
POSTER: Rust SGX SDK: Towards Memory Safety in Intel SGX
Enclave

Yu Ding, Ran Duan, Long Li, Yueqiang Cheng,
Yulong Zhang, Tanghui Chen, Tao Wei

Baidu X-Lab
Sunnyvale, CA

{dingyu02,duanran01,lilong09,chengyueqiang,ylzhang,
chentanghui,lenx}@baidu.com

Huibo Wang∗
UT Dallas

Richardson, Texas
hxw142830@utd.edu

ABSTRACT
Intel SGX is the next-generation trusted computing infrastructure.
It can effectively protect data inside enclaves from being stolen.
Similar to traditional programs, SGX enclaves are likely to have
security vulnerabilities and can be exploited as well. This gives an
adversary a great opportunity to steal secret data or perform other
malicious operations.

Rust is one of the system programming languages with promis-
ing security properties. It has powerful checkers and guarantees
memory-safety and thread-safety. In this paper, we show Rust SGX
SDK, which combines Intel SGX and Rust programming language
together. By using Rust SGX SDK, developers could write memory-
safe secure enclaves easily, eliminating the most possibility of being
pwned through memory vulnerabilities. What’s more, the Rust en-
claves are able to run as fast as the ones written in C/C++.

CCS CONCEPTS
• Security and privacy→ Trusted computing; Software secu-
rity engineering;

KEYWORDS
Intel SGX; Rust programming language; SDK

1 INTRODUCTION
Intel SGX provides a hardware based Trusted Execution Environ-
ment (TEE) called ‘SGX enclave’, along with Intel Active Manage-
ment Technology (AMT) module and Internet remote attestation
infrastructure for the whole Intel SGX ecosystem. The core of Intel
SGX technique is the memory encryption engine [7] in CPU and
the CPU is the key component inside the trusted boundary. It limits
memory access by enforcing checks on TLB access and memory
address translation. Also, the memory encryption engine automati-
cally encrypts data when evicting pages to the untrusted memory
region. However, SGX enclaves could have memory corruption
vulnerabilities and could be exploited and hi-jacked [9, 12] and thus
∗Huibo Wang contributed to this work during her internship at Baidu X-Lab.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS’17, , October 30–November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN ISBN 978-1-4503-4946-8/17/10.
https://doi.org/10.1145/3133956.3138824

secrets would be leaked in such attacks. Researchers have proposed
several techniques for hardening Intel SGX [8, 11], but these solu-
tions are only exploit mitigations. We still need an ultimate solution
with memory safety guarantee for Intel SGX enclaves.

Rust programming language [10] is becoming more and more
popular in system programming. It intrinsically guarantees memory
safety and thread safety. The performance of Rust program is almost
the same to C++ program [1]. Servo [5] and Redox [3] are browser
and operating system written in Rust, indicating that Rust can do
almost everything on popular architectures. We believe that Rust
best fits for developing basic system components.

In this paper, we show Rust SGX SDK a framework that connects
Intel SGX and Rust programming language, making it easy for
developers to write safe and memory-bug-free SGX enclaves. By
building enclaves in Rust on top of our Rust SGX SDK, there is no
need for adapting any advanced exploit mitigation techniques such
as ASLR, ROP gadget mitigation or CFI enforcement.

Rust SGX SDK has been open-sourced on Github [4]. Intel rec-
ommends this SDK on its official SGX homepage.

In summary, our contributions are:

(1) We first introduce Rust ecosystem to the Intel SGX commu-
nity, bringing both security and functionality to Intel SGX
programming.

(2) We propose the rules-of-thumb in memory safe/unsafe hy-
brid SDK designing to achieve good balance between security
and functionality.

(3) We identify the main challenges in connecting Intel SGX
and Rust, and then we design and build Rust SGX SDK that
addresses all identified challenges efficiently and effectively.

2 RATIONALE AND CHALLENGES
2.1 Memory safety rules-of-thumb
Based on whether using Intel SGX SDK or not, there are two rea-
sonable directions to build Rust SGX SDK. The first one is to build
it from scratch, without relying on the Intel’s SGX SDK. The pure
Rust version could achieve better safety, but it weakens the func-
tionality. It would become even worse with many new features
added into the Intel SGX SDK periodically. sgx-utils [6] is such
an open-source project and but it is outdated now. The second
direction is to build it upon the Intel SGX SDK. It is not a pure Rust
version, but it could significantly benefit from Intel’s efforts, and is
able to achieve good balance between safety and functionality with
carefully designed architecture. In our Rust SGX SDK project, we
choose the second one. To get better functionality along with strong

https://doi.org/10.1145/3133956.3138824

security guarantees, we come up with the following rules-of-thumb
for hybrid memory-safe architecture designing:

(1) Unsafe components should be appropriately isolated and
modularized, and the size should be small (or minimized).

(2) Unsafe components should not weaken the safe, especially,
public APIs and data structures.

(3) Unsafe components should be clearly identified and easily
upgraded.

