 will ensure that an idle GC runs at most
once per minute.

This is an experimental feature, please let us know if it causes problems and/or could
benefit from further tuning.

-ki (size)

Default
1k

Set the initial stack size for new threads.

Thread stacks (including the main thread’s stack) live on the heap. As the stack grows,
new stack chunks are added as required; if the stack shrinks again, these extra stack
chunks are reclaimed by the garbage collector. The default initial stack size is delib-
erately small, in order to keep the time and space overhead for thread creation to a
minimum, and to make it practical to spawn threads for even tiny pieces of work.

Note

5.7. Runtime system (RTS) options 229

GHC User’s Guide Documentation, Release 9.4.8

This flag used to be simply -k, but was renamed to -ki in GHC 7.2.1. The old name
is still accepted for backwards compatibility, but that may be removed in a future
version.

-kc (size)

Default
32k

Set the size of “stack chunks”. When a thread’s current stack overflows, a new stack
chunk is created and added to the thread’s stack, until the limit set by -K (size)
(page 230) is reached.

The advantage of smaller stack chunks is that the garbage collector can avoid traversing
stack chunks if they are known to be unmodified since the last collection, so reducing
the chunk size means that the garbage collector can identify more stack as unmodified,
and the GC overhead might be reduced. On the other hand, making stack chunks too
small adds some overhead as there will be more overflow/underflow between chunks.
The default setting of 32k appears to be a reasonable compromise in most cases.

-kb (size)

Default
1k

Sets the stack chunk buffer size. When a stack chunk overflows and a new stack chunk
is created, some of the data from the previous stack chunk is moved into the new chunk,
to avoid an immediate underflow and repeated overflow/underflow at the boundary. The
amount of stack moved is set by the -kb option.

Note that to avoid wasting space, this value should typically be less than 10% of the
size of a stack chunk (-kc (size) (page 230)), because in a chain of stack chunks, each
chunk will have a gap of unused space of this size.

-K (size)

Default
80% of physical memory

Set the maximum stack size for an individual thread to (size) bytes. If the thread at-
tempts to exceed this limit, it will be sent the StackOverflow exception. The limit can
be disabled entirely by specifying a size of zero.

This option is there mainly to stop the program eating up all the available memory in the
machine if it gets into an infinite loop.

-m (n)

Default
3%

Minimum % (n) of heap which must be available for allocation.

-M (size)

Default
unlimited

Set the maximum heap size to (size) bytes. The heap normally grows and shrinks accord-
ing to the memory requirements of the program. The only reason for having this option

230

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

is to stop the heap growing without bound and filling up all the available swap space,
which at the least will result in the program being summarily killed by the operating
system.

The maximum heap size also affects other garbage collection parameters: when the
amount of live data in the heap exceeds a certain fraction of the maximum heap size,
compacting collection will be automatically enabled for the oldest generation, and the
-F parameter will be reduced in order to avoid exceeding the maximum heap size.

-Mgrace=(size)

Default
1M

If the program’s heap exceeds the value set by -M (size) (page 230), the RTS throws
an exception to the program, and the program gets an additional quota of allocation
before the exception is raised again, the idea being so that the program can execute its
exception handlers. -Mgrace= controls the size of this additional quota.

--numa
- -numa=<mask>

Enable NUMA-aware memory allocation in the runtime (only available with -threaded,
and only on Linux and Windows currently).

Background: some systems have a Non-Uniform Memory Architecture, whereby main
memory is split into banks which are “local” to specific CPU cores. Accessing local
memory is faster than accessing remote memory. The OS provides APIs for allocating
local memory and binding threads to particular CPU cores, so that we can ensure certain
memory accesses are using local memory.

The --numa option tells the RTS to tune its memory usage to maximize local memory
accesses. In particular, the RTS will:

* Determine the number of NUMA nodes (N) by querying the OS.

* Manage separate memory pools for each node.

e Map capabilities to NUMA nodes. Capability C is mapped to NUMA node C mod N.
* Bind worker threads on a capability to the appropriate node.

* Allocate the nursery from node-local memory.

¢ Perform other memory allocation, including in the GC, from node-local memory.

* When load-balancing, we prefer to migrate threads to another Capability on the
same node.

The - -numa flag is typically beneficial when a program is using all cores of a large multi-
core NUMA system, with a large allocation area (-A). All memory accesses to the alloca-
tion area will go to local memory, which can save a significant amount of remote memory
access. A runtime speedup on the order of 10% is typical, but can vary a lot depending
on the hardware and the memory behaviour of the program.

Note that the RTS will not set CPU affinity for bound threads and threads entering
Haskell from C/C++, so if your program uses bound threads you should ensure that each
bound thread calls the RTS API rts setInCallCapability(c,1) from C/C++ before calling
into Haskell. Otherwise there could be a mismatch between the CPU that the thread is
running on and the memory it is using while running Haskell code, which will negate
any benefits of - -numa.

5.7. Runtime system (RTS) options 231

GHC User’s Guide Documentation, Release 9.4.8

If given an explicit <mask>, the <mask> is interpreted as a bitmap that indicates the
NUMA nodes on which to run the program. For example, - -numa=3 would run the pro-
gram on NUMA nodes 0 and 1.

--long-gc-sync

--long-gc-sync=<seconds>
When a GC starts, all the running mutator threads have to stop and synchronise. The
period between when the GC is initiated and all the mutator threads are stopped is called

the GC synchronisation phase. If this phase is taking a long time (longer than 1ms is
considered long), then it can have a severe impact on overall throughput.

A long GC sync can be caused by a mutator thread that is inside an unsafe FFI call, or
running in a loop that doesn’t allocate memory and so doesn’t yield. To fix the former,
make the call safe, and to fix the latter, either avoid calling the code in question or
compile it with - fomit-yields (page 148).

By default, the flag will cause a warning to be emitted to stderr when the sync
time exceeds the specified time. This behaviour can be overridden, however: the
longGCSync () hook is called when the sync time is exceeded during the sync period,
and the LongGCSyncEnd () hook at the end. Both of these hooks can be overridden in the
RtsConfig when the runtime is started with hs init ghc(). The default implementa-
tions of these hooks (LongGcSync() and LongGCSyncEnd () respectively) print warnings
to stderr.

One way to use this flag is to set a breakpoint on LongGCSync () in the debugger, and find
the thread that is delaying the sync. You probably want to use -g (page 685) to provide
more info to the debugger.

The GC sync time, along with other GC stats, are available by calling the getRTSStats ()
function from C, or GHC.Stats.getRTSStats from Haskell.

5.7.4 RTS options to produce runtime statistics

-T
-t [(file)]
-s [(file)]
-S [(file)]
--machine-readable
--internal-counters

These options produce runtime-system statistics, such as the amount of time spent exe-
cuting the program and in the garbage collector, the amount of memory allocated, the
maximum size of the heap, and so on. The three variants give different levels of detail:
-T collects the data but produces no output -t produces a single line of output in the
same format as GHC’s -Rghc-timing option, -s produces a more detailed summary at
the end of the program, and -S additionally produces information about each and every
garbage collection. Passing --internal-counters to a threaded runtime will cause a
detailed summary to include various internal counts accumulated during the run; note
that these are unspecified and may change between releases.

The output is placed in (file). If (file) is omitted, then the output is sent to stderr.
If you use the -T flag then, you should access the statistics using GHC.Stats.

If you use the -t flag then, when your program finishes, you will see something like this:

232 Chapter 5. Using GHC

./../libraries/base-4.17.2.1/GHC-Stats.html

GHC User’s Guide Documentation, Release 9.4.8

<<ghc: 36169392 bytes, 69 GCs, 603392/1065272 avg/max bytes residency (2,
—.samples), 3M in use, 0.00 INIT (0.00 elapsed), 0.02 MUT (0.02 elapsed),
— 0.07 GC (0.07 elapsed) :ghc>>

This tells you:
* The total number of bytes allocated by the program over the whole run.
* The total number of garbage collections performed.

* The average and maximum “residency”, which is the amount of live data in bytes.
The runtime can only determine the amount of live data during a major GC, which is
why the number of samples corresponds to the number of major GCs (and is usually
relatively small). To get a better picture of the heap profile of your program, use the
-hT (page 235) RTS option (RTS options for profiling (page 235)).

* The peak memory the RTS has allocated from the OS.

* The amount of CPU time and elapsed wall clock time while initialising the runtime
system (INIT), running the program itself (MUT, the mutator), and garbage collect-
ing (GC).