Here the unsafe components include both the modules written in
memory-unsafe languages (such as C/C++), and the unsafe codes
which reside in the modules written in memory-safe languages
(such as Rust). Memory-safety oriented SGX SDK would benefit a
lot from following these rules. Enclaves built on top of our Rust
SGX SDK would benefit from the strong safety guarantees, as well
as new features and performance optimizations brought by Intel.

2.2 Main Challenges
The first real challenge is threading. Thread of Intel SGX enclave
does not have its own life cycle, no matter the enclave’s TCSPolicy
is BOUND or UNBOUND [2]. In an enclave with BOUNDTCSpolicy,
an enclave ‘thread’ consumes one fixed ‘TCS’ slot, and binds its life
to a POSIX thread. When the POSIX thread exits, the corresponding
enclave ‘thread’ releases the occupied ‘TCS’ thread slot . In an
enclave with UNBOUND TCSpolicy, an enclave ‘thread’ comsumes
an available ‘TCS’ slot from the pool and releases it on EEXIT. As a
result, raw SGX thread has neither constructor nor destructor, and
TLS data even remains after EEXIT. All these characterstics conflict
with Rust thread model.

The second challenge is the initiation of static data. For example,
C++0x allows initializer lists for standard containers. In normal user
space applications, the global data structures are initiated before
main begins. However, in SGX, there is no such initiation procedure.
After the enclave is loaded, nothing would be executed until the
first ECALL instruction. How to implement the static data initiation
in Rust is a challenge.

The third challenge is to implement Rust style mutex using SGX
style mutex. The SGX style mutex is very similar to pthread mutex.
But Rust mutex is vastly different from it. Rust mutex directly binds
to the protected data and needs to be constructed together with the
data it binds to. We need to properly implement Rust style mutex
using SGX style mutex.

3 SDK OVERVIEW
Fig. 1 shows the architecture of our Rust SGX SDK. In the trusted
environment, a.k.a. SGX enclave, the SGX enclave is loaded into the
protected memory along with the enclave’s metadata. The SGX en-
clave binary is linked to Intel SDK libraries, such as libsgx_tstdc.a.
Intel SGX SDK exposes standard C/C++ interface to the upper level.
Rust SGX SDK is built on top of these Intel SGX SDK libraries, pro-
viding Rust style data structures and APIs to developers. For exam-
ple, Rust has its own vector data structure collections::vec::Vec
and Rust SGX SDK includes the implementation and exports it. In ad-
dition, Intel SGX SDKhasAPIs such as sgx_rijndael128GCM_encrypt
and Rust SGX SDK re-exports them in Rust calling convention, e.g.,
using name rsgx_rijndael128GCM_encrypt for the above API. In

/dev/isgx

Intel SGX Driver

Kernel

User Space

SGX Application

Untrusted
component

Intel
liburts

SGX Enclave

Intel SDK
tlibc/trts/...

Rust SGX SDK
sgx_tstdc
sgx_tcrypto
...

Rust program
fn decrypt(){}
fn encrypt(){}

fn decrypt (...) -> sgx_status_t {

 let ret=rsgx_decrypt(key,cipher);

}

fn rsgx_decrypt(...) ->
sgx_status_t{

// translate key,cipher to C struct
 let ret=sgx_decrypt(key_c,cipher_c)

}

libtcrypto.a : sgx_decrypt

Figure 1: Overview of Rust SGX SDK

this way, Rust SGX SDK allows developers to write Rust codes in
Intel SGX enclaves.

Rust SGX SDK is written in Rust using 19K SLoC. We ship it
along with code samples and documents and has 44K SLoC in total.

4 SOLUTION
For the threading problem, we limit the ability of Intel SGX thread-
ing.

(1) For the enclave with BOUND TCSpolicy, our Rust SGX SDK
supports TLS. Developers could write constructor function
for the TLS data in Rust SGX enclave. But in the current
version of Rust SGX SDK, these constructors would not be
executed automatically , which means that developers need
to initiate TLS data explicitly. Destructors of TLS data are
unsupported in the current version. Supporting destructors
and automatically destructing TLS data require re-writing
the code in the untrusted part, which will be our next step.

(2) For the enclave with UNBOUND TCSpolicy, our Rust SGX
SDK does not support TLS. The reason is that in such pro-
grams, every ECALL would trap into the enclave with an
undetermined TCS slot. So it is impossible to support TLS
in this scenario. The only way to support TLS data in UN-
BOUND TCSpolicy is software simulation, instead of using
native TCS slot.

We also implemented Rust style park and unpark for threading
control.

To support global data initiation, we have done the following:
(1) We utilize the undocumented function init_global_object

provided in libsgx_trts from Intel SGX SDK. This function
would retrieve the .init_array section of the enclave and
initialize them during the first ECALL. It gives us the ability
to initiate global data.

(2) We implemented a Rust macro init_global_object! to
put data in a special section : .init_array. By using this
macro, developers could put data directly into the global data
section, which will be initiated during the first ECALL.

#[no_mangle]

pub extern "C" fn say_something(some_string: *const u8, some_len: u32) -> sgx_status_t {
 unsafe {
 ocall_print_string(some_string as *const c_uchar, some_len as size_t);
 }
 let hello_string = "This is a Rust String!";
 unsafe {
 ocall_print_string(hello_string.as_ptr() as *const c_uchar,
 hello_string.len() as size_t);
 }
 sgx_status_t::SGX_SUCCESS
}

 Figure 2: A helloworld enclave code sample in Rust

(3) We implemented Rust style Once in Rust SGX SDK by utiliz-
ing native std::sync::atomic::AtomicPtr. Once is useful
in such one-time initialization.

(4) We ported a Rust crate lazy_static with the support of
Once. lazy_static is the most easy-to-use and well adopted
crate to initiate global data.

With the above supports, Rust SGX SDK offers the global data
initiation elegantly.

To provide Rust style mutex, we looked into Rust’s source code.
We found that Rust’s implementation ofmutex is based on sys::Mutex.
The primitives provided by sys::Mutex can be re-implemented us-
ing Intel SGX’s mutex. Based on this observation, we implemented
a wrapper layer to convert Intel SGX’s raw mutex to Rust style raw
mutex. Thus we can smoothly port Rust mutex over the wrapper
layer.

To support Rust style exception handling, we redefined Rust
‘panicking’ and ‘panic’ mechanism. In Rust, throwing an exception
is triggering the panic! macro and catching an exception requires
panic::unwind function. Rust’s std provides this mechanism. But
in SGX, we do not have std, same as many embedded systems. To
solve this, we provided panic handling setter set_panic_handler
to customize panic handler, and we implemented the whole un-
wind mechanism to support panic::unwind. Developers need to
customize the exception handler at first, and use panic::unwind
{..} to handle all exceptions.

5 A RUNNING EXAMPLE
Fig. 2 shows an example of Rust code to print “Hello World” from a
Rust enclave. This example is self-explained and easy to understand
with basic knowledge of Rust and SGX. For more code examples,
please refer to our Github repository [4].

6 FUTUREWORK
The current latest release of Rust SGX SDK is v0.2.0. In our v1.0.0
version, we plan to provide a full-fledged sgx_tstd library which
could be used as std inside enclave. By leveraging this library, it
is easier for developers to port third-party crates into Intel SGX.
Meanwhile, we are also working on an untrusted runtime library
sgx_urts, which enables the development of Rust code in the SGX
untrusted environment as well.

REFERENCES
[1] BENCHMARKING DYNAMIC ARRAY IMPLEMENTATIONS.

https://lonewolfer.wordpress.com/2014/09/24/benchmarking-dynamic-array-
implementations/.

[2] Intel Software Guard Extensions SDK for Linux OS De-
veloper Reference. https://download.01.org/intel-sgx/linux-
1.9/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.9_Open_Source.pdf.

[3] Redox OS. https://www.redox-os.org/.
[4] Rust SGX SDK. https://github.com/baidu/rust-sgx-sdk.
[5] Servo, the Parallel Browser Engine Project. https://servo.org/.
[6] sgx-utils. https://github.com/jethrogb/sgx-utils.
[7] S. Gueron. 2016. Memory Encryption for General-Purpose Processors. IEEE

Security Privacy 14, 6 (Nov 2016), 54–62. https://doi.org/10.1109/MSP.2016.124
[8] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod

Bhatotia, Pascal Felber, and Christof Fetzer. 2017. SGXBOUNDS: Memory Safety
for Shielded Execution. In Proceedings of the Twelfth European Conference on
Computer Systems (EuroSys ’17). ACM, New York, NY, USA, 205–221. https:
//doi.org/10.1145/3064176.3064192

[9] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho
Choi, Taesoo Kim, Marcus Peinado, and Brent ByungHoon Kang. 2017. Hack-
ing in Darkness: Return-oriented Programming against Secure Enclaves. In
26th USENIX Security Symposium (USENIX Security 17). USENIX Association,
Vancouver, BC, 523–539. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/lee-jaehyuk

[10] Nicholas D. Matsakis and Felix S. Klock, II. 2014. The Rust Language. Ada Lett.
34, 3 (Oct. 2014), 103–104. https://doi.org/10.1145/2692956.2663188

[11] Jaebaek Seo, Byounyoung Lee, Seongmin Kim, Ming-Wei Shih, Insik Shin, Han,
and Taesoo Kim. 2017. SGX-Shield: Enabling Address Space Layout Randomiza-
tion for SGX Programs. In Proceedings of the 2017 Annual Network and Distributed
System Security Symposium (NDSS).

[12] NicoWeichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. 2016. Async-
Shock: Exploiting Synchronisation Bugs in Intel SGX Enclaves. In European
Symposium on Research in Computer Security. Springer International Publishing,
440–457.

https://doi.org/10.1109/MSP.2016.124
https://doi.org/10.1145/3064176.3064192
https://doi.org/10.1145/3064176.3064192
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://doi.org/10.1145/2692956.2663188

	Abstract
	1 Introduction
	2 Rationale and Challenges
	2.1 Memory safety rules-of-thumb
	2.2 Main Challenges

	3 SDK overview
	4 Solution
	5 A Running Example
	6 Future Work
	References