You can also get this in a more future-proof, machine readable format, with -t
--machine-readable:

([(“bytes allocated", "36169392")

, ("num_GCs", "69")

, ("average bytes used", "603392")
, ("max_bytes used", "1065272")

, ("num byte usage samples", "2")

, ("peak megabytes allocated", "3")
,("init cpu seconds", "0.00")
,("init wall seconds", "0.00")

, ("mutator cpu seconds", "0.02")

, ("mutator wall seconds", "0.02")
, ("GC _cpu seconds", "0.07")

, ("GC wall seconds", "0.07")

1

If you use the -s flag then, when your program finishes, you will see something like this
(the exact details will vary depending on what sort of RTS you have, e.g. you will only
see profiling data if your RTS is compiled for profiling):

36,169,392 bytes allocated in the heap
4,057,632 bytes copied during GC
1,065,272 bytes maximum residency (2 sample(s))
54,312 bytes maximum slop
3 MB total memory in use (0 MB lost due to fragmentation)

Generation 0: 67 collections, 0 parallel, 0.04s, 0.03s elapsed
Generation 1: 2 collections, 0 parallel, 0.03s, 0.04s elapsed

SPARKS: 359207 (557 converted, 149591 pruned)

INIT time 0.00s (0.00s elapsed)
MUT time 0.01s (0.02s elapsed)

(continues on next page)

5.7. Runtime system (RTS) options 233

GHC User’s Guide Documentation, Release 9.4.8

L

(continued from previous page)

time 0.07s (0.07s elapsed)

EXIT time 0.00s (0.00s elapsed)
Total time 0.08s (0.09s elapsed)

%GC time 89.5% (75.3% elapsed)
Alloc rate 4,520,608,923 bytes per MUT second

Productivity 10.5% of total user, 9.1% of total elapsed

The “bytes allocated in the heap” is the total bytes allocated by the program over
the whole run.

GHC uses a copying garbage collector by default. “bytes copied during GC” tells
you how many bytes it had to copy during garbage collection.

The maximum space actually used by your program is the “bytes maximum resi-
dency” figure. This is only checked during major garbage collections, so it is only
an approximation; the number of samples tells you how many times it is checked.

The “bytes maximum slop” tells you the most space that is ever wasted due to the
way GHC allocates memory in blocks. Slop is memory at the end of a block that
was wasted. There’s no way to control this; we just like to see how much memory is
being lost this way.

The “total memory in use” tells you the peak memory the RTS has allocated from
the OS.

Next there is information about the garbage collections done. For each generation it
says how many garbage collections were done, how many of those collections were
done in parallel, the total CPU time used for garbage collecting that generation, and
the total wall clock time elapsed while garbage collecting that generation.

The SPARKS statistic refers to the use of Control.Parallel.par and related func-
tionality in the program. Each spark represents a call to par; a spark is “converted”
when it is executed in parallel; and a spark is “pruned” when it is found to be already
evaluated and is discarded from the pool by the garbage collector. Any remaining
sparks are discarded at the end of execution, so “converted” plus “pruned” does not
necessarily add up to the total.

Next there is the CPU time and wall clock time elapsed broken down by what the
runtime system was doing at the time. INIT is the runtime system initialisation.
MUT is the mutator time, i.e. the time spent actually running your code. GC is the
time spent doing garbage collection. RP is the time spent doing retainer profiling.
PROF is the time spent doing other profiling. EXIT is the runtime system shutdown
time. And finally, Total is, of course, the total.

%GC time tells you what percentage GC is of Total. “Alloc rate” tells you the “bytes
allocated in the heap” divided by the MUT CPU time. “Productivity” tells you what
percentage of the Total CPU and wall clock elapsed times are spent in the mutator
(MUT).

The -S flag, as well as giving the same output as the -s flag, prints information about

each GC as it happens:

234

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

Alloc Copied Live GC GC TOT TOT Page Flts

bytes bytes bytes user elap user elap

528496 47728 141512 0.01 0.02 0.02 0.02 0 0 .
~(Gen: 1)

[...]
524944 175944 1726384 0.00 0.00 0.08 0.11 0 0 .

~(Gen: 0)

L

For each garbage collection, we print:
« How many bytes we allocated this garbage collection.
* How many bytes we copied this garbage collection.
* How many bytes are currently live.
* How long this garbage collection took (CPU time and elapsed wall clock time).
* How long the program has been running (CPU time and elapsed wall clock time).
* How many page faults occurred this garbage collection.
* How many page faults occurred since the end of the last garbage collection.

* Which generation is being garbage collected.

5.7.5 RTS options for concurrency and parallelism

The RTS options related to concurrency are described in Using Concurrent Haskell (page 158),
and those for parallelism in RTS options for SMP parallelism (page 160).

5.7.6 RTS options for profiling

Most profiling runtime options are only available when you compile your program for profiling

(see Compiler options for profiling (page 660), and RTS options for heap profiling (page 667)

for the runtime options). However, there is one profiling option that is available for ordinary

non-profiled executables:

-hT

-h
Generates a basic heap profile, in the file prog.hp. To produce the heap profile graph,
use hp2ps (see hp2ps - Rendering heap profiles to PostScript (page 672)). The basic
heap profile is broken down by data constructor, with other types of closures (functions,
thunks, etc.) grouped into broad categories (e.g. FUN, THUNK). To get a more detailed
profile, use the full profiling support (Profiling (page 655)). Can be shortened to -h
(page 235).

Note

The meaning of the shortened -h (page 235) is dependent on whether your program
was compiled for profiling. (See RTS options for heap profiling (page 667) for details.)

-L (n)

Default
25 characters

5.7. Runtime system (RTS) options 235

GHC User’s Guide Documentation, Release 9.4.8

Sets the maximum length of the cost-centre names listed in the heap profile.

5.7.7 Tracing

When the program is linked with the -eventlog (page 290) option (Options affecting linking
(page 287)), runtime events can be logged in several ways:

* In binary format to a file for later analysis by a variety of tools. One such tool is Thread-
Scope, which interprets the event log to produce a visual parallel execution profile of
the program.

* In binary format to customized event log writer. This enables live analysis of the events
while the program is running.

* As text to standard output, for debugging purposes.

-1 (flags)
Log events in binary format. Without any (flags) specified, this logs a default set of
events, suitable for use with tools like ThreadScope.

Per default the events are written to program.eventlog though the mechanism for writ-
ing event log data can be overridden with a custom EventLogWriter.

For some special use cases you may want more control over which events are included.
The (flags) is a sequence of zero or more characters indicating which classes of events
to log. Currently these the classes of events that can be enabled/disabled:

* s — scheduler events, including Haskell thread creation and start/stop events. En-
abled by default.

* g — GC events, including GC start/stop. Enabled by default.

* n — non-moving garbage collector (see - -nonmoving-gc (page 224)) events includ-
ing start and end of the concurrent mark and census information to characterise
heap fragmentation. Disabled by default.

* p — parallel sparks (sampled). Enabled by default.
* f — parallel sparks (fully accurate). Disabled by default.

e T — ticky-ticky profiler (page 681) events (see Ticky counters (page 747) for
details). Disabled by default.

* u — user events. These are events emitted from Haskell code using functions such
as Debug.Trace.traceEvent. Enabled by default.

You can disable specific classes, or enable/disable all classes at once:
* a — enable all event classes listed above
* -(x) — disable the given class of events, for any event class listed above
* -a — disable all classes
For example, -1-ag would disable all event classes (-a) except for GC events (g).

For spark events there are two modes: sampled and fully accurate. There are various
events in the life cycle of each spark, usually just creating and running, but there are
some more exceptional possibilities. In the sampled mode the number of occurrences
of each kind of spark event is sampled at frequent intervals. In the fully accurate mode
every spark event is logged individually. The latter has a higher runtime overhead and
is not enabled by default.

236 Chapter 5. Using GHC

https://www.haskell.org/haskellwiki/ThreadScope
https://www.haskell.org/haskellwiki/ThreadScope

GHC User’s Guide Documentation, Release 9.4.8

The format of the log file is described in this users guide in Eventlog encodings (page 727)
It can be parsed in Haskell using the ghc-events library. To dump the contents of a
.eventlog file as text, use the tool ghc-events show that comes with the ghc-events
package.

Each event is associated with a timestamp which is the number of nanoseconds since
the start of executation of the running program. This is the elapsed time, not the CPU
time.

-ol{filename)

Default
(program).eventlog

Since
8.8

Sets the destination for the eventlog produced with the -1 (flags) (page 236) flag.
--eventlog-flush-interval=(seconds)

Default
disabled

Since
9.2

When enabled, the eventlog will be flushed periodically every (seconds). This can be use-
ful in live-monitoring situations where the eventlog is consumed in real-time by another
process.

-v [(flags)]
Log events as text to standard output, instead of to the .eventlog file. The (flags) are the
same as for -1, with the additional option t which indicates that the each event printed
should be preceded by a timestamp value (in the binary .eventlog file, all events are
automatically associated with a timestamp).

The debugging options -Dx also generate events which are logged using the tracing frame-
work. By default those events are dumped as text to stdout (-Dx implies -v), but they may
instead be stored in the binary eventlog file by using the -1 option.

5.7.8 RTS options for hackers, debuggers, and over-interested souls

These RTS options might be used (a) to avoid a GHC bug, (b) to see “what’s really happening”,
or (c) because you feel like it. Not recommended for everyday use!

-B
Sound the bell at the start of each garbage collection.

Oddly enough, people really do use this option! Our pal in Durham (England), Paul
Callaghan, writes: “Some people here use it for a variety of purposes—honestly!—e.g.,
confirmation that the code/machine is doing something, infinite loop detection, gauging
cost of recently added code. Certain people can even tell what stage [the program] is in
by the beep pattern. But the major use is for annoying others in the same office...”

-D (x)

An RTS debugging flag; only available if the program was linked with the -debug
(page 290) option. Various values of (x) are provided to enable debug messages and
additional runtime sanity checks in different subsystems in the RTS, for example +RTS

5.7. Runtime system (RTS) options 237

https://hackage.haskell.org/package/ghc-events
https://hackage.haskell.org/package/ghc-events

GHC User’s Guide Documentation, Release 9.4.8

-Ds
-Di
-Dw
-DG
-Dg
-Db
-DS
-DZ
-Dt
-Dp
-Da
-D1
-DL
-Dm
-Dz
-Dc
-Dr
-DC

-Ds -RTS enables debug messages from the scheduler. Use +RTS -7 to find out which
debug flags are supported.

Full list of currently supported flags:
DEBUG: scheduler

DEBUG: interpreter

DEBUG: weak

DEBUG: gccafs

DEBUG: gc

DEBUG: block

DEBUG: sanity

DEBUG: zero freed memory on GC
DEBUG: stable

DEBUG: prof

DEBUG: apply

DEBUG: linker

DEBUG: linker (verbose); implies :rts-flag: -DU
DEBUG: stm

DEBUG: stack squeezing

DEBUG: program coverage

DEBUG: sparks

DEBUG: compact

Debug messages will be sent to the binary event log file instead of stdout if the -1
(flags) (page 236) option is added. This might be useful for reducing the overhead
of debug tracing.

To figure out what exactly they do, the least bad way is to grep the rts/ directory in the
ghc code for macros like DEBUG (scheduler or DEBUG_scheduler

-r (file)

=XC

Produce “ticky-ticky” statistics at the end of the program run (only available if the pro-
gram was linked with -debug (page 290)). The (file) business works just like on the -S
[(file)] (page 232) RTS option, above.

For more information on ticky-ticky profiling, see Using “ticky-ticky” profiling (for imple-
mentors) (page 681).

(Only available when the program is compiled for profiling.) When an exception is raised
in the program, this option causes a stack trace to be dumped to stderr.

This can be particularly useful for debugging: if your program is complaining about a
head [] error and you haven’t got a clue which bit of code is causing it, compiling with

238

Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

-prof -fprof-auto (see -prof (page 660)) and running with +RTS -xc -RTS will tell you
exactly the call stack at the point the error was raised.

The output contains one report for each exception raised in the program (the program
might raise and catch several exceptions during its execution), where each report looks
something like this:

*** Exception raised (reporting due to +RTS -xc), stack trace:
GHC.List.CAF
--> evaluated by: Main.polynomial.table search,
called from Main.polynomial.theta index,
called from Main.polynomial,
called from Main.zonal pressure,
called from Main.make pressure.p,
called from Main.make pressure,
called from Main.compute initial state.p,
called from Main.compute initial state,
called from Main.CAF

The stack trace may often begin with something uninformative like GHC.List.CAF; this
is an artifact of GHC’s optimiser, which lifts out exceptions to the top-level where the
profiling system assigns them to the cost centre “CAF”. However, +RTS -xc doesn’t just
print the current stack, it looks deeper and reports the stack at the time the CAF was
evaluated, and it may report further stacks until a non-CAF stack is found. In the example
above, the next stack (after --> evaluated by) contains plenty of information about
what the program was doing when it evaluated head [].

Implementation details aside, the function names in the stack should hopefully give you
enough clues to track down the bug.

See also the function traceStack in the module Debug.Trace for another way to view
call stacks.

Turn off update frame squeezing on context switch. (There’s no particularly good reason
to turn it off, except to ensure the accuracy of certain data collected regarding thunk
entry counts.)

5.7.9 Getting information about the RTS

--info

It is possible to ask the RTS to give some information about itself. To do this, use the
--1info (page 239) flag, e.g.

$./a.out +RTS --info

("GHC RTS", "YES")

("GHC version", "6.7")

("RTS way", "rts p")

("Host platform", "x86 64-unknown-linux")
("Host architecture"”, "x86 64")

("Host 0S", "linux")

("Host vendor", "unknown")

("Build platform", "x86 64-unknown-linux")
("Build architecture", "x86 64")

’
r
’
’
’
’
’
’

(continues on next page)

5.7. Runtime system (RTS) options 239

GHC User’s Guide Documentation, Release 9.4.8

(continued from previous page)

, ("Build 0S", "linux")

, ("Build vendor", "unknown")

, ("Target platform", "x86 64-unknown-linux")
, ("Target architecture", "x86 64")
, ("Target 0S", "linux")

, ("Target vendor", "unknown")

, ("Word size", "64")

, ("Compiler unregisterised", "NO")
, ("Tables next to code", "YES")

, ("Flag -with-rtsopts", "")

]

The information is formatted such that it can be read as a of type [(String, String)].
Currently the following fields are present:

GHC RTS
Is this program linked against the GHC RTS? (always “YES”).

GHC version
The version of GHC used to compile this program.

RTS way
The variant (“way”) of the runtime. The most common values are rts v (vanilla),
rts thr (threaded runtime, i.e. linked using the - threaded (page 290) option) and
rts p (profiling runtime, i.e. linked using the -prof (page 660) option). Other vari-
ants include debug (linked using -debug (page 290)), and dyn (the RTS is linked in
dynamically, i.e. a shared library, rather than statically linked into the executable
itself). These can be combined, e.g. you might have rts_thr debug p.

Target platformTarget architectureTarget 0STarget vendor
These are the platform the program is compiled to run on.

Build platformBuild architectureBuild 0SBuild vendor
These are the platform where the program was built on. (That is, the target platform
of GHC itself.) Ordinarily this is identical to the target platform. (It could potentially
be different if cross-compiling.)

Host platformHost architectureHost 0SHost vendor
These are the platform where GHC itself was compiled. Again, this would normally
be identical to the build and target platforms.

Word size
Either "32" or "64", reflecting the word size of the target platform.

Compiler unregistered
Was this program compiled with an “unregistered” (page 279) version of GHC? (l.e.,
a version of GHC that has no platform-specific optimisations compiled in, usually
because this is a currently unsupported platform.) This value will usually be no,
unless you're using an experimental build of GHC.

Tables next to code
Putting info tables directly next to entry code is a useful performance optimisation
that is not available on all platforms. This field tells you whether the program has
been compiled with this optimisation. (Usually yes, except on unusual platforms.)

Flag -with-rtsopts
The value of the GHC flag -with-rtsopts=(opts) (page 291) at compile/link time.

240 Chapter 5. Using GHC

GHC User’s Guide Documentation, Release 9.4.8

5.8 Filenames and separate compilation

This section describes what files GHC expects to find, what files it creates, where these files
are stored, and what options affect this behaviour.

Pathname conventions vary from system to system. In particular, the directory separator
is “/” on Unix systems and “\” on Windows systems. In the sections that follow, we shall
consistently use “/” as the directory separator; substitute this for the appropriate character
for your system.

5.8.1 Haskell source files
Each Haskell source module should be placed in a file on its own.

Usually, the file should be named after the module name, replacing dots in the module name
by directory separators. For example, on a Unix system, the module A.B.C should be placed
in the file A/B/C. hs, relative to some base directory. If the module is not going to be imported
by another module (Main, for example), then you are free to use any filename for it.

GHC assumes that source files are ASCII or UTF-8 only, other encoding are not recognised.
However, invalid UTF-8 sequences will be ignored in comments, so it is possible to use other
encodings such as Latin-1, as long as the non-comment source code is ASCII only.

5.8.2 Output files

When asked to compile a source file, GHC normally generates two files: an object file, and an
interface file.

The object file, which normally ends in a . o suffix, contains the compiled code for the module.

The interface file, which normally ends in a .hi suffix, contains the information that GHC
needs in order to compile further modules that depend on this module. It contains things like
the types of exported functions, definitions of data types, and so on. It is stored in a binary
format, so don’t try to read one; use the --show-iface (file) (page 97) option instead (see
Other options related to interface files (page 246)).

You should think of the object file and the interface file as a pair, since the interface file is in a
sense a compiler-readable description of the contents of the object file. If the interface file and
object file get out of sync for any reason, then the compiler may end up making assumptions
about the object file that aren’t true; trouble will almost certainly follow. For this reason,
we recommend keeping object files and interface files in the same place (GHC does this by
default, but it is possible to override the defaults as we’ll explain shortly).

Every module has a module name defined in its source code (module A.B.C where ...).

The name of the object file generated by GHC is derived according to the following rules,
where (osuf) is the object-file suffix (this can be changed with the -osuf option).

» If there is no -odir option (the default), then the object filename is derived from the
source filename (ignoring the module name) by replacing the suffix with (osuf).

* If -odir (dir) has been specified, then the object filename is (dir)/(mod).(osuf), where
(mod) is the module name with dots replaced by slashes. GHC will silently create the
necessary directory structure underneath (dir), if it does not already exist.

The name of the interface file is derived using the same rules, except that the suffix is (hisuf)
(.hi by default) instead of (osuf), and the relevant options are -hidir (dir) (page 244)
and -hisuf (suffix) (page 244) instead of -odir (dir) (page 243) and -osuf (suffix)
(page 244) respectively.

5.8. Filenames and separate compilation 241

GHC User’s Guide Documentation, Release 9.4.8

For example, if GHC compiles the module A.B.C in the file src/A/B/C.hs, with no -odir or
-hidir flags, the interface file will be put in src/A/B/C.hi and the object file in src/A/B/C.o.

For any module that is imported, GHC requires that the name of the module in the import
statement exactly matches the name of the module in the interface file (or source file) found
using the strategy specified in The search path (page 242). This means that for most modules,
the source file name should match the module name.

However, note that it is reasonable to have a module Main in a file named foo.hs, but this
only works because GHC never needs to search for the interface for module Main (because it
is never imported). It is therefore possible to have several Main modules in separate source
files in the same directory, and GHC will not get confused.

In batch compilation mode, the name of the object file can also be overridden using the -0
(file) (page 242) option, and the name of the interface file can be specified directly using
the -ohi (file) (page 243) option.

5.8.3 The search path

In your program, you import a module Foo by saying import Foo. In - -make (page 96) mode
or GHCi, GHC will look for a source file for Foo and arrange to compile it first. Without - -make
(page 96), GHC will look for the interface file for Foo, which should have been created by an
earlier compilation of Foo.

The strategy for looking for source files is as follows: GHC keeps a list of directories called
the search path. For each of these directories, it tries appending (basename) . (extension)
to the directory, and checks whether the file exists. The value of (basename) is the module
name with dots replaced by the directory separator (”/” or “\\", depending on the system),
and (extension) is a source extension (hs, lhs) if we are in - -make (page 96) mode or GHCi.

When looking for interface files in - ¢ (page 97) mode, we look for interface files in the -hidir,
if it’s set. Otherwise the same strategy as for source files is used to try to locate the interface
file.

For example, suppose the search path contains directories d1, d2, and d3, and we are in
--make (page 96) mode looking for the source file for a module A.B.C. GHC will look in d1/A/
B/C.hs, d1/A/B/C.lhs, d2/A/B/C.hs, and so on.

The search path by default contains a single directory: “.” (i.e. the current directory). The
following options can be used to add to or change the contents of the search path:

-i(dir)[:(dir)]*
This flag appends a colon-separated list of dirs to the search path.

resets the searc